


Demands on .the. high—accuracy calculations revive (after more than
20 years. of: intense.attention to the pure : computer calculations) inte-
rest-in analytical. or semianalytical methods .in gquantum: mechanics. In
particular, the necessity of them arises in consideration of the weakly
bound systems: where the traditional numerical approaches meet serious
difficulties. {1/.,: : . i ';,.

. Being based on the two earlier suggested 1deas, namely, the appli—
cation of the variable—phase approach to the; hgperspherical -one : i
and .the solution of the Schroedinger equation by. representing the wave-—

—function as series 13,4/

factorized in energy and radius, we develop
here a method for constructing a many—body Jost—matrix semianalytical—:
—expression with . explicit analytical dependence on the total energy.
This dependence allows us to find easily the ‘bound states as zeros of
the Jost-matrix determinant in the complex—energy plane)

:In the framework of the hyperspherical approach /54 the N—body

bound—state wave-function is approximated by the finitelseries
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[L]= [L'mm] 4 5

where the hyperradial functlons . [Z] /D,It)obey the system of

i

equations

[3+p —A(A+1)/r7u (,o,r) Z [1,][/:]( ) &0, 7(22)_»,

Here multi—index [15] involves the hypermomentum ZJ and all
other nonconserved quantum numbers allowed by the set-{Ct}-of the’ well
defined numbers; . the momentum l) “is conjugated to the hyperradius
¥Y and related to the. total ‘energy - E ‘by. p ""25 A=
’”L+3{/V“2)/2 and the elements oi' matrix . ZI" are defined as hyper-
angle integrals :
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of ‘the sum V ‘.of the.2—body potentials assuming each to be more
rapidly decreasin'g at large F¥ . and less singular at F'= O than
the centrifugal one. ' ‘ . ‘

To make all subsequent formulae more clear we omit some indices
and arguments' and use the behaviour 'J'

2-& :
Unarey () 7o “aae1 /7", e>0

while all our results are valid in‘'a more general case/(”l ,"22}—(") 0
Considering (2) as 'a matrix equation /6/, we see that it has''as

many independent regular (at /¥ '=0) column-solutions as the column

.dimension. ‘All. tl"liese' linear independent columns. we combine in the’

. 'As one knows, the N-body scatfering problem leads -
to the same hyperradial equation (2). Therefore, any physical“ solution-
may, in principle, be constructed as linear combination of columns of !
the fundamental matrix // ¢[L][L]// of: regular solutions with the
coefficients [L] defined by appropriate physical boundary condi- -
tions " ‘at /£ O . In our ‘bound-state problem, the condition
LL[L](P,OO) O imposed on the function: ‘

“m(/’)’" )= Z CP[L][L' (P)’” )A[L](P)

' implies the homogeneous, algebraic system
) Sb[L][L]

square matrix

o )A[L] (/0) “"(6)‘“

defining the weight—coefficients A[L] with the exception of a
common norm factor. The homogeneous system (6) has nontrivial solu-
tions if and only if

dd//¢[L][LI (/o) “ )//’— 0 o ‘; (‘7)'

The zeros of (7) correspond to the- bound state energies EF= pg/?v;'.”
we are 1ooking for. Thus, the above scheme- reduces the initial prob-—1 -
lem, concerning with equation (2), to the construction of the basic
functions ¢[L][L] (P, r). o

Since, v = O is' a singular point: /6/ of (2), we have to supply
-the regularity "condition ¢) (,0, 0) = O * with an explicit beha-

vious 057/ : with /=0 . Since the investigations by Bartlett
et al.” and Fock /8/ B

, ‘such a behaviour is intensively explored with-
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in various approaches (see, for example, the reviews -and recent
/11/) As it is: known /12/ . the potentlals of the type (4) w1th
cause the diagonal matrix elements. of // ¢fL][lo]//
near =0 behave like . /’"‘1+'{ while the nondiagonal ones 11ke
r"1+4+£ . Formally, to define unlquely the linear 1ndependent

regular column— solutions for the slightly :ungular(,é_‘:’”o’ r ?j’("} 0
713/

works

integer &

po..entials 1t 1s enough to put the boundary condltlons

¢[L][L' )/ e S[L][L] 8

But for pract1ca1 calculations one also needs, at least the 1ead1ng )

terms of all the matrix elements. We assume (8) and derlve these terms
below. :

To solve the boundary problem (2), (8) we apply the variable cons=
tant method’ /6/ which 1is equlvalent to. 2 linear version of the vari-

able phase approach /14‘/. W:Lthin this method we 1ook for ¢ as

CP[L][L] ’?/A(/’ ) rig, ][L] (/”’" )- fa /”" )3 % m-;(ﬂ 29)

#1 - are the Rikkati— Bessel and Rikkati-Neumann
be1ng regular and irregular solutions of? (2) when =0

o

Then, instead of (2), we arrive at the’ follow1ng equatlons for the

matrices C' and’ :3 : .
9.c ——gv’(/c—yS)/,O, 3 3= J”(/C ya)/,o (10a>
where J //J,] /Z][L] // ‘ andi, = //yﬂ S[LJ[L'] //

the d1agona1 matrices. We can fulfil (8) with the conditions 3% ‘{,

I’ I & A4 - . . e

Zmz '/4(’0 o~ ‘””’(’0’ )/'" - S[LJ[L]",' o

, ‘ e . . - (10b)

a1 o

Zmz Y. (/’") L/[L]%P)/ [ s 0-_;'

which therefore serve  as the boundary ones for (10a) Considering

(10a) near- ={¢. ., vwe can replace ya (10’«')’\’2V (,0[“‘)

100~ 05 (o T IRy i (Ge—g3)

by thelr leading terms and perform the integration‘ ,expllcritly. As a
result, we obta1n the leading terms of . C and . ’3 i

Smu‘] T o‘am]

- 1+e
(J—Afs),t{“f" '

,‘ (11a)
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wh1ch are to be used in pract1cal calculations instead of (10b).
Further, applylng the Rikkati-Hankel functions/15//l (—)-/A"'ty

Do C £ 8 , vwe rewrite (9) ‘as

( r
(P[][L‘ (’D’ r)=z 4” ’v}[uﬁ.‘](’o’ )+A /’")mlz'l(/"i‘?)

and by analogy w1th the 2-body case 716/ call // %[L][L'] (P)// =

—_ &m //%(I}L (P,"’)// the /j;jt matrices. Then, taking into ]

account the asymptotic behav1our

h; (z /;7:»50 Fiexp[ti(z~ 171“/2)]

and” introducing the notation

we can reformula.te (7) ‘and (6), defining the bound state 'energies

E Pg /2 (/)g > 0) ‘and the weight factors A[L] as \
det M (PN =0

: Z 72[1.][1.‘](/05)’4&'] ,’: (1)

- We also note, if zero of the Jost-matrix determinant is" placed
under the real pos1t1ve half—axis of the complex ID -plane, then it |
is possible to find such weight factors A[L] which reta1n in“the 7
. physical solution asymptotics ‘only the outgoing hyperspherical waves.

In some cases the last may be ‘identified /17/

with N‘body resonance
states.f . . B

~Thus, explicitly extracting the ‘Bessel functions in:(9) or (12),
we have reduced the problem (2), (8) to (10), (11) for Cc(ps #)  and

o) (P,l") which are expected to be smoother functions of r’ . But

‘ .they yet remain 1mplic1tly dependent on .Q -, while ‘to use: (13) an
explicit ,0 -dependence is more desirable. .

As we will show below, ‘one can easily achieve the 1ast under the
conditions _""<\"'7ndx s
in series. -

In this way, we apply the ‘well known/ 5/

series. representations
- of the Bessel and Neuma.nn functions. Introducing an arbitrary hyper-
radial parameter" ; and using the identity Z"ﬁ (pl"’/ﬂ) =

R
Z’n(,ok/z) + be(r/R)

sy We can separate Y2 tand . AV

PRI g
c

//0/ Inax<<1 by expandingk c and 3

jcn[t.]a} ('0) rv-»o SHO{

- in ‘the only nonfactorized term. of the Rikkati-Neumann function expan-

sion arising for a half-integer A . This ‘enables us to rewrite. the .-
known ‘spherical and cylindrical function representations in the uni-
form way::

JA(P"')_ >—_— P ra)( ", ),
: - (15)
oy pr)=p Z’ P2 g,f’(/")+ /7,(,0)&1 (/””)
where /Z{P) =0 for integer A /L(ﬂ) !’1 (f”e/z) .

for half-integer .A ,k‘and ’(:1) in the last case gets the R -
dependence. . ‘
' The structure of (10a), (11) and (15) stimulates us to try the
expansions

~( )5

[LJ[L] (P)") /o

Z/O Cn[L][L](")"‘h(P) L][/_‘](Pﬂ‘?
e
B P = P Z p*"ﬁ,,ﬂ D R A

Inserting (15), (16) into (10a) and comparing (16) with (10b) iand
(11), we get the initial value problem for ‘the matrix elements of C
and 511. depending only on W S . [

(A“) ‘ ay ;
a ”[LJ[L J P [L.. 7 g [L][l-"] /76 : k[l"][l'] Ji K[L"J[l']) (17a) '
S (A) ¢! ") | .
8 5}2[1.][[.] -, JZ[L“] %L' [;,][Ln] (75 k[L"J[l.'] ji/ < K[z,"][z.-l)

' : 2-a+£
[l.][l.] (* “E) 0%1[1,]’" }

A+)‘+f+5 (171-,)

kﬁn[L][L](r) V>0

where . Z‘ denotes sum over the indices obeing the. condition
[";j-l-K = . Thanks to ‘this condition the system> (17a)"is of . ;
the recurrent type, i.e. " the equations for C'o “and ’So involve '

,)A

only their own matrix elements, the equations for C1 { and —3 inj
volve the previous and the own ones, and so -on. Therefore, at: every
n-th recurrent step we have as unknown only the elements of the mat—
rices .C, and ’3,1_. = i .
Exploring convergence of expansions (16) we have shown by the
713/ that. these series asymptotically
converge to  C (P, r) - and! 8(p,r) in .

: | :
i

method of contracting mappings

(/plr—=>0)
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the vicinity. of the origin of complex P -plane, when F€ [0, motx] : P e simultaneously construct the fundamental matrix of regular

~and- //Or;‘;oax/ <4 ‘Therefore, using (16) we:can write ?-IS.J}L‘] . solutions (22) for any complex /0 of the circle /,D/( lahm' In prin-v
S . ) . ‘ L c1ple, this matrix may - be considered as a full solutlon of the N- body 2
as : . . 5
~(3+1) M*) ,") + 0(/ ,‘,/-‘ZM+."Z) .problem within the above constraints,. for any phy51ca1 wave functlon is

?][L] (/0) ) ID [L][L']% /0 a superp051t1on of columns of the fundamental matrix.

2 8)

(B ‘Z P { Copeir” )‘" [ M/’)’L‘] oreine )}

[L ][L']

uith any ’ M(oo . . prov1ded that /Pl"'/((f . As in the standard
variable-phase approach. /14/ if U (r)=0 for > }’;,ax y
then according to (10a) our ,C)‘ 3 and therefore 5(_\'("') are inva-
riable beyond Fomax - Hence, if the matrix. U("") is cut off at
. 1arge enough' = ’;«m{x (as it. ‘is usually done in practlce), then

: owing to (18) equations (13), (14) are reduced to

det ] m]( /ze,,,,‘,,)+0(/,q,, e 7) Y

Z{ ,(_7[”;([7‘, ma(x + 0(//03 max/zM*z)}A .](/Ug)‘ (209

One sees, the bound—state energy may finally be found ‘with. any given -

; accuracy on‘a sufflciently small interval p, 6[0 /Umax] as’a zero

det Q(M (Llaé’ s max) which is an explicit polynomial func-—

tion- Aof : /0 ~o.and ﬁ(ﬂ} “with the “numerical . ‘coefficients

n[L][L'] (r; max ) and 5'1[L][L] (’Vmax) defined by (17). In

-every concrete N-body problem these - ,U —1ndependent equations are to
be solved only once. Then, for each zero” P —'L,Oe of (19): and for
all rg ,‘;7141)(’ M< 0o |:provided ‘that ,03 </0max and

/,Omax de/«j’ we can, by using (5), (9), (15) and (16), express,
(1) semianalytically: :

1}’ ('")"’ re w/zz [LJ{F) %)[L;](/)"V}Aﬂ']@);(21.) |

&]ﬂJ-ﬂMm]
(. - ) : e2
B B=L 5 T4 -5 W00
Son=0 . tHY=n . ] :

We should like to note one undoubted virtue of the develope‘d re~

cipe. In fact, solving (17) we obtain much more than desired initially.
Along ;. with the bound-state function (21) for the diserete values of’

) Expre551ons (21) and (22) may be useful in various quantum mecha—
n1ca1 problem ranging from quantum chemistry to nuclear astrophysics
where typical energies, are of small absolute values. ) ) ;

In conclusion, we stress the follow1ng. first L Zmax wa‘nd”
I"‘ £ ’)'nqx are standard restrictlons of practical calcula— it
tions within. the hyperspherical approach second, an 1mportant question -
" about. the behaviour of ?’( (ﬁ; ) with /0—> O and /'—-)OO
rema1ns still open and at last the above suggested method seems to be/
‘perspectlve for weakly "bound systems. Some ideas related to adaptatlon
of the method to the systems with the Coulomb forces and to the: scat- :

tering problems were sketched in our previous publicatlons,/1 /.
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