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\;INTRODUCTION

~ The methods of the quantum 1nverse problem prov1de a1go—'
1thms of arb1trary mod1f1cat10ns of the spectral parameters
: ;[1]. In part1cu1ar, for: the 1nf1n1te square well ‘we:.can shift: .
::the chosen energy . level EA or: change its reduced widths YA‘Z'
- w1thout varylrg other spectral parameters.‘The correspondlngfk
: »perturbatlon AV(X) (Bargmann—type potentlals [11) of the ori-
j: g1na1 potent1a1 and new wave functlons can be wr1tten in an
v_exp11c1t form.‘?‘";?n“f N e e el
- It 1s shown, din the present paper that w1th the
p per10d1ca1 cha1ns of f1n1te range Bargmann-type potent1a1s we

'~‘can create: gaps 1n “the! cont1nuous spectrum at: a desired .;{’
v place.;Due to’ the poss1b111ty ‘to approx1mate the arb1trary' X
: potent1a1 form w1th such an exactly solvable model potentlaISg‘ k

1j'[1] we get a powerful tool of spectral eng1neer1ng.< Ch i

;;BARGMANN TYPE POTENTIALS AND EIGENFUNCTIONS 'f]qéf;; 1;ppyj"‘,

The followlng perturbatlon of the flat bottom of” the;:~
f;?lnflnlte square well potentlal (O<x<a) ,;;,'_f;vlafw ,

TR ¢

V(x) Grv cos(k x) R s1n k x p 1(x) + u ), ;
. 'j , ‘“f“+ (6)’2)2 s1n4(k x) D 2(x) - ”({id“
‘,fwhéfef'*‘” Gt L e Q.t o :.Vaprgii;aswjn»g ,
> p(x) 1 + Grv R2 Is1n2(k t) dt Z'afjwidrgiﬁiH
is the Bargmann—type potentlal well w1th the same spectrum asr
B - for therrectangularpwell (V) but w1th the perturbed reduced
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,w1dth rv of a s1ngle e1genstate @ (where Yv ¥ vt Gy ) The f S

¥y plays also the part of -the normal121ng constant - for the
correspondlng regular solution ¢ o(x) = rv o, - These solu—
tlons can be wr1tten in a s1mple closed form .

1

o, (x) = § sinck,n p (@

and for an arb1trary energy E (k2 = E):

_ ¢(E x) Rs1n(kx) -6v5 ; ks1n(k x) Is1n(k t)s1n(kt) at (4)

Vo

50, the increase of the ground state reduced w1dth y causes'“,”
~the: asymmetry of the absolute values of the der1vat1ves at
the ends of the 1nterval [0, a] for- ¢ and the conservat1on of'l‘ :
this symmetry for all other states, as 1t 1s shown 1n F1g 1.: A

V(x) o e

E«Flg 1 The deformatlon of the bottom of

7 717 - .ground - (D) and the first exited (c) i
Ez": :’;‘_ﬁ_f;‘?:*;utates wave functlons with var1at1on off}; iR
- N0\ Jax the reduced: width ra(normallz1ng const- - |

ffs,fwhlch is - equal. to- the -

, 1nterval
' ground utate [2]. The per1od1c cont1nu—
“ation of ' the potentlal V(x)

- zone in the nelghborhood of E,..

A s1mple explanat1on of the form of the potent1al V(x) and

the correspondlng normallzed f1rst and second e1genfunct10nsa§,

2

'~*,the 1nf1n1te square well (a) and of the"‘

“ant for the first excited state U,)
der1vat1ve.
_@ (x-a) at the well boundary. A1l other:*ﬁ
"bound states’ are deformed w1thout chan—»‘g
ging the der1vat1ves at the ends of the -
'[0,a) as it is shown . for. the

, (as is. -
- shown .in F1g 3 ) creates the forb1ddeng‘

5 b b e i bt 53, N

; ;.were“given‘ln [1].
N - the perturbed potent1al shown in Fig.1a and match he corres- - -
' ypond1ng e1genfunct10ns w1th perturbed rz(exponentlal growth
'b in the forbldden zone) 3nd unperturbed Tiso. (per1od1c solu- . -

'”t1ons in the: allowed zone) reduced w1dths., e

E—

B lut1onu

. erval [a 2a] to make the derivative continuous at Xx=a -and ag—”'
-ain by 2.5.0n [2a,3a) to provide matching at x=2a. This expo- .
nentlal sw1ng1ng means that E

Now we shall repeat per10d1cally (F1g.2)

Y
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Wave functlon @ (sol1d l1ne),

Flg 2 (a) constructed -

‘y out of the solution w .(x) on the interval [0, al, which corres-
:;ponds 10 the perlod1cally repeated potentlal V(X) from Fig.1a
.. 'to the whole axis x (see F1g 2b)

of the ‘first excited state’ of- the rectangular square “well 1s,'
- shown by the dotted line:.(a).

The unperturbed & function

‘Dash-dotted line (a) with. brok-
en’ der1vat1ves at: x—na is.the chain of repeated perturbed so-
(0<x<a). It has to be: mult1p11ed by 2.5 on the int--

belongs to the forb1dden zone.’ ,

1 \3 .



| F1g.2b. The per1od1cal cha1n of potent1als from Flg 1a
Fig.2c.The ground state

allowed zone)

Exact express1ons (3 4) for the solutlons ¢(x) are va11d:j
: and it is suff1c1ent to make -
- -some . 1ntu1t1ve pred1ct1ons about the wave functlon behav1or,l‘
on the whole axis. But ‘for prec1se statements we need a more
'frel1ab1e cr1terlon.,the forb1dden zones are character1zed by‘>'

-only . on-a f1n1te interval- [0 a]

c‘the 1nequa11ty |D(k)l>2 where the express1on D(k) is up 1o
~the factor 2
Hill d1scr1m1nate (see for example, [4] p 234)

pi

o - o (x=a) + Wx=a) % 1 (5)

where spec1a1 solut1ons ¢ and ] sat1sfy the boundary cond1—~f

tion ¢(0)=¢’ (0) =05 ¢ (O)=p(0)=1., =~ . .

The quality of our pred1ctlons is. demonstrated 1n F1g.3..’
A 51gn1f1cant (rather big) lacuna- (a gap in the cont1nuouS'
-Vspectrum) appeared Just ‘around the energy value of the level.

E for which the correspondlng reduced w1dth r was changed

It 1s poss1ble 10 manage the widths of. ‘the gap: by choos1ng;‘-;
_the proper value of var1atlon of the normallzat1on factors
d¥2 There are some small gaps (almost 1nv1s1b1e in our case,'

4(

o ‘¢ . 1ike all other e1genstatesf,]'
can- be smoothly : cont1nued w1thout that mult1p11cat1on (the_‘ﬂ

~the" Lyapunov funct1on and it is also named the‘

O \ /2_\ /L, nity  of  the
| \\/ (S‘X, i/\/

: wbut they 1ncrease w1th grow1ng of Grv) also above other lev—
els. So, the exactly solvable per1od1c ‘potentials: considered
< here’ have no finite number’ of gaps (lacunas) but they enr1chi
.- the arsenal of tools to approx1mate arb1trary des1red one-
. (d1mens1onal per1od1c quantum systems., ' -

gD(K)

: Flg.S.fThe’fuank
~tion D(k) that

,Sa’,;i,, ~— - riion ,
o 34{6%;ff§§&‘ 3 . )/fffq determines  the
, NS

K;,zone' structure.

Vi The 1ntervals
S GO AR - where [D(K)| >2
: kl\f "r},n’ﬁfff’f o . o~ - belong to the
. ,.‘/‘waz':z;‘: ’ ' } ~forbidden Zones
- ‘/“%f”4 i k , +(lacunas or gaps
'(:‘“ | ,\,; f'a ,;:. ’Q»."._*-in the ‘continuo-

ZS" qus spectrum ).
S1gn1f1cant gaps

@(K) é‘X 2

are in: the vici-

bound states
‘w1th the pertur—
| U bed i (@) d=t
-G “‘ij(b) 1—2 (c) i= 3.

52)(3<)

AR /2\
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.We can construct the cha1n of potent1a1 pa1rs cons1st1ng

v

‘of the: f1n1te—range Bargmann—type potentials (flg.1a) and
“their reflections with respect to:the middle po1nt of the in-
“teraction interval (see F1g.4a)

All bound states of corres-
ponding infinite potential wells have (ant1-)symmetr1cal de-

~ rivatives at the well boundaries: "and can - be: (anti-)periodi-
~~cally continued along the wholerx—axis.pSo,&none of ‘the le-



. els 1s d1sposed 1n31de the forb1dden Zone. But the energyVV’

“levels- of the ‘double well (symmetr1zed one) are more dense; ‘
are four. -

,(nearer to the bottom) their reduced w1dths r

times. smaller and wave funct1ons are more sensitive. to poten~/,f

tial perturbat1ons and‘"uny1s1h1e" gaps (of a,slmplebpotentl—
- al chain) can become visible (for symmetrized chain).

~ential- (a) composed of the

1ts m1rror reflect1on

iy 7_é?1' ~ composed of - the
Ifjlfg’l; SEE I ‘state function in Fig.1b.

F1g 1c

cCONCLUSION

The same 1nsta11at1on of gaps 1nto the cont1nuous spect—

rum - for the f1n1te—d1fference ‘analog of - the: Schroedinger

equation is now -under consideration. There is-only anallowed

zone . of --finite -width- and " the number of ‘gaps: is. also

boundéd. For the mu1t1channe1 genera11zat1on of the suggested .

algorlthm, su1table Bargmann—type potent1a1 matr1ces can be

~€if F1g 4 The symmetr1ca1 pot— ’

0 //’\\ /,\\\ ’/ﬁ$§ r'potent1a1 in Fig. 1a’ and i

The wave function (b) of‘ .
the ‘second - energy level
ground;'l

~ The wave function (c) of -
_the “fourth . energy.- leveljg
composed of the f1rst ex—,’
o cited state functlon in v

O

: ‘REFERENCES ,
1. Zakhariev- B.N.,

)

" 4. . Marchenko
e App11cat1ons. Naukova Dumka Kiev. 1977

*fconstructed as in [1]

-1t would also be. 1nterest1ng to 1nvest1gate the influen-:

\,ce on the: zone structure of potential perturbat1ons correspo— :

nding also to sh1fts of levels of a rectangular well.,,
Some exactly solvable three—d1men°1ona1 models can be

'Cnnstructed out ‘of the one d1men51onal DHPludlC pntentlals of~

tvpe shuwn in Fig. ”b

Suzko' A.A. Direct and Inverse Problems
Springer He1de1berg 1990 T St
Pouhel Ji., Trubovilitz “E.
Academ1c New York 1987

Inverse SpeCtrall Theory.a;

o 35a Zakhar1ev B. N., Zastavenko L. G. Mot1on Along the Axis of

a. D1°crete Channel Var1ab1e A Phys.Rev. A39 55°8 5530
1989; - Commun.: JINR P4~ -91-453, Dubna, 1991.

V.A. Sturm—L1ouv1lle Operators ,and‘,their‘

L FE Received by Publishing Department
N on October 31, 1991,



