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The methods of the_quantum inverse problem provide algo­
r~thms of arbitr~~y'modifications of the spectral parameters 
[ 1J. In particular, for: the infin:i te square well we can shift 
the chosen energy level ·EA or ~hange its .reduced widths.rA 
without varying. other ·spectral parameters. The:corresponding 
perturbation Av(x) ·(Bargmann-type· potentials [1J) of the ori-
gihal potential · and new wave functions can be written · in an 
explicit form: . · · 

It is shown in ·the present paper · that with .. the 
periodical· chains ~f finfte range Bargmann-type. potent,ials .we 

. can creai'e. gaps _in. the'. continuous. spectrum at a desired 
place. Due to the possibility to approximate the ar-bitrary 
p~tenti~l 'form'with'suchan exactly solvable model'pofentials 
[ 1 J, ·we get~ a powerful tool of spectral engineering: · · 
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BARGMANN-TYPE POTENTIALS ··AND EIGENFUNCTIONS 
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. The followirig_',.perturbation .of .. the flat ' bottom of the 
•' . . . . . - . \1 

' .infinite square well potentiaL ( O<x<a) · 
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V(x) = crt~ cos(kvx) ~ sin kvx 'p-1 (x) + · 
'• .. ' v 

·" + {6f~) 2 sin4(k~x) p-2 x) 
; 

( 1) 

where 
l "·!', 

· 2 1 a · 2 · · · 
p(x) = 1 + ~rv R~. £s1n (kvt.> .. dt 

' 
(2) · .. 

is the Bargmann-type potential well with the same spectrum as 
- for the rectangular well (\7), but with the ·pertUrbed redu~ed 
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width tv of asingle eigenstate tllv (where t~= tv+ c5t~). ~he 
t plays also the part/ of the normalizing constant· for the v . ... , -
corresponding regular solution ¢v: tll(x) = t~ ¢v . These·solu-
tions can be written in a simple closed form 

¢v< x) =. -~ sin( kvx> p-1 ( x) 
v 

( 3) 

and for an arbitrary energy E (k2 =E): 

¢(E,x) = ~sin(kx) -c5t~·~sin(k~x) Jsin<kvt)sin(kt) dt (4) \ 
. kvk. x 

sb, the 1ncrease.of.the gro~nd state. reduced width'(~ ~auses · 
, " . . 1 ' 

the. asymmetry of the absolute values .of the derivatives at 
the ends of the interyal[O,aJ for ¢v and the conservation of 
this symmetry for all other states, as it is ~hown _in Fig. 1. 
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Fig. 1 The deformation .of the bottom bf 
the infinite square well (a) and of the 
,ground (b) and the" .first: exited (c) 
states wave functions-with variation.of · 
the reduced· width t 

2
< normalizing const:.._ 

ant for the first exCited state w2 > 

which . is equal to the ' derivative 
tll~(x~a) at the ~~ell boundary. All other 
bound statesare deformed without chan­
ging the derivatives at the ends of the 
interval . [O,a] as it is shown·. for the 
ground state [2J. The periodic continu-
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· ation of the potential V(x) (as is. 
shown in Fig.3 ) creates the forbidden. 
zone in the neighborhood of E2• ·' . 

A simple explanation of the form of the potential V(x) and 
the corresponding normalized first and second eigenfunctions 
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.· w:re given. iw [1J. Now we shall-repeat ·periodically (Fig.2). 
the perturbed potential shown in Fig.1a and match the corres- · 
pending eigenfunctions with perturbed t 

2 
(exponential growth 

in th~ forbidden zone> and unperturbed ·r it!2 . ( pe~iodic solu­
tions in the allowed zone) reduced widths. 
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Fig. 2 (a) ,Wave function Ill.,'( solid -line), . constructed 
out of the solut_ion w,i<x> on tve interval [O,aJ,which corres­
ponds to the periodically repeated:potential:V(x) from Fig.~a 
to the whole axis X (see Fig. 2b)'. The unpertUrbed w

2 
function 

of the first excited state of the rectangular.· square well is 
- shown by the dotted line, (a)~ Dash-dotted line (a)· with brok-' 

en derivatives at x=rra· is the chain of repeated perturbed so­
lutions tll2(0<x<a). It' has 'to be multiplied by 2.5 on the int- · 
erval [a,2aJ'to make the derivative continuous at x=a and ag:... 
ain by 2.5: on l2a,3aJ to provide matching at x=2a. This expo­
nential swinging means that E~ belongs to the forbidden zone. 

r'., , c.. 

\3 



(f 

.X 

Fig.2b. The ·periodical chain of potentials from Fig.1a. 
Fig. 2c~The ground state !lJ . like all other eig€mstates 

can be smoothly . continued without that multiplication (the 
allowed .zone). · · · 

Exact expressions (3,4) .for ·the solutions ~(x) ·are valid 
only on a finite interval [O;ai, and it is sufficient to make 
·some intuitive predictions about the wave function behavior 
on the whole axis. But for 'precise statements we need a more 
reliable criterion:. the forbidden· zones are characterized ·bY 
the inequality : I D( k) I )2 where the expressio~ D( k) is up to 
the factor 2 the Lyapunov function and i .:t is also :named the 
Hill discriminate (see for example~ [4J,p.234): 

D(k) = ip'(x=a) + ~(x=a) ( 5) 

where special solutions 4> and tlJ satisfy the boundary condi­
tion 4>(0)=$'(0)=0; 4>'(0)~$(0)=1., 

The quality. of our predictions: is demonstrated in Fig.3 .. 
A significant (rather big) lacuna (a gap j~n. the c~ntinuous 
spectrum) appeared just.around the energy value of the level 
Ev for which the corresponding reduced ·w:idthtv was changed~ 
It is. possible to manage the widths of the gap: by choosing 

.....the proper value of . variation of the normalization factors 
drv There are some s~all gap~ (almost invisible in mircase; 
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but they increase with growing of 6t~> also'above other lev­
els. So, the exactly solvable_periodic potentials· considered 
here have rio finite number'of gaps (lacurias).but tliey enrich· 
the arsenal of tools to approximate arbitrary . desired. one-

. , dimensional periodic quantum 'systems. 
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Fig.3. The)func­
. tion D(k) that 
determines the 
zone · ,structure. 
The· ·intervals 
where ID(k) I ·>2 
belong to the 
forbidden zones 
· (lacunas or gaps 
in the,· continuo-

· us spectrum ~ ). 
Significant gaps 
are in the vici-

- -z X 
1 

, ~ >nity of the 
I ), 1 n 1 « 1 bound states 

K 
with the pertur:... 

· bed.{.: (a. ) i=1; 
1 . 

(b) i=2;(c) i=3. c 
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We can ~onstruct the chain of potential pairs consisting 

of the finite-range Bargmann-type potentials (fig~ 1a) and 
their reflections with respect to the middle point· of the in­

·teraction interval (see Fig.4a). All bound stat~s of corres­
ponding infinite potential wells have (anti....:.)symmetrical de­

.. rivativesat the well boundaries ·and can be (anti-)periodi­
cally continued along the whole x-axis. _So,< .none of the le-
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· vels is disposed inside the forbidden _zone .. But the energy 
· levels of the double well (symmetrized one) are more dense 
(nearer to the bottom), their reduced, widths. r 2 are four 
times .smaller and wave functions are more sensitive to poten-' 
tial perturbations an~ "un~isible" gaps (of a simple potenti­
al chain) can become visible (for'symme~rized chain). 

v 'Ct 
• .J . Fig.4 The .symmetrical pot­

·- ential- (a) -composed: of the 
IL 4. I \ _:, · I \: / " - ,. potential .in Fig.1a · and 

-·~· 
g 

its rnirror reflecfion~ 
f • .~ 

The wave function (b) of 
the ·second energy level 
composed of . the ground 

. I • ; 

·state function in,Fig.1b. 
The wave function (c) of 

or ' 'X: 7-~,.,.. the '.fourth. 'energy· level .. 
composed of the first ex-

,~'.,. "., 

· cited state function in 
·--Fig.1c 
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CONCLUSION 

The same installation of gaps into the continuous. spect­
rum ·for the _ finite-difference analog of- the Schroedinger 
equation· is now under consideration. There. is only an· allowed 
zone . oi -finite_ . width and the number. of ·gaps is also 
bounded. For·the multichannel generalization of the suggested 
algorithm, sui table Bargmann-type potential matrices can be 

'6 

. construc'ted as in [1 J. 
_It would also be.interesting to investigate the influen­

ce on thezone structure of potential perturbatio'ns correspo-:­
nding also to sqifts of levels of a rectangular wen.'· 

Some exactly solvable three-dimensional models can be 
constructed· out of the one-dimensional periodic potentials oft 
typo:: shown in Fig.2b. 
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