
A. V. Matveenko 

0 ti h e A M H e H H bl A 
MHCTMTYT 
RABPHblX 

MCCIBAOB8HMA 

AYtiHa 

E4-91-370 

ON THE CLASSIFICATION SCHEME 

FOR RESONANT STATES OF MUONIC MOLECULES 

Submitted to "Few-Body Systems" 

1991 

I 



I .. Introduction 

Recently /1/ we have used the one-state hyperradial-adiabatic 

,approximation and )lave provided the up:l)er l hni t for the energy 

values of the muonic molecular ions (xyµ)+ in the _ground state 

with total angular momentum J=1 and total parity p=1. As J 

.*(-1) P, in this case such states are called abnormal ,Parity bound 

+ + states. Two systems ,(pdµ) and (ptµ) ,were found to have a loo-

sely bound state of that ·symmetry. FuU variational calculations 

/2, 3/ immediately followed this ~ublication, providing more accu­

rate energy values. They verified the existence of the above­

mentioned _loosely bound state. The authors of /2/ had also calcu­

lated the J = 0,1 normal parity resonances of (ddµ)+ belo~ the n=2 

,_level of dµ and of ( dtµ) + below the n=2 level of tµ. We note that 

for these resonant . states _no preliminary adiabatic calculations 

where .made contrary to a usual practice in the muonic molecular 

physics. To classify the cal_culated resonant states. /2/, the aut­

hors used the Born-Oppenheimer (BO) adiabatic potential curves. 

,Their analysis was later supported and worked out in detail /4/. 

There are two points which look unsatisfactory in_this analysis. 

First, the number of normal parity bound states of (ddµ)+ and 

(dtµ)+ is reported /2/ to increase by o~e when the total angular 

momentum of the system is changed from J=O to J=1. One additional 

state was suggested to "be related to the even parity bound sta-

te". This statement is not clear. Second, 
, + 

in the case of (dtµ) ,. 

where the dissociation ,limit can be either a tµ or dµ muonic _atom 

with the principal quantum number n=2, they have no.regular way 

to choose a proper one for a given state. In ref. 

tµ(n=2) limit is used for all nine calculated states of 



in /2/, lying at 11.41 eV below the level tµ(n=2), or at 22.42 eV 

below the level dµ(n=2), is attributed to the expected series of 

resonances converging to the limit dµ(n=2). It was also stated 

that the ninth state cannot. be properly classified within the 

proposed scheme /4/. 

It is well-known and has lately been discussed in detail /5/, 

that the BO adiabatic method has two principal defects: 1) adiaba­

tic potential curves do not provide proper atomic energy spectra 

for heteronuclear systems when internuclear distance is going to 

infinity ,and 2) BO adiabatic states ( and the corresponding po­

tential curves) do not have exact symmetry properties of a total 

three-body system. As we have shown /5/, the first problem can be 

resolved by transforming out the so-called mass polarization ope­

'rator in the total Hamiltonian, and the second one is easily 

overcome by the partial wave (symmetry) analysis. The adiabatic 

idea should be introduced at the next st~p. As a result, we arri­

ve at the adiabatic hyperradial method in which adiabatic states 

are labelled by the exact quantum numbers and the corresponding 

eigenvalues (potential curves) produce exact two-body (atomic) 

threshold energies in the asymptotic region. 

If 'is clear that with this adiabatic analysis being at hand the 

classification problem of the results of the full variational cal­

culation /2/ should be much easier. One can expect that the 

classification scheme used in the BO method will not survive in 

this way and a new scheme should appear. In what follows we use 

the results of the variational calculation of resonant states of 

' (ddµ)+ and (dtµ)+ muonic molecules below the n=2 level of muonic 

atoms /2/ to demonstrate how it works. The organisation of the 

paper is chosen to be similar to that in ref./2/ in order to simp­

lify the comparison between two papers. 
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II.The outline of the ~ethod 

The hyperradius R for a system of two nuclei x and y and a 

negative muonµ is defined by 

MR
2

=MX
2 

+mx
2 

(1) 

where M and m are the reduced masses of, the systems ( x, y) and 

(x+y)+µ, respectively, · 

1/M=1/mx+1/my, 

1/m=1/mµ+1/<mx+my>, 

(2) 

(3) 

X is the pos,i tion vector of y relative to x and x is that of µ 

with respect to the center of mass of (x~y). 

The Hamiltonian of the system is given by 

1 1 a s a A 
H=-2M;saRR aR+h(o;R), (4) 

where his the adiabatic Hamiltonian operator which includes Ras 

a parameter, and I\ 
0 represents five dimensionless variables. 

Following /1,5,6/ we use the set ~=(cx,/3,0,l;,11), where (cx,/3,,) 

define the Euler rotation specifying tJ:l,e body-fixed frame with 

its unit vectors to coincide with the principal axes of the 

inertia tensor of a three-body problem. The hyperspheroidal 

coordinates I; and 7J are easily given by muon-nucleus distances 

rµx ,rµy and internuclear distance X 

l;=(rµx+ rµy)/ X, 11=(rµx- rµy)/ X. 

A physical solution of the Schroedinger equation 

( H -E) ~ (R,l;,7J) = 0 

(5) 

(6) 

with the well-defined total angular momentum J and total parity p 
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Fig. 1 
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Six lowest hyperradial adiabatic potential curves for 

+ . (dtµ) . The exact quantum numbers of total angula~ 

momentum J and total parity pare given in parentheses. 

The grand radial quantum number N is given only for the 

lowest curve. The fragmentation quantum number □ -1 

for the lowest curve indicating that it converges totµ 

(n=2) state of muonic atom. The next curve converges to 

dµ,( □=+1), atom with principal quantum number n=2. The 

energy scale is given by the dµ(n=2)-tµ(n=2) energy 

difference which ~ 12 eV. 

provide the physically meaningful approximation for the bound 

energy of the of (J=1, p=1)-spectrum of (dtµ)+ below the n=2 sta­

te of the tµ-atom. As we have shown /1/, the corresponding poten­

tial (12) supports just one bound state so that the quantum num­

bers of the adiabatic potential curve completely define this sta­

te. The next potential curve (N=1, n=2, □=1) converging to the dµ 
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(n =2)-atom is repulsive; thus the upper series should not 

appear. The classification of the abnormal parity bound states of 

(dtµ)+ belo~ n=2 levels of muonic atom is completed. The situati­

on is the same·for (pdµ)+ and (ptµ)+. It is similar for homonucle­

ar systems (xxµ)+ where the □-quantum number disappears but the 

nucleus exchange symmetry provides the usual BO gerade/ungerade 

exact quantum number. This question is discussed in subsequent 

sections. 

+ IV. ( J=O, p=1, q=ungerade)- resonant states of (ddµ) 

These states have three exact quantum numbers of the total 

angular momentum J, total parity p and muonic-coordinate parity 

quantum number q that corresponds to the ungerade label in this 

section. There is one adiabatic potential curve (N=O) which cor­

relates to the ls state of the dµ-atom and two of them correlate 

to n=2 states of dµ in the separated-atom limit. The N=l-5 

calculated hyperradial adiabatic potential curves are given in 

Fig.2. They are very similar to the corresponding ungerade 

u-terms of the usual BO classification scheme. The N=1 potential 

curve that corresponds to the 4fu BO-term and the diagonal matrix 

element were used in eq.(11) to calculate the spectrum of 

(ddµ)+. The results of our one-state hyperradial adiabatic 

approximation and the results of the full variational calculation 

/2/ are given in Table I. One-to-one correspondence of the 

calculated spectra is clear. The accu_racy of our results is 

rather good. The classification of states is trivial if the 

hyperradial vibrational quantum number v= 0,1, ... is added to the 

already mentioned grand radial quantum number N=1 and principal 
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Fig. 2 
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Five (N= 1-5) hyperradial adiabatic potential curves 

for ( ddµ) +. The exact quantum _numbers are given in 

parentheses. The depth of the first curve"' 30.5 eV. 

This potential curve supports an infinite series 

states. 

of 

quantum number n=2 of the threshold state of the dµ-atom. It can 

be checked that the calculated resonant energies converge at the 

threshold according to the geometric progression law /4/ 

E "'A ,v, 
V 

(13) 

where A can be deduced from the calculated energies and , is 

defined by the coefficient-c > 0 of the effective potential from 

the Schroedinger eq.(12) in a large R-limit, v_ -c / R
2 

/4/. 

V. ( J=O, p=1, q=gerade )- resonant states of (ddµ)+ 

These states again have three exact quantum numbers. Five, 

N=1-5, hyperradial adiabatic potential curves of this symmetry 
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TABLE 1 Resonant energies (in eV) of the (q=ungerade, J=O,p=1) 

+ ' -
resonant states of (ddµ) ,relative to the n=2 level of dµ. 

V ref:/2/ l h Is paper 

0 -21. 156 -20.0 

1 -9.415 -8.7 

2 -4:080 -3.7 

3 -1.603 -1. 6 

4 -- -0.65 

TABLE 2 Resonant energies ( in eV) of the (q= gerade,J=O, p=1) 

resonant states of ( ddµ) +, rel.a ti ve .to the n=2 level of dµ. 

·v r·e f'. / 2 / l h 1 s paper 

0 -218.113 -217.2 

1 -135.278 -134.2 

2 -72.962 -71.8 

3 -31.884 -31. 0 

4 -12.606 -12.2 

5 -5.304 -5.1 

6 -2.210 -2.2 

7 -- -0.85 

are shown in Fig.3. In this case the corresponding gerade a~terms 

of the BO classification scheme are also very similar to those 

. from Fig. 3. The powerful potential N=2 , that corresponds to the 

BO 3da potential curve, was used to calculate the spectrum of 

(ddµ)+ below the n=2 state of the dµ-atom. The presentation of the 

results of the calculation is the same as in the previous secti-
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on, they are listed in Table 2. The agreement of the results of 

two papers is clear. This proves reliability of the presented 

adiabatic approximation. It should be also stated that the propo­

sed classification scheme is consistent with the BO scheme used 

in /2,4/ as far as J=0 states discussed above are concerned. 
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Fig. 3 The same as in Fig 2 but for q gerade. 

VI. ( J=0, p=1)-resonant states of (dtµ)+ 

Only two exact quantum numbers, those of total angular momentum 

J and total parity p, ar_e available for this system. The already 

discussed fragmentation quantum number □ should be added to make 

a difference between adiabatic potential curves of lower series 

(□ = -1),converging to the n=2 level oftµ, and those from the 

upper series ( □ = +1) converging to the n=2 level of dµ. The BO 

potential curves are not sensitive to this physical .effect 

thus heteronuclear systems are better candidates for demonstrat­

ing the reasons for introducing a new classification scheme. 
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All hyperradial adiabatic potential curves (N=2-5) converging 

to the n=2 level of the tµ (N=2,3) or dµ-atom (N=4,5) are given in 

Fig.4. The lowest one (N=2) is similar to the N=1 curve from the 
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Fig. 4 Two lower curves converge to the tµ(n=2) state. The 

other two converge to the dµ(n=2) one. The depth of 

the N=3 curve "" 23 eV. The N=4 curve has a shallow 

minimum at R"" 53 and a long-range attractive tail 

supporting an infinite series of states. Triple avoid­

ed-crossing at R"" 12.5 should be separately noted. 

gerade series for (ddµ)+, see Fig.3. Both have a powerful 

long-range attractive tail (_1/R2
) in the large R limit. These­

cond (N=3, □=-1)-curve looks like the N=~ ungerade potential curve 

from Fig. 2 for all but large R, where it exhibits a long-range 

repulsion _1/R 2 ,while the corresponding (ddµ)+-ungerade curve has 

a long-range attractive tail of the same order in R. This means 

that in the ( dtµ) + case the N=2 curve supports infinitely many 

states, while the N=3 one can support only a limited number of 
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resonances. We have calculated eight resonances corresponding to 

the N=2 potential curve and have found that the N=3 curve can sup­

port only one state. This is, of course, a very different situati­

on as compared with the infinite series of (J=O, p=-1, q=ungera­

de)-symmetry for (ddµ)+. The breakdown of the symmetry property of 

the system results in the qualitative change of its spectrum. 

The resonant energies of the ( J=O, . p=+1 )-symmetry of ( dtµ) + 

obtained in our one-_level hyperradial adiabatic calculation are 

listed in Table 3 and compared w~th the results of the _full 

variational calculation /2/. All the energy values but that for 

the fifth and sixth states, are close to each other. Contrary to 

the classification suggested in /2,4/, we conclude that the wave 

function of the•sixth state has no nodes-in the R variable. This 

conclusion is exact only in the framework of the one-state 

hyperradial adiabatic approach. As it follows from Fig. 3, the 

adiabatic potential curves with N=2-4 are strongly interacting at 

R=12,5; thus our approximation does not work in that region, on 

the other hand, the wave function sbould be small in that 

classically forbidden region and we can expect that the exact 

wave function of the sixth state has no nodes in the R variable 

in the physically important region. This is a valueable infor­

mation which easily follows from our analysis and proves the im­

portance of the presented classification scheme. 

The N=5 potential curve. of the same symmetry has a very weak 

minimum at R ~ 53 which converts into a 1/Ra attractive tail sup­

porting one more infinite series of resonances. This is a □ = +1 

(upper) series in our classification. It is interesting to note 

that these states cannot be detected in the· course of any direct 

variational calculation as they are loca_ted above the □= -1 infi-
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TABLE 3 Resonant energies (in eV) of the (J=O,p=1) resonant 

states of (dtµ)+,relative to the n=2 level oftµ, Lower series. 

V ref./2/ V N this paper 

0 -217.892 0 3 -217.0 

1 -139.724 1. 3 -138.8 

2 -79.095 2 3 -78.6 

3 -36.567 3 3 -35.9 

4 -17.443 4 3 -14.9 

5 -11. 414 0 4 -12.9 

6 -7.225 5 3 -6.7 

7 -3.565 6 3 -3.1 

8 -1.600 7 3 -1. 3 

TABLE 4 Resonant energies (in eV) of the (J=O,p=1) resonant 

states of (dtµ)+,relative to the n=2 level of tµ. Upper 

The estimates of the (J=1,p=-1) states are also given. 

V J = 0 J = 1 

0 -4.02 -3.85 

1 -1. 78 -1.68 

2 -0.82 -0.76 

3 -0.38 -0.35 

series. 

nite series of the resonant states. The energies of the first four 

states from this series are given in Table 4. -The one-state adia­

batic estimates of the (J=1, p=-1)-symmetry states from this seri­

es are also given there. 
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VII. (J=1, p=-1, q=ungerade)-states of (ddµ)+ and (J=1, p=-1)­

states of (dtµ)+ 

To estimate resonant energies of the.states with J=1, we have 

used the same Schroedinger Eq. (11) with the J(J+1)/R2 term added 

to the effective potential (12). The same classification scheme 

including exact quantum numbers {J,p,q(for homonuclear systems)}, 

the additional quantum numbers {N, n, m, v, □ (for heteronuclear 

+ systems}} are used. Our results for (ddµ) an~ the results of the 

full variational calculation /2/ are listed in Table 5. The ground 

state, from ref. /2/ does not appear in our calculation, all other 

energy values from two papers are in good agreement·with each oth­

er. One possibility is that this additional state has a purely nu­

merical origin qS the rotational part of the Hamiltonian is posi­

tive definite and being added to the J~O part of the Hamiltonian 

just pushes the spectrum up. The statement from /2/ that' this sta­

te is "related to the even parity bound state" is not helpful as 

formally it_ means that. parity violation takes place. The problem 

is naturally solved if one more attractive adiabatic potential cu­

rve of the (J=1,p=-1,q=ungerade)-symmetry with additional quantum 

numbers n=2,m=1 exists /7/. As it follows from the analysis of/2/ 

this curve should be close to the ground abnormal-parity adiabatic 

potential curve discussed in Section III. 

In this case the total wave function (7) has two components with 

m=O, 1. The two-component hyperradial adiabatic Hami 1 tonian for 

this case was recently discussed in detail /8/. Then, with classi­

cal rotator model being introduced /5, 8/, i,t can be directly shown 

that the decoupled equation for m=1 component of the related ei­

genfunction just coinsides with the Shroedinger equation that pro­

duces (J=1,p=1)-symmetry potential curve from /1/ plus small at -

14 
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TABLE 5 Resonant energies (in eV) of the (q=ungerade ,J=l,p=-1) 

resonant states of (ddµ)+,relative to the n=2 level of dµ. 

V rec. /2/ I V thls paper 

0 -22.648 

1 -20.122 0 -20.0 

2 -8.805 1 -8.7 

3 -3.749 2 -3.7 

4 -1.395 3, -1. 6 

5- -- 4 -0.65 

TABLE 6 Resonant energies (in eV) of the (J=l,p=-1) resonant 

states of -+ (dtµ) ,relative to the n=2 level of tµ. Lower series. 

V ref"~/2/ V N t.hls paper 

0 -212.547 0 3 -211. 6 

1 -135.375 1 3 -134.4 

2 -75.674 2 3 -74.7 

3 -34.233 3 3 -33.1 

4 -19.161 

5 -16.351 4 3 -13.7 

6 -10.505 0 4 -11. 8 

7 -6.485 5 3 -6.1 

8 -3.185 6 3 -2,8 

9 -1.346 7 3 -1. 2. 
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tractive term which pushes the energy down. This analysis is sup­

ported ·by the results of the full variational calculation /2/. 

The resonant energies of (dtµ)+ with (J=1,p=-1)-symmetry are given 

in Table 6. Again the additional state declared in /2/ to be "re­

lated to the even-parity bound state" does not appear in our cal­

culation. This state is supported by the potential curve that was 

not calculated in this paper, it can be easily classified as 

it was discussed above in the (ddµ) + _case. The most interesting 

state is that supported by the N=4 pot.ential curve. It has practi­

cally no zeros in Rand is well localized in the space, as discus­

sed in section VI. 

VIII. Conclusion 

In this paper, we have performed th~ hyperradial one-state­

adiabatic calculation of the resonant states of (ddµ)+ and (dtµ)+ 

muonic molecules below the n=2 level of muonic atoms. The hyper­

radial adiabatic potential curves that are by-products of our 

work are used to produce a new classification scheme of the mole­

cular states in a three-body system. We conclude that for hetero­

nuclear systems like (dtµ)+ this classification is very useful. 

It allows one to separate definitely the upper □=+1 and the lo­

wer □=-1 series of the_ spectra. Thus, for example, we demonstrated 

that among the nine resonances with J=O reporte4 in /2/ the sixth 

(lying at 11.41 eV below the level tµ(n=2)) shou_ld really be re-,. 

ferred to this level, contrary to what was· suggested in /4/ using 

arguments based on the BO classification procedure. We also pre­

dicted important physical features of this state. We were able 

for the first time to calculate the upper series of resonances in 

(dtµ)+ and showed that this series cannot be detected by a direct 

H, 
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variational procedure as it lies above the infinite lower series 

of the same symmetry. The other important characteristic of the 

proposed classification scheme is that of labelling of hyperradial 

adiabatic potential curv·es by exact quantum numbers of· a three­

body system. By using this scheme we easily demonstrate that 2prr 

BO adiabatic potential curve which does not account for any real 

symmetry of heteronuclear systems, like (dtµ)+, is actually split­

ted into two hyperradial adiabatic potential curves with exact 

symmetry properties. This fact can be of.special interest for spe­

ctroscopy of the so-called 2prr-electronic states /9/. We agree 

with the authors of /2/ that a detailed study of these resonant 

states should be very interesting, see also a.new paper /10/. An 

informative discussion of these states can be found in /4,11/. 
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