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1. Introduction E

The tor01da1 solenoid (TS) is an unique object exhibiting a num—

“per of interesting properties. For example, the magnetic field\'{ may

vanish either inside .or outs1de the solenoid depending on the current

~ld1str1hution on the soleno1d surface /1 -3/..The small value of magne—
“tic flux leakages from the solenoid has .favoured its application in
fcontrolled thermonuclear physics /4/. As an accumulator of electro—
‘magnetic energy, it is .extensively used in an electromagnetic laun-= .
bcher technology (see, €:8.s special issues of IEEE Transactions on
bPlasma Science /5/ and ,on Magnetics /6/ devoted to this! subject)

‘TS is an. ideal device for both experimental /7/ and theoretical /8/

investigations of the ‘Aharonov. - Bohm effect. According. to refs. /9, 10/

the: current flowing in the winding of TS is. characterized by the new.

’kind of multipole moments (). We mean so called toroidal (or anapole)«

mu1tipole moments (TMM) They are now an object of extensive theore—f
tical . and experimental studies (see, e.g., refs. /11 14/) Last (but
not Ieast) TS with‘an e1ectric charge attached to. it presents an

example of a true three-dimensional anyon: /15/ .+ This gives a: chance

to discover the 3-dimensional Fractional-Quantum'Hall‘Effect'and 3-di~‘

lmensional anyonic high—temperature superconductivity. Usually, thef'f

e1ectromagnetic'field (EMF) of TS 18’ obtained e1ther through numeri— §

cal integration ‘of the Poisson and Helmholtz. Eqs /16/ or through theirl,‘

physical simulation' /17/. For’ the static case, closed expressions

for the vector potential (VP):-of" TS were’ obtained in ref /18/ and
their properties were d1scussed in ref /37 In the same ref., the

EMF of TS with the time-dependent current was’ considered Regretfully,o
only half a’ page was’ devoted to the most important case of the perio—

dically varying current. Numerous discussions with radioengineers and
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1.c Introduction .. . “wviio Copbi

The majorlty of reallstlc problems do not allow exact solutlons ‘ The useual
way of handllng these problems is to resort to-an lteratlve procedure or“
perturbatlon theory The resultlng sequence of 1terates {fk :; k =
0 1 2 } . 1s very often poorly convergent or even dlvergent | If one
could calculate many (k > 5) ﬁrst terms of an lteratlve procedure, then

one would be able toi 1mprove the convergence or ﬁnd an effectlve 11m1t of

a divergent ‘sequence by- mvol\mg resummatlon technlques'such as Pade'

approx:matlon,v Borel transformatlon,lconformal mapping, contlnued E

fractlon representatlon and 50 on1

l,‘v'w;‘.‘ iv

For example when solvmg the Schrodlnger equation

potentials by lteratlng the Brillouin - ngerrperturbatlon‘formula one';
meets with the fact that the convergence rate decreases markedly ask:’
whether the’ coupllng constant anharmonlclty power or the ener y - level;‘:
number rn::reases2 In such a case the accuracy can b‘e‘lmproved —by u51ncr B

34

‘the hyperv1r1al theorem and Pade approx1mat10ns

However, to calculate many 1terates is often technlcally 1mposs1ble

The standard 51tuat10n is when one 1s able to ﬁnd only a few ﬁrst 1terat1ve“ ‘

terms In th1s case the usual resummatlon technlques fa11 ’

‘J RES IS s

The technlcal dlfﬁcultles arlslng durlng an 1terat10n process can be‘

explalned as follows Generally, an lteratlve operator Ik transformlng ‘

the term fk lnto fk+1 depends on the 1terat10n number k B

« 3"1120 -1 mrf-{EﬂEECI{A}]




If the iterativeoperator 1s not simple enough; then the calculatiOn ofa

jterm_‘ _
: fk = Ik-elfk—l .=~Ik§1ik_2fk_2'=h vee = ik;ljlr;Z .o jofoif e

- becomes a rather compllcated if in prlncrple possrble, task

ThlS drfﬁculty could be overcome if we would be able to reconstruct o

| jthe sequence { fk} to { fk} for Wthl’l the 1terat1ve operator would be

, 1ndependent of the 1teratron number, i e ’

LU H PRTLLTEITL e
i f .

~Such 1terated maps can be treated as dynamrcal systems5 The motlon e
“in d1screte t1me is called a cascade The 1terat1ve transformatron belng a ,

contractlng one 1mplres that the sequence { fk} converges to an attractor'

representlng the sought solutlon

In this report we show that an arbltrary sequence of 1terates canw :

be approxrmated by a cascade whose attractor is the sought lrmlt of

thls sequence The advantages of thrs results are obv1ous we need to

. know only a few 1n1t1al terms in order to find an effectlve llmrt of a

sequence, and the convergence of the latter can be checked by consrd-

‘erlng_ the stability of motion for the cascade. The approach _,descrlbed

;an attractlon reglon £

r‘:r‘i:‘( NI

below has been developed6 8 at ﬁrst by basxng on the renormahzatlon kS

group ideas, although the analogy wrth dynamlcal systems has been a.lso

. ;emphaslzed8 9 Here we demonstrate that the dynamrcal - theory lan- ‘
_:-'guage makes the 1nterpretatlon of the method much srmpler aiid permrts :

'some 1mportant generallzatlons ,"

2. Iteratrve Cascade ’ o

“Suppose we are interested. in a function l'f(g) “with the-variable" g€ ’

+ R, which: satlsﬁes a very comphcated cquatlon to be solved. using an ‘(

iterative procedure The convergence of the latter is | knowm to. depend

In thrs way, a sequence of lterates mt rpreted :

(.~

closer to’ the attractor.

~In order that a sequence of lterates would be in the vrcmlty of an

‘?‘ o

. ‘:iattractor, thls sequence should be governed in_some. way. . o this end,

' by choosmg an 1n1t1a.l approxrmatron, mtroduce mto 1t a set of trral pa.—

rameters 'z, so that fo(g) = fo(g,z).-f fall further iterates a.lso ‘

become dependent on. these parameters f,,(g) = f;,(g, z)-. Define a set

of functlons zk(g) whose r"‘:e is to govern the behavrour of the: sequence




{ f,,(g)} formed of the terms o
“filg) = fk(g,Zk( )it k=012, (1)
' so a.s to Leep these terms close to an attractor Because of tllell‘ role the

functlons zk(g) are ca.lled6 -9 thc govfrnmg functlons and the set

6= {al): k=0,1,2,. ,gen} _n‘(2)

can be named the government. By deﬁnition,\'the"governi’n'g functlons ‘

guarantee that all terms . -

A (g,Zo g)) = fx g,Zn(g)) == f( (y))

:

‘ are close to an attractor a.nd move to 1t as *k‘ mcreases the a.ttractor-

representmg tlle sought functlon f(J) , A ,

J(9)= 19, %:(g ))-.“:*f(g).»‘«;..,.,:. R ©)

3 Therefore, the general defimtxon of the govcrmng functlons can be glven

, as the relatlon o

fk;,;(g, () = flg ml0)i - ko205 0 ()

whlch is’ to be understood in the sense of the Cauchy Cl‘lteI‘IOI’l of the :

umform convergence e

Ifk;;kg,zup( ) - fk(g, zk( Meo

where k> s(e), P20, g e R . The relatlon (4) follows from a

' ’pa.rtlcula,r form of the. Cauclxy cnterlon in wh1ch ‘s( ) =0, and which

can be called the fastest - convergence criterionS. -
e ‘ -

4 -

“Introduce the function %

The 1dea. of reconstructmg a sequence, of approxxma.tlons jin, order

{hat th1s sequence would be convergent has been a.dva.nced in Refs 10 11 :

'{by mtroducmg addltlonal functlons sa.tlsfymg the fastest - convergence

criterion. This is now w1dely known as renorma.llzed or modlﬁed per-

turba.tlon theory. However, an optlon of the govermng functlons zk(g) ’

up to now has been heurlstlc, thus there ha.s been no ﬁrm grounds to”

10 15
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prefer one of several known varlants
Note that the introduction of the governing functions can be combined
with the use of 1ntegra.l tra.nsforma.tlons, llke the Borel transformation or

gy ayns

the Hubbard tra.nsforma.tlon ‘
. : +o0 e
exp(=¢") = 5= pl— *iup . :

<. In the dynamical approach we follow» -here, different-a.doptions-of the

governing functlons can be class1ﬁed -and analysed, so that it becomes

};posmble to conclude whlch of the va.rla.nts is genera.lly prefera.ble

The interpretation of the sequence { fk(g)} as a dyna.mlcal system

-assumes the necessity of deﬁnmg a ma.ppmg transmutmg a term fk(g) '

into fi41(g ) To find such’a map, let us 1ntroduce some new notation..

: Deﬁne the couplmg functlon ‘9(f) by the equatlon ez el el

T T B L TET IR IPEIC IRV PR

f°(9,‘z‘0(m‘)) f; 9=9(f)a st (5)
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whose lirniting propertiestinaccordance with (5) and (3) are

and, respectively,

‘"VyDeﬁnmg the 1nverse function . f ‘(g) by the equatlon '.
“df”)=gr f”-f (9)y
; lwe can return from (6) to (1) followmgthe relatlon
és(f"(g)) = filg,2(9)) = filo)-
" The fastest - convergence condition (4) in terms of (6) reads

zm(f)-zk(f) *(9)

:'Puttmg here k = 0 we get :tp( f) f substltutmg Wthll 1nto the

-, right - hand side of (9) we obtaln_ N

-’L‘k+p(f) = wk(wp(f)) S (10)

ThlS relatlon is often called the property of functlonal self - srmllarrty

- This is why the method based on (10) has been called the method of self &

6-9 -

e similar approxrmatlons
. On the other hand, the functional property (10) \»,_c!haracteri’zes‘,;as_ is

_ known9, a dynamical system in discrete time, that is a cascade. The

o e

=L e

ordered sequence of terms (6) starting at the point (7).is named an orbit,

" or trajectory,

it

7} = {faml(f))m'l(f)’ }

In this way, to any sequence { fk(g)} satrsfymg the fastest - conver-

'gence criterion (4) 1t is adrmissible to put into correspondence a sequence

{:tk(f)} with the relatlon (10 ) characteristic of a cascade; "1

3. Iterative Flow

An additional mformatxon can bc extracted if we pass from the cascade

‘to a flow. Introduce a contmuous vanable -

Gemezpaw, b

and make an analytical contmuatlon of (6) to a function z(t,f)-such

‘that when ¢ crosses a. positive mteger,‘say =k, then z(t,f)

fcomcndes wnth the correspondmg value ol' a:k(_f) ,

- z(k, f) —rr(f), —0,1,2 o ‘**1‘(12)

The cascade property (10 for the functlon :c(t _f) becomes that for
the flow : ' S
e+t )—:t(t 2t )) T ()

_The initial condition (7) now is. . .



. The existence of an attractor expressed in (3)'and (8) reads

x(s-,f)_f.(gl(f)),_r W)

8

_where S. 1S a saturatlon number

. The self - similar relation (13) ca.n be presented in the differential '

form. - leferentra.tlng (13) with respect to ..t : ‘a,nxcl_)»,‘then putting: t —
0,t —t,weget \ o
%x(t,f)=v(x<t,f>f)r e e)

(t)._hm (t f) o (1)

- !The latter function is called the vector ﬁeld or .velocity. Equa.txon (16)

\lS typlca.l of an a.utonomous dynamlca.l system that is of a ﬂow The

trajectoryis taircilo L i B

Tf—{x(t P teloo) 8

_Thus, we have shown tha.t an 1terat1ve sequence { fk(g)} can' be
,r‘epre’sented as a flow with the equation of motion (16) describing the
trajectory (18). Therefore, the sequence . ' A k

Trol9) = {filg) : k=0,1,2..}

can be called the representation of tra.;ie"'ctory (18) ‘We have managed to

obtain the equation of motion (16) by introducing the governing functions

‘providing the property of self - similarity (13)..It is possible to say the.t ‘

the self - similar symmetry (13) is imposed by the governing functions.

s

- , .

it ko) = ile);

. This fact prlncrpally dlstlngmshes our a.pproach from contmuous a.nalogs :

16, 17

of concrete ltera.tlve methods as well as from the renorma.hza.tlon Ry

¥ group method18 of quantum field theory, based on' symmetry propertles

of particular equations’ of motion. - :_ e

" Integrating Eq. (16) from a. k -th a.pprox1ma.t10n to the saturation *

point s, , we have'- : -
z(a.,‘f):-;:, e e

/v(z) k. | (19)

k)
The substitution f ¥i “1(g) for the lower and upper hmxts grves

250 f~ (g))—f.()

Asa result‘, it follows from Eq.(19) that A
. o9 SR o B Lot

—:‘ = §,— k. ) 20 )

o @

Ji(9)

This equation defines thesought self -s1mrla.ra.pprox1ma.t10nf.(g)

‘4] Vector Field ¢ "rt;‘:.:"

- .To. integrate:(20); we. need to know the explicit-form:of: the vector, field

v(f) . In reality, all the information we have is related to the discrete

representatlon Therefore, we are forced to return to 1t w1sh1ng to wnte

an expressxon for the vector ﬁeld The dlscrete representa.txon for the’

latter can be wrltten6 -9 as

(f) sk(f) T r;:_(vzl),x



by usmg the finlte dlfference i
fa(gv Zk) — fx(g, z)+ (Z, - Zk)——fk(g,zk),:{j (22)

ak(f)
in' which
- 9=9(f), m=2e(f), k<
Then, integral (20) is to be replaced by
: Ity e
—— =3, ~k, 23

[ ame )
Jx(9) R o

the self - sxmilar approxxmation i k(g) bemg dependent on the chosen

- velocity (21).

Define the relative fixed - poin‘ti distance

Sui— k ‘
Sop = — !
FE ek (24)
With notation (24) the integral (23) takes the form
/ .f:k(g) df :
- = 63 . : e S 25 7
o~ @
Ji(g) .

“*A more elegant expression can be given for (25) by.introducing the func-

“tion-
Yak(f) = {Ba(f)oar}™ L (26)
"vaThen, (25) can be written as the normallzatron law
. ‘k({]) - B ",\:ju“"‘ i o
[ =1. o
5@ |

10

o

exponent

o If. we assume. that the attractors of the considered casca.des and ﬂows
are fixed points but not limiting cycles or chaot.ic and'strange attractors,

then we can readily derive the correspondmg stabrllty conditions!9: To.

_converge to a fixed point, -the self : similar mapping (10) has to be con-

tracting, which implies that the corresponding mapping multipliers must

.be smaller.than unity,»these;multipliers being deﬁned byt

M;"k(;g)-;; ;"f‘& ; dffp(g(f),zp( (f))) )

In addii;ion,' the equation of motion (‘16)tcan be analyzed with respect to

the asymptotic Lyapunov stabihty which requires that the Lyapunov

L A@) = Sim Zeu() )

@ df

hasito be negatiVe. +Thus,. the sufficient conditions for .the fixed  point

%(g) ‘to be stable are . S IS L e

M) <1 Aalg)<0. L (30)

These two conditions control the choice of governing functions and of the

vec}torfield. -

5. Ergodic Seque.nce'

Tt may happen that the dynamical system described by Eq (16) may
have an attractor Wthh is not a fixed pomt. (stable node or stable fo-

cus) but which, e.g., is a stable limit cycle, stable torus, quasmttractor,

: rchaotic— attractor or strange a_tftra.ctori Then,,the stability conditions (30)'

22



-are not valid. -How is it-possible:then to define a correct self - similar

approximation of the sought function?. -

© When an:attractor is not ‘a fixed point, then the analysis of the Lya- -

| punov stability should.be replaced by that :of the Poisson"stabilityg,Q,
’a.lfhough for a limit cycle and torus the Lyapunov analysis ca.nfbe ap-

plied. A function’ z(t, f) , real and contmuous glven for -t € Ry is called

, stable a la Poxsson or Poxsson stable if for each €> 0 and any t € R,
one can define an 1nﬁn1te sequence Aty —rt,,(e t) : p =0,1,2,...} for

whlch-tp—-» oo as'p oo, such tha.t« k

lz(t +t,, f) —z(t;f) <& p=0,1,2.... B CIY

fA‘:v[ier_iodic mot‘ionicorr‘esponding ;tto:;a,.lim,i:t“f‘-cyéle is, as is obvious, Pois-

son:stable. “Then; one may put.it, = pT', where -T' :is a period. A

~ quasiperiodic motion corresponds" to the motion on a torus: Almost a
penodlc motion i 13 related to qua51attractor Both the latter motions are

; Poxsson stable?0. The motion on a chaotlc attractor is mixing. A strange

attractor is particular kind of the chaotic attractor with a dimensionality -

~ lower than a manifold into which it is embedded. The mixing motion is
also Poisson stable.
All kinds of attractors are metrically trans1t1veiTherefore,we can

define the ergodic average

RN e 9_ "kl SpREAT T e e gl
o Zers(f) = Tll'rg’ ;/ z(t"f)dt’ R (32)
0 ‘

12

' 3 IK Dmltrleva. a.nd G I ledov Phys Lett A79 (1980)

which must be independentjof an ini't’i’al poinl;,
xefy;(f),=l??e¥y"[; o e +(33) |

The discrete analog of (32) ‘is

-2

fe,g(g)s'iirgo %Z 10 R ¢ 1)
Do k=t sb wnlade LN

yo W N
S

where ‘s = s(k) >k and the 1n1t1a1 term correspondmg to- k =0

omltted in accordance w1th (33) The ergodlc average (34) is the llmlt

llmf (g) fer_q(g) . B

of the sequence {f (g) p =1,2 } composed of the qua31ergod1c

TS P T

terms S | |

Therefore, we may call the sequence, {f"(g)} the ergodlc sequence -

The deﬁmtxon of the ergod:c sequence glves us a practlcal tool for ’

: constructmg hxgher orders of self - sxmllar approx1matlons
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'thl’lS in: (2 7) is. Ko‘ S\t\e . The nonvan1sh1ng tield strengths are

,_g-.f—-"\\/\L’L” 1)8\»._0_“/\1&78(].] 3‘ J‘"‘“"su«ﬂ_S\kO Jo,

(2 8)

) The argument of the Bessel func—

E@ = wsﬂ.(ﬂ —KdSik @”-ﬂqj— Ay S\hﬂ_ ‘_d S 035~ 133 - 1Kk J]

E —]\“"{usg(swxﬂ \4160&ﬂ)jo+Jw“”o{ﬂws(}_u\asmﬂ):]
R s

‘In‘ the wave zone (\("L_’7i)
-ty ey g J.\T‘

'The irla;d':'l..al component ‘of the Poynt1ng vector s ‘

(J\ \‘:"SLWQT) [3 (K(ASW\G :, = -?(‘(2.110)

0339 Cos_Q C/o (z 9) :

PR

(The 1ntegra1 energy flow (averaged over the per1od) is

( \ SUJ de\kan s‘kng

NEH 1)

Be1ng related to the square of the total current (— (\ll) tthis >

g1ves the so0— called rad1ation res1stance /23/

PR

W | |
The integral occurr1ng here can be taken 1n a closed form for small
1
ikd)? /3
for
(\Ad\ \ T

and 1arge values of KU{
P ’\‘,’f

& \’31\ sw«% d%

. Experlmental 1nvest1gat1ons of TS w1th alternate current were per—g"

KA LS i :
w»i

formed almost half a century ago The1r descr1ptlon may be found in

an excellent book /24/, publ1shed regretfully only 'in: Russ1an

RUSLA RH S (3 \ sm@d@ <212>

;‘be omltted 1n a11 1ntermed1atory calculatlons In the

i the form B 5"; Ty

:.::,«S%sﬂ—-{;wg«nz \fg _FQ st

o ~&Nms‘lfg\@ PQ ) ngf’ﬂc\\l) G \t go_ P

§3 The EMF multlpole expans1on for the
tor01dal solenodd - S l; Vo e i

.S

<

3. 1 The spher1cal functlon expanslon In what'follov):s‘we shall,r

" use the current given by ’ BEIEE ER R FET T care ra s ade s
LY - ] L
.._& A Qﬁ(P(~\w ) . f { G
(where (S\), _as_before-is glven by Eq. (2 l*)) As all’ components of W

: the vP and EMF strengths contain the same factor Q:)(P(-WJ{> ,“ 1t w111

final expres— 7

sions th1s factor should be restored and the real part from them

should be taken We 1ntroduce _Nnow the VP components hav1ng the def1—

n1te progection of orb1ta1 angular momentum

\ﬂ H% ) \HH = t r tﬂaa _L ﬁ\,))

The1r development over states w1th definite orbltal momentum has (

LVS\(R Qot\)(\\g) } \]?g

) Lith is the spherical Hankel'?a;‘
\ ISP
function ( \,‘Q(ﬁ(\ \ ot ,/LL’)( (—1) PQ is the ad:joint Legendre func—"‘ L

tion. The coeff1c1ents

- are determined by the current d1str1butlon‘f} :
: (3 3)_~- ‘
. In th1s Eq QQ s the . spherical Bessel functlon( %Q(i)—- - ;'
Y. 1d Keos\ll " L

:}Q*L\X) /R) of the argument KP( P"' ( d + ? .\_ ) 15
the Legendre polynomials in (3 3) have RSlhw /_,P P Z

as .an argument
The cylindrlcal components of VP ‘are eas1ly obtained from4;(3.2)




g% 90) 95, —Lméa}\fq Fo ﬁg

It follows at once.from.(3. 3) that only those coefficients

are d1fferent from zero which correspond to even values of E As -, ¢

~an, example ‘we. present FQ “and rQ_ for Q._- O 2 (for RLLO( )

;{-\: rr[@-.’;\i Leg, (U,- 437,
1—;_

= (‘6[31(30” )‘*(ﬂ +'§1 )(6@5‘S MSJ+9"“5)

36 (30 Uu)( smg 3‘033”
(e Rld)

-~ : . In th1s Eq spherical Bessel functions and those w1th integer

1nd1ces depend on the argumentsé \({A ’ and KR b resp When.

\(—50 the following asymptotic 'behav1our of rh and F.,\ iis va11d -'

(for RL/— d ):

Fax T r(m)ﬁ;— \"u iy (B 3:;351)£

th\'\

: (3.5)
LA w e 1 \hm)mm)Y’L nt v
in\N rlf*“i’r)vt I (% »,1\1 ' \w)‘“‘ B ‘*M\

(3 2) describing VP of TS (5) A\ +% - R .. are . valid outside.

: the sphere of the radius "'L (A-l—R ‘ FOI‘ PL(d K Ofle' ShOUJ-d Ause”"\'

Eqs (3 2) in which the role of gQ_ and \(\?, is 1nterchanged In a

static case, Eqs (3 2) are. transformed into ...

E\RZ v-Uz-H 'lo-\'\ p( 59 ‘SVQ)

94‘“ ‘ARM(J(\@)Z Iw “,M\P (m&QJ {;Q

Here . 50 WWCONTP p (Rsm;f}./'_ VV ’ o
& -&o\\vsmw P (R S‘“‘” ) G
o _-AW? i ”Mmm e s
0.8 ,_[ 0,7, - € () 0 . ao)J . ;)7

T Ge)

For the th1n solenoid (RLL(A D) j:e are obtained in %the closed

wa b)),

QhH

form

S ma V= \\»\ Vf ’l_v\ d
QO_VQRLZ lfu\-\\/z_ \.\ 5 ( } '_LQ_V\_‘.’S
N ) (. 8)

o~ ) 'Lkg-; ! | lV\r '
gi‘—\l%\{‘ll(’(\\?)z ’l,h*w)'\]z\_-\'—-:—)“‘\h-\'s)kﬂ“ ( V\,) rlLk*-’b Pﬁkcwse

For the sake of completeness we con51der here the c’ase when the .

current in the solenoid w1nd1ng exponentlally grows or | falls ni

: ((\ AOQ_'X?t*wt\\ ;y;: . The nonvanlshing cylindrical components of

VP are.

9? ‘%K K,Lx\)(’rw’c 2\<Q+l(\n) PQ_ (wse)& b LQﬁ k(\iy)p RS“‘\VJS'“\’df E

ﬂr- MM\)H\MQKH L\\a) P@ Ltos(}) S\F y lon “‘J’) PQ(KS‘ J“”W a

- Here K\) and —\-\) are mod1f1ed Bessel functions Under the integ—

ral 51gn S) (R +(}\ 1—1-0\‘)~695Y‘ These Eqs “are va11d for rl_‘»'d'\'R

‘. s For rLL d K B the role of < and \ should be 1nterchanged

i i

3 2 The vector harmonics expansion Sometimes it J;s more, con-— P

venient to. represent VP and. field strengths by.. means df So called e e

/" vector spherical harmonics. In what follows, we shall adhere nota—‘ ERY

tion used’ in book /21/ Thls expan51on of VP.looks as. follows

) Brom e om

th



rThe indices Q and W\ mean here ‘the total ‘angular momentum and

its pro;;ect:.on onto the %— : ax:Ls (see Appendix 2). Index L defi— o

‘nes.the kind of the multipole radiation. The values of (_- E M
and'L‘ ' correspond to the electric, magnetlc and 1ong1tud1nal
multipoles (EM MM and LM for short). The vectors BQ are given by
—
= /PV\ ) h\ ‘; .
RO Vh\ SN
[ Q*\ Q€+\

DI A D

%P‘? (M}“ ke l_:"’ L Vm :‘" e Yc ;

. Here \_, is the orbital angular momentum L

B e \
: the vector funct:l.ons YQ (see Appendix 2) -as well as. the vectors
- BQ, L\ are eigenfunctions of the total angular momentum square

i‘and 1ts :2: W proaection. The coefficients oc"urr:l.ng in (3. 9) are

detv mined by the current density : IR
_Qe 8 *.S q “, 1) (\Om)c\\/“

The vector quantities QQ are def:|.ned by Eqs.} simllar «to (3 10)

kk1n which the Hankel spherical functions l\e are replaced by the

‘ Bessel ones %Q . The coeff:.cients a€ ) are referred to as

‘. ‘fleld amplitudes /19 21/ or form factors /10/ The values f E M
and“ ! correspond to electrical ‘magneticiand” long1tud1na1 £orm
factors" (EFF "MFF and” LFF, resp.): For complenetess we give ‘here

\M( e s
the explicit expressions for k.) L FEVIIE T W

o~

RS TA R

.ag M\:-i\m e T

QQ EQ_H:]QQ-\—\ E_ﬂ ju_\ N |

VP presented in, the form (3 9) w1th C\,Q (. \

’ tor..It follows cat: once ‘from-(3.10) that d U: BQ (M)- (J B (C\-O

Subst:l.tut:l.ng this 1nto CﬁQ (E) one gets

\gp’l; :\Qn—»\ V-ﬂ ja z—\ -

\qQA—&(lAKKT)\ A 0\\/)

g1ven by (3 11) sa-:

tisfies gauge’ cond1t10n /20/ ; RS

,d“fﬂ+c Y 0

Here \_? | is .the scalar, potent1a1 :
exp (iR V=11
4= exph MUSJ,,_‘__ po (1)

(It is suggested therefore that charge density P

ges with . t1me\P _,PO ‘exp\ \\AJ't)

denslty (PD ) VP meets _Bauge cond1t10n dld ﬂ O . In this case

harmonically chan— :

). In the absence -of . charge i: :

LFF are equal “to; zero. To ‘check this we apply to (3 9) the d1v opera—; .

and dlU BQ( )--KLQYQ 2 mhub,
N “”“2LYQae);gm¢g

As the part1cu1ar terms of this sum are llnear :|.ndependent

O\Q (L\ O if U\\UH O . Th1s may be also proved in a mor"e‘ str‘alght—

Sl
forward way by performing integratlon 1n a (L)

(see Appendlx 3) i

From the Eq. (AQ O St follows at once (see Eq (3 11)) that :

k‘} i\_'.‘" : PR ':«
QR = r Q0+\




A

e oW

It turns out that for the p0101da1 current (2 4) CKQ_(ﬁA\ "L) i and

i QQ \ ghn.u O\Q(C\ . Integratlng in (3.14) wrt R and Y

;one arrlves at

: -_ | Lexd \ \‘ Q+l F )
GolE) = 2 LM(V en AL o
. 0 \ . :

= ( - were defined above (see Eq.(3. 3)) For ¥;¥O we findtthe’

~(3.15)

follow1ng asymptotlc behav1our of CRQ(WE (see Appendlx 4):

L kMRe }-——
C\Q(E) \JT" \(Q*v,) 12+LW) ol ‘gqa—\ - (3.16)

( Sll are  given by Eq.(3.7)).
k Substltutlng thls 1nto (3 9) we get in the statlc 11m1t

.'~ ﬂ RQWZ W‘ F(_e—\-l_ -ga»f\ YQQH e (317)

It 1s easy to check that partlcular components of (3. 17) c01nc1de
with: 3. 6) From (3.9) (bearlng in mind the omitted factor Qﬁ(()(—-\w't)

,’one obtalns for the EMF strengths“":k

,'q

ﬁ/,"H:-\nauE) BQ(M> | ~u«26~aw5 o (E) 318)

10r in. the -spherical components

My e Pe GelEY, -
E g (_—E— 57 {(QJA\LQ,\—CLQ*\] PQ G\Q \E\

0=
_F ey EE‘—L (hen™ L&—\\ \')q O\Q (E)
o] <€)

LG9y

10

“in time dependences of Eqs (2.3) and (3 1.

o
!
o
|

I

‘-
<l

B . . . 1 :
The Poynting vector averaged over the‘time period’ and: integrated ‘over:

“"the sphere of sufficiently large radius is il : ﬁi—

|

3 cdBe H\s dS = dame zaéfr)

”e(3.20)

The factor 1/2 in. the LHS of (3. 21) takes 1nto ~account the dlfference o

3 3. The tor01da1 form factors (TFF) and toroidal
moments (TMM) In refs /10/ were 1ntroduced so calledk

It is 1nterest1ng to know how they are 1ook1ng for the

nuitipéle.i‘
TFF and TMM

&

particular case

mExactly (see Appendix 3)

L entering into Eq N3 2%; are’ not 1ndependent
o tinuity” equatlon d‘U.AO —LUJj)O ‘ confirms this. Thus~wekconsider.1?

under the con51derat10n (that is in the absence of charge denslty and -

for the current den51ty defined by Eq (3 1)) . But’ at first we consider'

a general case when both the charge and current densit es dlffer from:

o

zero. The VP is st111 glven by Eq.(3.9) but O\Q (L\'—\? Snow, -

C\Q ‘LO‘Q“‘\

(for. the: charge density harmonically changing with tlme).VThe vP'noﬁ :

. meets the - Lorentz condition du[ﬂ -\-l ’6‘9 0 .. /S‘oame;pecularities :ccn—

C a6 ; .
cernlng Eq. Q. 21) should be mentloned here. We<wright'$utAexp1;c;t1y o

quantltles entering there SO ) L ljkn . '5{7,45"'

qQ 39\ S)O V (322)
O\Q \-‘) E\,\ 2,e r 3.&—\ r.]g,\ gﬂ,\YU AO(A\/)

By’ developlng Bessel functlons ;entering into" “both smdes'of‘Eq4(3 21

we observe that this* equation cannot be’ satlsfled (for the nonvanlsh—

i‘king charge den51ty) in any order ot ¥< . The reason.is thagz)and AO

St

th%id The® con—:?“

11



Eq.(3.21) as the definition ofq,e .- Its dependence of ' K is carried: (or (3 24)) corresponding to the. partlcular multlpoles are well beha—)

out by the Bessel functions in the RHS of ‘Eq. (3 21) For the vanlsh-— ved Turn1ng agaln ‘to the general case we observe that there: are no .

ing :charge density we may . develop the RHS of Eq. (3 21) 1n powers of divergences in Eqs (3.2) fI‘Om Wthh Eq (3 9) (or (3.24)) easily fol—

[ R ey ;. ‘ - : ?
K - The dlsappearance of coefflclent at K . leads to - R R Llows. Substltutlng arQ \[\ and C\Q (L\ ‘into Eq.(3. 21‘) we arr1ve :

. . \‘\'1 -1 - i 7
J—Q—’kQ-\—k{——BSrL N\(QL \ & d\V hri &rL - ]f.“' Q‘L L &0 o : . LFF compensate each each other:

Forh =1 we obtaln useful 1dent1ty : , o “T 9_ Q'F(LLKZ {\\QYQQ_ 30_‘_"\' MQ“\(Q H\ 2’\(_-1\ Ll \YQ -\ IQ.Q ]
&+\ v g i+\ N : ’
r(Q-\-Z’)% QQ \ k (/\\} ('-H rl’ YQQ \ 3 \/ - .(3.23). o . B The other way /10/ to deal w1th s1ngu1ar1t1es in Eq (3 9) (or-

o ¥

at the equation 1n which the divergent terms entering: 1nto EFF and

We present now Eq (3 9) in a sllghtly extended form‘ (3 24)) is to separate exp11c1t1y thelr contrlbutlon to EFF Combi=-"""*

-ﬂ~ gL w\l M) e Yqé o

ning Egs.(3.11) and (3.21) one gets

- . —; C/H, E) -\C lh\C\ ’Lh\ WMo T oy

| ne e L QH\ " e

_ + e + (3.24) ; L
QQ QL ( L\Q-tl\ QQ‘\" \1_@ \ L\Q -\ Q’ o ) ERAE SR Now we' present thls Eq iin the “form. vii .

ac E) (/\Q u: T)’\(FQ_ZCV“(D’)'Y':’; (126)

‘\'hg E \\Q-\—\ |Q.H \'\Q \YQ,E 3! ]:I

5 Here r . ‘ \

,,,,, qQ (C\ Q\\v\ qQ (\‘
It is fe’a's‘y to check'that the terms relating to EFF and LFF (2-nd ~ *° - A and e e 5 I o .
”an 3.4’ 11nes in Eq (3.24)) taken separately dlverge in the long—wave—' C\\M \ET )‘:_\-’L Q._‘\‘\ [QQ C\ to } .0\ 3“4 co ear(3.27) 0
}ength limlt K-bo . In fact (see Eqs (3 11)) C\Q (E) e and C(Q (L) ] ) Q f;\{: ) ¢ G Q'Q*\ . ) .

fall like KQ" as K—'O whlle (E) and BQ ) “(see

. *—Q-‘l The second term in. the RHS of (3 26).being .iserted .into. (3. 24) exactly
EQS (3 10)) “gTow, 11ke K in the ,same . 11m1t With the account :

i . i compensates..the singularity of LFF.-The.ratio
of the overall K factor in Eq (3 24) - this glves K‘ d1vergence i |

& | ! ¢ S o > Lol e = .
e1ther for, e1ectr1ca1 or longltudlnal mult:.po,le terms .This drawback P ) ’ TQ UL\ C\Q E \ ) /K +\ (3'28)

is 1ack1ng for. the vanlshing charge dens:. y In thls case. (see Appen—

( i T is referred to as, TFF ./10/. Using, Eqs (3.21) and. (3. 22) we . develop:
dlx 3) O\Q L\ O This conditlon changes the behav:.our of aQ (E ) . : " q
y : - Q

for small values of K (see” Egs. (3 14) (3 16) and Appendlx 4) As o

. and lQQ\-\ entering into .Eq. (3 27) .in powers of K. 1t f‘ollows :
. Rl ‘ L

F Q.+\ ' from thls ‘that in _the long—wavelength limit (K‘*O) l (K) ~. tends
7 aQ ( ) falls .now . like K for K—?O ;. the terms of Eq (3 9) ) ‘ - ) ‘

to the flnlte value ’

12



Q_‘\' . —___ S $ritn ree , -Q}' V:, ' ) ) ) S
"Y_é (O Y‘lQ+'~5\ ,Lu-%lb S A TP A (O) \'l,ﬁ—\-\ s

24\ tal K V) (3,,29)';- L \lu\ s '5) 1@#/1
& &0 Yms A+ Gty

As an 111ustrative example, consider the toro:.dal d1pole moment )
This quantity is called TMM /10/. On the other hand puttlng qQ ..O

L vg“;i gx;osv

—— g

kQ &_\ . Its, carte51an components are usually presented in the P

'

'1n Eqs.(3.25) a.nd (3.26) we obta1n far the case’ of vanishing charge * form /10/

S L T S[mmf{ WEIY em

’Lu\ M - ' ,
GQ E\ Q-Q [r ’T):— 0 . Q ey , (3j30) T We prove now that this equation reduces (up to nonessential factor) ;ii_
behus, ; r_lM s o . »b to Eq (3. 33) for Q_ \ . .For ‘thls, we use, the 1dentity. (for_P0 —0)
) ” : Q+ | S . i
Q (K) aQ E‘)/K o - (3.31) ‘ ) d‘GkMLMKMQj) XKMQEL'\"XLJ(QSK“\‘MtYKjﬁ_
: Fk‘or; K" 0 ‘ 1t tonds to the f1n1te‘va1ue )’ _ﬁ " ‘ e g i ' Integrating this’ eqant:.on ‘over the 3-d1mens:|.ona1 volume{ and then
. I . A R . . tracting wrt ¥ ; indices we get i
™ lwf\ | k+\\( \ t)\\/ R eon o
0 — 'l 0t \<lo N L(3.32). 0 :
T.Q . \ ] r(q+;_\ 19_-&'5}1, + ) v ) B 3 S L,,L 3 U _‘_1 Ao ('1. ’3 O\V O 1{
Using -Egs. (3 15) and (3 16) we may Blmpllfy these expre551ons ; :‘ ;o A Substltuting thls into Eq- (3 34) we obtain, L i
T A __..‘ +\ R 1 P .
\Q‘j,;kK) SD s l\l\\ \(Q*\ Viex "S(r‘\ FC.\.\ ‘Q“'LFQH\ S T S'l :!L 0\\/ i : (3.35)-
T \ ‘ R | | } This- expression is-completely equ1va1ent (forL i ) to Eq (3 33),1
L 0 g\m ;— e Q+ : ; d ce, to EMM gi b E (3.30).° W nclude for
) ) F(H") lq_m_ [/.lk-\-\\ 'g»(_H _ . . / an as a consequen o given by Eq. e .co ,

\FQS (3.29) and (3 32) were, obta1ned An two dlfferent ways. I“n fact the poloidal current (2.4) and the vanishing charge density the to-

‘Eq.(3. 32) follows directly from Eqs (3 25) (3. 28) by putting QQ :'O
in® them On:the other hand the derivation of ‘Eq. (3! 32) Uses the~

roidal multipole momentsy and form factors are proportiofnapl‘to the .

electrical ones.

g e -

»

expan51on of qQ o in powers' of KX as an- intermedlatory step 0

Ev1dent1y these equations should 001ncide when the charge dens1ty o ! . §4. The interaction of toroidal solenoid yith a1 ?."ter“al T

disappears But the condition for this -is just Eq. (3. 23). The lat- . : el§°tr°magﬁeti° fiﬂd/ . Sy § L S
ter being taken 1nto account ‘proves 1dentity of ‘Eqs. (3! 29) ‘and (3 32) R ) " The interaction of “the current J v:v‘ith_ the’e)’c:‘?‘ei"nal magne— ;
vThus, \Q 0) ; (for the vanishing charge dens:_ty) may be presented - ! 1o field \_-‘\vo_g_lc s given b e ,» P
‘ ;1n three different albeit’ equivalent forms. They are glven ‘by Eqs: - . ' . u - _' & 9 o\v » e e st _‘ (41)
. (3.29), (3. 32) and by o it ‘ A : : _' e s

Here ﬂ is the VP of the magnetic field Hoxe (= T0¢ H)

14 -
15



- Let the dlstarE:'e between the magnetic field source and .the cons—
tant current A flow:.ng in: the TS windlng be much larger than
solen01d s d1mensions. Then, in the ne1ghbourhood of TS the VP may
- be presented in the form ’ . USRI o
N ;
Rl &\(qwgﬂt‘“‘ BN o
Wy + AW (ui2)
L A% AN .
-5 :

|
; J
(1t is suggested therefo:‘e that ﬂ 'varies rather slowly in the sole- ’ ?

* no:.d 8 vic:.nity) Here A4 is some fixed point near the solenold

v ,and "L defines the position of a part1cu1ar current element wrt
this point Inserting expa.ns:.on (4. 2) into Eq. (4. 1) we obtain (for
the poloidal current (2 4)) ;

u )A Hay_e - -HL h“)( Hﬁxe o : 4.3)
Hereﬂ\ is the dipole magnetic moment : = SM dv -
= P M AV L Gh.4)

and M is the magnetlc moment densityM ('Lxg) For the pololdal

current (2 4) the nonvanishlng components of M “are:- s

M&-‘.f»‘M S\\of' M\o: M Cos§ D , cL
TR SV Pl S\‘" ce I C 1)
MS?‘—AWR) %*:g—c:;v NG

AT

This means that only  the :{{ component 'of_l\‘/l --differs from zero i s

(M\g ) It follows from Egs.(4.5) that}A.ZO “, i.e. the .mag;‘

netic-dipole moment equals zero for ‘'TS. For the poloidal current - . j‘\

(2.4) the' single nonvanishing component of NL" is

)\4\ 'L't & \3( \\'\\3 - \:l MO() 0\\[ r_% A R ; (4,6)

e

For. the ; arllivtrary or:.entation of TS’ symmetry axis all three com-
. ponents of M’_ differ from zero. Writing out the trlple (vector
product in Eq (4. 4) we get . . }}

2
gy

16 -

Pait &\_)LLUL 1) - QL] TREE AT o{\/ (47)

Comparing Eq.(4.6) with Egs. (3.29), (3.32),‘ (3.33) and (3'35‘)?‘@

‘recover the coincidence of )"‘LL -with either EMM or TMM. Since /Mp .

: dlsappears for TS.the 1nteract10n (4 1) may be presented in the form

u ML -\-Ul' HQ')((: ("L f‘) B (4 8)
| - ’ACQ'LL‘._\_L(“ 5

Using the Maxwell equation "[_0& HQ,)({ -3t AQOL{ and

taking into account that expansion (4 2) is valid at sufflciently iy
large, distances from the external field source (where AQIG— O ) one

may rewrite Eq (4. 8) as . . o o o
- \ . R R .
U - E \Ma_ ' o ; ' o (‘4‘;9)

It follows from this that TS interacts: with the external "EMF 1f the .

electric. fleld has a nonvanlshing and changing with t1me component T

along the symmetry axis-of: the solenoid This assertion grounds es—','»
'sentially-= on the -fact that, d1mens1ons,of the solenold are’ small:
enough (wrt distance from the .EMF source) The 1nteractlon w1th sta— '

tic magnetic f1e1d is p0551ble if thls cond1t10n fails. To see 1_;_1’1’15

we 1ntroduce 1nstead of the current AU
Cot M = Jo w6

The magnetlzation J\A ) corresponding to (‘U is glven by

_'_";‘ R R * ___b:(p_,_;‘z.\‘
' \N\ M M= HE ol ResW

As the current and magnet1zat10n formallsms are ent1rer equlvalent

the magnetlzatlonM

Uy

'/20 25/, one may forget about solenold s current and treat solenold

as ‘a magnetlzed r1ng w1th magnetization deflned by Eq.(u. 11) Its e

physical’ realizatlon “/7/ is’ a hard ferromagnetlc ‘ring having mag-

17



netization (4. 11) that is 1ndependent of applied f1elds. Now we sub—

stitute Eq.(4. 10) 1nto (4. 1)

S A ok M AV

Integrating thls equatlon by parts one gets-

LA SLhwtvN\dv | O wan

It follows from this that TS interacts with the ‘external magnetic field
the :9 component' of which has non—zero'overlappi'ngwith TS ’magneti.za—,
tion. As an example, consider the toroidal magnetized ring‘ and the
linear’current. ‘It turns out that interaction energy (4.12) differs
‘from zero only if the linear-.current passes throu‘gh the torus hole.

Cons:Lder two TS with constant currents in their windings. Do
‘these solenolds interact? (This question was posed by J.A.Smorodinsky
/26/) Their interaction is given by ’

‘_alc S A—il)—"(\—("wc\\/‘c\’ SA UL ) dcw" c\\.
14 - L|‘_¢
Using the: relati(on . ‘A‘ =t '10(‘1“. . and integrating by parts one gets
S'Hgﬂ MT)dy
.From this it follows that there is no 1ntveract10n between the non-k
e overlapping solenoids (as the magnetic strengths and magnetlzations
“are confined 1nside ‘the solenoids). k '

One may wonder what is the prof1t to present VP of TS in three '
different wavs (Eqs.(2.7), (3.2) and (3.»9))?,There are certain reasons
for it. As Eq.(2.7) contains allmultipoles in a closed form,y it is
easler to operate with it in practice. Since each particular term of
the sum oceurring in (3.2) tends to a finite value in the long—wave—
1ength ‘1imit \("’0 (see Eqs (3. 6) and (3. 7)), one should expect k

the same for the development of (3. 9) Ve - have seen in §3. 3 that in’a

18 ‘

s idal coordinates

general\case when ‘both the charge and current densities'are'present,

the .. separate contr1but10ns of EFF and LFF diverge .as \(

'7‘0 .+..Only

their sum remains to be finite. Thus, expansion . (3.2) may serve as a

guiding point.

'

5. The model of toro:Ldal solenoid current -

i

Consider torus (2 1). In what follows We shall extensively use

the toroidal coordinates

- C\SiﬁC/OSg O\SL};S\\,\g o s\»\9 s

12— SR et
c)-y—mse S hp- ws® S 6059 ey
(DL L0y -neu“ OL\BLSL(") ,

ForM f1xed the points p(’-‘(,‘ﬁ,l:\ F111 the surface of
the parameters 0{ G L“,\y\ andR 0-/5’(«_}4 Let M—-

the torus wi‘th ’

M 0 corre s— :

pond to the torus \0 i Then, for M'7-Mo - ()Aéﬂo ) 'the. point p("‘ ) %)

(where X \5 2

infinitesimal volume element being expressed in tor1dal

are- given by (5 1)) lies’ inside (outside) ‘0 . The:

coordinates o

o
d\l SL}M) (190“9. The " current density (k\) ‘is given by:

(o 05 9)>
0 ac

R $(M—J‘°‘(ck}xo—w59\ “0
‘on“"qra SWHo

7;(5.2)f~

Here Y\Q is the same as \’\,v- (see §2) but being express’edfin‘toro;-

na [(m cosnx»f n; S\k‘g)SL}AS\“D +nz(i ckﬂcosm w}{-@h)"

For the constant current \—\ hgﬁ LP

inside the solenoid‘yand :

n 0 outside 1t The VP has two nonvanishing cylindrical’dcomponents

(ﬂ_p * and ﬂq ). At large distances they fa.ll as. "Zf'z" o
i ag th Mo 1+3eas28s H ~’5l|gC( d«}*o' s
H%"" oSk L - 8. L"}lo (A

R

95 is the' sphe‘ri\cﬁal‘)polar angle)’ )
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“Their-explicit expressions are'giVen-ln“ref;/18/i“Ndw‘we'try to
simulate the solenoichurrent as a relative motion ofone of charged’
layers,'out of whlchjthe~surface charge distribution is composed.

We require the following conditions to be fulfilled: 1)‘the total""‘
. charge‘should be equal zero; 2) the electrostatic potential should va-—
nish.both inside and outside the,éolen01d 3) the rotation of the ele-
«ments comp051ng the part1cular charged layer in theE?_ const plane
(each element rotates in. thatEf- const plane in wh1ch it 11es) should
reproduce the current d1str1but10n (5 2) and as a consequence the VP
of the toroldal solenold.'

We seek the charge d1str1butlon in the form

= 8§ é(y\—ﬂ)+61 S(}x-yl )+ I SUA—)JD) (5.3
:For the: deflnlteness we choose)\/\l7ﬂl7ﬂo ‘The charge distr:lbution

hcon51sts of three charged toroldal shells encompas51ng each other ‘
© (it.is 1mposs1ble to meet all; condit1ons 1)-3) using, the charge distrl—
bution, con51sting of two. 1ayers) The layers correspondlng to/u }Jq
and )A }A\ -are, external and ‘internal ones: (f1g. 1) ‘Let each ele—
ment of the external layer ()A )JO ) rotate 1n the\f* const plane with
angular veloclty\}) ; We choose Q#o so‘as,to reoroduce the,current

density (5.2). This. glves

o gt (Chpho- 0050) o o (54)
SWR T Afer Toge 0 o O™

Here ‘2 UL/S\\}IQ ~is the radius of the‘eiternal shell. Or in a

‘sllghtly different form

( ch u—ﬂos(-)\ Shia |
6% = § ?‘\}* (Jl Hf’a\‘b))

We give only the final answer. The electrostatic potential vanishing
 _both inside {\O ?M 7}4\) and outside ( 04}44}40)~TS equals

(5.5)
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(D 8&&.0‘ (LL}A WS@\ 2\_\_5th"‘“§,(0)

10400 - B, D 0]

@7: %H&a A(cLu—LoSOV"Y) :2:5 Q“ 0)
LR By - By Q@)

between 1" and "2" charged shells \}\ L‘}‘LJLM

P\J lL\— "’\) (C\\}\ )) Qv(L\"Q (CL}A )

alby) P_.(L)Q s (3) - sty Qs 6

A between "O“ and "2" charged shells v )AO L)A L}A;_)

102 (0 u Cosw®

n(\l)

1

) Cvie Here we

; PAl‘lt' SRR

(L-Ufl)

P From now we do

not indicate the argument of the Legendre funct1ons 1f 1t equals DL}A

, The discontlnu1ty of i%%z ' at _lt.{q!‘; and /“ /lflg_i,fixes L
Rt k \9\ : Cost Qi h"th A
1Ch c0s ¢ '}
,GI\— LHJ% . 31\},‘ 2 \ &\o - ) ,1““ l) :
s N B "L (4, 0).
Y G 1\1 Mﬂ , CVSM? Q a0 r{‘ (1 .2_)»-,/
M1t ‘T\’S  ShMa \+ 3 - ,\h 1<
The ;constant §' .determines;the value, ofthe charge on each of_the/;y
layers 0,1;and 2: VRN Y
Com S0 SOped = LT o, i e
. & bl
Q SG“&(}A }4\0\\/ ‘“’“f?‘w&h Q“"O\ Q"‘“ T \ll])
e

R g B e 5 Lo

It is easy,to check that

Qo+Q "'QJ)l’ U "

e pE e aps 2
WL

uniform rotation of the elements composing "0V

shell 'in the

e D o

Ci.e. the treated charged d1str1but10n is electrically neutral. The

const




-plane with angular. velocity w ; imitates the surface current (5.2).

As a result the VP &}go satisfying the Poisson Eq. )
A ﬂ \—\\\ é\O o . S

is generated. The constant % entering into the definition of ’du‘,

—p

%

- (see Eq.(5.2)) may be expressed through Qg

g& i ~wey /TTC/ -
’ This means that for Jq;¢ we may use’ explicit expreSSions of the VP
obtained in - /18/ with 3 defined by the last equation Thus obtained
electrostatic potential q) and surface densities (TL ‘meet condi~k

tions 1)—3).mentioned above.

“§6. The rotating'toroidal solenoid

6. 1 General considerations The magnetic field of a toroidal so—“

. lenoid at rest differs from Zero only inside it. The magnetic field

;kappears outside: the solenoid when it moves through the medium (Q}A#i )

" with a constant velocity 122/ This fact seems strange, ‘as using the

5 Lorentz transformation one may always pass to a coordinate system

‘where a’ solenoid is at rest.uHowevery in this system “the medium is’in:

motion and thisAfactbleads to the situation which is not equivalent

s

to the initial one (when the solenoid was at restjrelativevto the

'medium) “A- similar situation arises when one conSiders the uniform ro—bv

tation of a toroidal solenoid around its symmetry axis ?: . It seems
first ‘that the magnetic ¢ field remains to be enclosed inSide the sole—
noid. In fact let a solenoid be first at rest in the laboratory sys—

tem S. Now we pss to the coordinate system. S° rotating around the so-

lenoid with angular velocity.fl . Using the Lorentz transformation one
_'

may evaluate’in this noninertial system the electromagnetic strengths E

is

*wtating solenoid One precaution is needed “In” what follows we' consi—-

-y

and“4 (note that the accelerated motion of S relative to S does .

“not invalidate the use of the Lorentz transformation (see, e. g., /27/)

“The field kd is enclosed 1ns1de the solenoid in’ S, ‘so the same is

valid in g . Now consider two phys1ca1 Situations 1) the solenoid o

is at rest, the observer rotates and 2) the observer is at rest the‘r‘

s

solenoid rotates. As the relative motion of the solenoid and obser—i‘

ver is. in both the ‘cases’ the  same," SO one_ may erroneously conclude

: that magnetic field strengths vanish outside the: solenoid for the SRR ¥
“-second-situation too. The drawback of these cons1derations is that

“the identity of relative motion does not guarantee the equ1va1ence5

of physical s1tuations. In fact an observer is s1tuated in the noniner—j

~tial reference frame in the first case. and in the inertial one in the

§s
e n e

““second case. For .a rotating - chargeddsphere this paradox was 1nvesti—""Z

s“gated by “L.Schiff /28/.; The modern:treatment of ‘these questions may'

be ‘found ‘e. z. “in refs. /29/.As equivalence:is‘lost;ione‘should make

s

‘‘concrete calculations to evaluate the electromagnetic field of the ro—‘

der’the.“rotationof TS w1th current distribution constructed in a’

»t

previous section. :The” charge density of this solenoid differs from zero

(it cons1sts of 3 charged shells) This means that EMF generated by the

<

rotation of this solenoid does not coinc1de with EMF of the magne—s

¥

tized ring with magnetization defined by Eq.(4.11) (for whichfchargea«. e

;~density.equals zero). e e sy

[RRSIEN S

6. 2 EMF calculations of the rotating toroidal: solenoid. Let the
solenoid rotate as a whole around the-symmetry ax1s~3& with angular~'

velocitysn_ (fig. 2). Then in addition to the!: poloidal current (5 2)

¢

there appears the current

i e N ;\S:d;%=

I N (FE))




flowing in the latitude d1rection. Here 6J is given by Eq. (5. 3)
p- ¢ G Sk

Chp - 0059

: the charge shell and the z axis. The current (6 1) generates VP sa—

is the d1stance between a particular, element of

‘Vtisfying the P01sson Eq..ASlJ- %2 ég It turns out that

“'has the single nonvanishing component{f?g ) . It equals

qh(u) COShb - (6.2)

T NREISTAL i

Th%'functions th(}ﬁ) are defined in Appendix 5. At large - distances -
: n U o
\Hg falls ‘as '—(.

ﬂq ~ AQS‘WS/T e e (6.3) "

Here ()5 is the polar angle. The constant Ci/ is also given in Appen—uu

d1x‘5. The'non—vanishing components of magnetic Tield decrease as Z-
\__‘ n Q,‘o(_Q'COS @5 H"\ - <l '_Q Sim \—)5

The total VP of the rotating TS is

B N e

: where QW 1s VP of the rest:|.ng TS /18/ and q_ﬂ_'J \8 h:’;
,’ Let the solen01d rotate as a whole around its symmetry axis with
the velocity 11near1y growing ‘wlth t1me Tl—-;ljb t . Then the

total VP turns out to be equal to . P
'? ﬂ\,.' Jcﬂ\g _)1))\'\\p ‘ - (6.4)

Hereth, and’ q were: defined above. The’ constant‘g . is given 1n
V’ADpendix 5. As a result, the constant electric field \E\g-"‘-’?
,and the linearly increasing. magnetic field \d { '10§ (jlf hg )
arise outside the solenoid. At large d1stances one: 'has
s ib’:’,' A\ o (LSl H, ~ o LAt 0 Ha< &S_/L_@j

foS T o T e He s T
‘The radial component of therPoynting vector is directed off the solenoid
‘ J¥QT st B
Hic et

Doy

menta ( EGLT) (T oV

5

Now wewsurroundj'the toroidal solenoid by the impenetrable (for

the observer, not for ;the EMF) sphere. S (flg 3. Is it possihle to .

Vestablish the ex1stence of . the current in the solenoid’ winding?;

SN

As we have seen the magnetic field comes out of the- tsp]enoid_{andi :

the sphere) Af the whole construction (the solenoid plus sphere)‘underf

goes the rotation. This may‘be verified experimentally. ") . : _:Ji
- The following . cons1derations /26/ show that a charged particles

should exhibit classical scattering on an 1mpenetrab1e 1oroida1 sole— N

noid Due to the recoil. effects the solenoid gets finite“

eleration"

As . a result the nonvanishing electromagnetic field strengths appear

‘cutside the soleno1d thus distorting (due to the Lorentz force) the ;

ik T

'”There are two reasons for the recoil effects.‘

* i

particle t

The first one 1s trivial It 1s due to the col 1s on of the 1ncident

1

particles with the surface of an. impenetrable torus (or 1mpenetrab1e

sphere surrounding it). The second reason is rather subtle /7, 26/ It

is associated with the fact. that inside the solenoid bath electric

and magnetic field strengths differ from’ ‘zero. The'’ electricfone‘is
that of the incident charged particle while the_magnetic strength is™™

$.*

that -of  the solenoid 5. 1nternal magnetic field As 8" result the ‘mo— f}

~and-torque S'ZIX { Ex _‘:l )G\v arise

Vn tu’n leads to the

which tend to shift and rotate the“solenoid Th"

appearance of magnetic field outside TS and to the’ scattering of char—

ged particles on this field.<

7§’Conclusion"’

P L
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) 2) The multipole expansion ‘of thls f1e1d is obtalned Its rela—
tion to the tor01da1 multipole moments is establlshed

3) It 1s shown how the toroidal solenold 1nteracts w1th an ex-~
ternal electromagnetlc field.

' L)’ The expliclt reallzatlon of the current flowing in a solenoid s

windlng is derlved -

5) ‘It ‘is shown that ‘rotation of the torcidal s¢lenoid leads to
the ‘appearance of the electromagnetic field outside that solenoid.’
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;‘Aﬁgendix 1 vi‘
There are two spherical components . of VP whiph»are«diffefent

. from zero

()C\‘\“Y Los\V Los \KRO\“*"L)

Ror. . r ’
(?WRA\? %S‘S cm\}‘ g U(RO\‘W ‘L) RUIGE
1
5¢(R0‘ P 1 RqusY p'11d11¢9m9 q,!ymopwn+
For the thin solenold‘kLLcl) ‘ these Eqs :are 51mp11f1ed 4 :
| ngcos() G | )
p‘lm (Q, chiid9+s\hw€§ 0‘5’ )

4 . (A1 2)

g - R‘é l sw{gp (oS‘Sd‘ftS\uthG‘CoS‘;dg) %39 Q'L

T
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Here \: E ® CosKp (’\ ‘3,_)+ S\k\Cp :} ‘.‘f’ - o

C g"‘\‘? k:j 31)- = 008\4\9 ’3 (“73)3 
The Bessel functions’ enter:mg into (A1 3) depend on - ’J(' KR% /F
IfKQL“i ,then*" S ' , ~
Q olg QAO \Q,S\u‘t &(A‘E f + S\V\thd\_’? a) | o
CAA) -

% R gL (s ot (49 o9 L +Sinot (g-oss. a) t{\@ Ax

(% WS\(P 2)4 S\M’-P %f S\ka \LCOSKF )
dzél.'

From this one easily obtains Eq.(2.7) if addltlonal condltlons

and K AXZ4 are 1mposed

Apme_n_dix_2

The total-angular’ momentum iis’ def:med /21/ as a: geometrlcal sum
of orbital and spin momenta':] L+S " .. Here \_,‘--—L. '”LKV . andw§
is the vector ‘matrix with the components. .o . il e

SO : E ‘_7‘ v E . 2V ,
The vector harmonics \ QA are vectorially ooupled quantities ‘of’

the" spherlcal harmorucs a.nd unity spherical vectors

I(.Q’:‘ ZC lJ\_Q )A)m+)4)\\/ A Y\-ﬂ

R
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—FI'TL

%) are elgenfunctions of,a L and t}
e YQ“ w Q,\ oy ‘(E_Q\Q»f\)\(q,\ L ::\,AU\H)YM

AThe vector harmonics form an orthonormal set

g \(“\* \( eA ()\_ﬂ_ gQQ‘ SAA‘ Smw\\

Appendix 3

: We start with-the definition of’ o (L)

d&m:Sﬁ?*ﬂﬁ).z;\pw-% A H W

etly= & §dil e VaurR Vv
7 C 90 Yo [ d “’JO'd\/“

"..The first: term in (A3 ‘I) d1sappears 1f the current - den51ty occupies
."the flnite portion of space. Bearlng 1n ‘mind - that dldd aaf -

we find for the charge dens1ty perlodlcally chang1ng with- time

Lp= _90 Qmp(—\wt))
) Olld (\0 —‘ U*) \?0

w\"t : l :
whereq = S %k\/ p\’J 0\\/ ¢ _P() is the charge den51ty)
Substitutlon of (A3 2) 1nto (3 12) leads to

'
{

ST IO B

LV ﬂ + \ ak = 0 e T jg...v(AA'B.J) ’

Here \& is the scalar potentlal Poet

NES LR (K Q’)\\o\-—\wt)Z‘\QYQ \

“From (A3.1).1t follows that C\Q (L\:O - for the\vanishing'
charge dehsity. ’ ‘
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(A3.1)

EREIE VA “72@3-25%

. Apgendlx ll,

= rently for small K Substltute (Al+ 1) 1nto (Abr 3) and d1v1de ‘both I

‘_ kz ‘ '\—'- i3S v
f LT |15u \,ul S“H

. \_(:, .QQ \ l%(( \: ‘ . “;;“’:’)I‘ /,

-From.the fact that for K-—)O
h\)l ; V\e \ 0\ Sl

| »\T

rles z) 1c'-/b. e R (f,:‘fl)',}
1t follows that in thls 11m1t Eq (3. 15) reduces to \MP, 5 B
8 Q+ Cge S S EPA
Afl 1 e A o
‘ (\Cu:) , L\]_? \I—Q, q+'5 \ (94 5{1) Lusn, o

(AL 2) e

(et J},H JLTL fgw\

. The dlsappearance of LFF leads to the follow1ng ‘relatlon between: \“(,_ o7

EH o \/2 _ ] el
) ( L ,m's) ( 1ea \L ; A\L+9u rml

: iAA'.J);.-Zi

From (Al+ ‘I) 1t seems that RHS and LHS of (A4. 3) behave dlffe—

1ts snles by K e-l

. v ‘
\"%— (%L g',\v(—" % _‘\: b e

L1k Lu\ AW lu”) S L EF
rI‘he LHS of this Eq. does not depend on K " whlle the RHS tend to zZero.

as lk . This means that .LHS of (Al+ l+) should vanlsh 1dent1cally - ’\

“‘x,

o ’,“5 . T g e
‘ﬁ( I‘ " '\;(:—] *\al .

.Substituting thlS into (Al+ 2) we arrlve ‘at Eq. (3.16)

‘ . (2% R
G (E\:~l,‘i’— Ra. .1 -1
Q Wy 2t u\m TGy JYW
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- Aggend1x 5.

. Functionsﬂh(u) enterlng into Eq (6. 2) aré deflned as. follows.

They - are equal.

q'f\ A‘ [COh h-t O)+('\h Qh‘ +(/1v\® (I)J \

. outside.the solen01d \OL}'\ < Mo ) ';l ; (AS 1)'

,ﬂh dn {_Coa h-L (OHCM ph ‘(J.)+Cl»\ M_,(Z):] Ow— ST

: 1nside 1t : \)’\ L}A’-Qo) iy Further

SLUW\ Oh_ +C¢u\ Qh ‘(i\JP_H—(m\ (0) Qi j

.- between  shells "O" and o and -

. ‘ﬂt\—‘:i '{[CU\ Ph L Q)'\'(.'U“ p (O)}Q\,\ "\'(,m Oh‘ h- } s
S hetween shells ,'2 and ", . ’ . - A SO
B /,Here J\ iy M - . The coefficlents : C : depené only on !

2

¢ (n*=1u)
the’ charge distribution parameters

TS L0z ¢ v U0 ‘}w
Cw ZMMQW 0)Le \(0\?) 3‘% ‘“

e 3, R 8

MU 1)

:ghm\(' Q:)‘.‘) [:—Ll \\V\’\-h)bk Q:)(P\'__},\\ \M M_]
C 0z 0, L 2,)

o The constant d\ occurring in Eq.(6.3) e’qualks> ’

30 -

0{ \ v).io\2 [Cm‘ Q (0)+C Qh \i Jf()_»\Q ](AS 1)
Eqs. (A5.1) and (A5.2) ‘are simpllfled for small thickness of the
charge ‘distribution ( )"\\ J“°+ D‘ 0, }"7— M°+ A" L\ LL’L'U' /,\114“0) i

In this case™ ;; " :

'Hh(u er ub (/\\»rAL) [Q»\— \] P”"_,

outside “the~ soleno:Ld and =

Q.- L uoumm) P s (0)- Q,\_, O) Q-\/L__

inside it. Further
T"" (—H\},\o [A +ﬂ;_) (i‘\'m*—‘ 3) o = QX?
1 B

Finally, constantﬁ appearlng in Eq (6 4) is:

, lya) -4
dI:

Tn (0,1\

E BLJ}a‘*_(LL - \ZH&O L11) Dw__ )w‘ ot
T P \ '1—»1 “ O) _‘ S 1
¥ S—L}abz \tdho Qh"“\i) Qh— /T lh 'l)

o] e gl ®»~ 0>J

~ sk }g\, \+Sh |
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F1g.;1.

>

The model of the TS current The charge dlstrlbutlon cons1sts of threet
charged shells (0 1" and 2) The electrostatic potent1a1 differs from

zero only between shells 0 and 2. The rotatlon of the external shell
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