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During the last decade, the energy levels of the bound states of mesomolecular ions . . . 

of hydrogen isotopes. were subject of intensive study of the fen om en on of muon catalyzed 

fu~ion [1 :-6]. Characteristics of the bound states wi_th the spatial parity ~- = ( ;_ 1 )1 are 

computed there, and especjally ones of weakly b~u{1d states of mesic molecular ions dd1~ 
' ' 

. and dtµ defining ·mainly the kinetics of physical processes. Last year papers studying 

me.somolecular states with ti1e so~called anomalous parity>.= - (-1/ were appeared [7--: 

9]. These states differ ~ssentially from the 4sual onesin their physical pr~perties .. They­

are assumed to play a role as hi11~_ering factors in the process of 1nuonic catalysis. Havin~ 

capture,d a ~uon theywithdrawjt from a normal catalytic cycle. 

-· -

Ho,~ever, with the g~owth of the total angul~r momentum the a~ountof energy lev~l 
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calculations provided with different methods decreases significantly and already for the 14 '. ~ 

F-st'ate of mesom __ ol~c-ular io--ri ttµ there is not any variational calc_ ull!,tion·and the only one r:- -~• 1 
. . 1, 'I 

was carried out with the _use of adiabatic approacli [1]. In this paper we present _the results '; : , ij 
. of calculation for the energy levels of 3(.states of mesomolecular ions of hydrogen isotopes. (! ;. \ 

\ 'i'1' 
It turns out that these states, 22 states of normal parity and 10 states of anomalous parity, '\:. 

1:jll 
represent the whole list of bound states of mesic molecular ions. ': ,1 

The variational approach to be expounded below was used in our previous pap'ers [2,7]. L;'iJj 
We extended the method to states of an arbitrary spatial parity and a'total angular mo- 1

,: 

mentum J 2". 2_. The form proposed for the trial functions allo_w us to take. info account 
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peculiarities of a behaviour of the wave function components connected with the use of rota­

tional and spatial symmetries and to compute effectively matrix elements. As computation 

shows, the instability doesn't increase dramatically with the number of trial functions and 

it allows to carry out calculations with more than 2600 basis functions. 

1. Theory· 

As it is well known, a hydrogen mesic molecular ion is a system of three particles: a 

negatively charged muonµ-, and" two nuclei a and b of hydrogen isotopes ( a, b = p, d or t). 

The nonrelativistic Hamiltonian of the system in the Jacobi coordinates ( e = fi = me = l) 

is 

1 1 1 1 1 
H = ---~R - -~, - - - - + -

2µ12 2µ3 Ta Tb R' 

µ121 = m;-1 + m;-1 = M;;I +Mb-I' (1) 

-1 -1 ( )-1 -1 (M M )-1 µ3 = m 3 + m1 + m2 = m,, + a + b • 

Here R is the position vector of nucleus a relative to nucleus b with the masses Ma ~ Mb, 

r is the position vector of the muon with the mass m,, relative to the center -of mass of 

the nuclei. We will connect a moving frame with this system with respect to which the 

Euler angles will be determined. To do that we will direct the z' axis along the nuclei of 

the molecule, and the x' axis will be placed in the plane of three particles in the direction 

of the muon. 

Since equation (1) is invariant under three dimensional rotations, we may separate 

the states with a certain quantum number of the total angular momentum J and its 

projection M onto the z axis. The wave function may be expressed in terms of the Wigner 

fl-functions, D(a.,/3,y), dependent on the Euler angles of the moving frame: 

J 
J ~ J. J 

'PM(R,r) = ~ DMm(a.,/3,-y)Fm(R,T,0), 
m=-J 

I 
U1,::.. •. ;,:· .. _. ,, - . ·-,-",i.'l')'I' \ 

e~~!l~i _i:K~ .➔ :-n;;nauui 
~1S1t~:OTEHA ---- ----

(2) 



where 0 is the angle between vectors R and r. ,The Hamiltonian also commutes with the 

operator of spatial parity P>,, : {R, r)--> (-R, -r), having eigenvalues>.= 1 and>.= -1. 

This operator acts on the Wigner D-functions·~s follows: 

P>,,D'1,m (a,/3,y)'= D:ifm (1r + a:, 7r - /3,rr - -y) ~ { _:_1/-m D-f.t,-m (o:,/3,-y). 

To determine the wave function of a given spatial parity >., we introduc~ the symmetrized 

Wigner D-functions 

I 

'Dfjm(a,/3,-y) = [l61r;(i :lhmo)r [D:i!m(a:,/3,-y)+ >.(-l)J-m D:if,-m(a,/3,-y)]. 

which are eigenfunctions of the operators J2, Jz and P>,,: 

J
2
Vflm = J(J + l)Vfjm; J.v-f.t>-,,. = -MVfjm; 

]>,,Vflm = >.vii>-,,., >. = 1,-1; 

and are normalized so that 

J J . J [ J), • =1'>,,' ] da sm/Jd/3 d-y VMm (o:,/3,-y) V'j.f'm' (o:,/3,y) = OJJ' hMM' hmm'· 

The wave function in the representation of the total angular momentum and spatial 

parity has the form 

J 

wf] (R,r) = L vf]m* (o:,/3,-y) F;;/ (R,r,0); 
m=µ(>.) 

µ(>.) = { 0, for>.= (-ll;J 
.. . 1, for >. = - ( -1) ; 

(3) 

This expression is a starting point for futher construction of a variational trial function. 
' J J . 

The states of parity ). = ( -1) and ). = - ( -1) are called, respectively, the states with 

normal and anomalous parity. 

Another form of the wave function expansion follows from the Schwartz representa­

tion [10) based on bipolar harmonics. We will present it because it explicitly describes the 

behaviour of the wave function of a state in the vicinity of coalescence points of particles 

with a given spatial parity and a· total angular momentum: 

wfj (R,r) = I: 
1t+l2==J 

111-l21~1 

yl1l1 (fl r) RI' rll GJ), (R r 0) 
JM , l1l2 , , ' 

(4a) 

for>.= (-l)J; 
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where 

and 

wf] (R,r) = ""' yl1l2 (ft r) RI' rl' GJ>,, (R; 0) 
L., JM ' /il2 ' ' ' 

lt +l2=l+l 
11,-l2ISJ 

for >. = - < - 1 l ; 

Yj}!j ( R, I') = L Yi,m, ( R,) Yi2m2 (r) (l1m1l2m2IJ M) 
m1m2 

G{,72 (R,r,0) = G{1, (O,r,0) [1 + (ll ? + R- u + 0 (R2
)]. 1 µ12 1 + 1 

. . 

(4b) 

The last expression is the so-called Kato coallescence condition [11,12]. Note that the 

number of components in the expansion (4a) is equal to J, whereas in, (4b) to J - 1, 

which coincides with the number of components in the expansion of the state with the 

corresponding parity in (3). 

In the expansion ( 4b) l1 and l2 differ from zero, therefore the asymptotic scattering 

states of parity >. = - ( -1 )J, for R --> oo, consist of an isolated nucleus and an atom 

with nonzero angular momentum. Thus, the energy of dissociation for the molecule with 

anomalous parity is equal to the energy of the isolated atom with principal quantum 

number n = 2: Ea = -Ryma/4, where ma is the reduced mass of the atom with the 

heavier nucleus. 

Applications of the Wigner's D-functions to three-body calculation were developed 

by many authors [13]. They differ in positioning of the moving frame of references and, 

thus, they have different partition of the wave function to the components depending on 

intrinsic coordinates of the problem. Our choice is convenient to the adiabatic calculations 

involving two heavy particles and one light particle of an opposite charge. 

2. Th~ wave function 

To obtain an accurate variational solution for the Schrodinger equation with the Hamil­

tonian (1) it is necessary to take into account the peculiarities of the behaviour of the wave 

function. 

Symmetry allows to reduce the equation onto a subspace of states with certain quantum 

numbers of the total angular momentum and spatial parity. The wave function of the 

state as ·well. as separate components of the wave function representation obeys certain 
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requirements imposed on the behaviour at the vicinity of points of collisions or in the case 

of axial singularity when a position of a moving frame isn't determined. In particular, 

a three-particle system is properly described by the wave function ( 4) with well-behaved 

components Gf,7
2 

(R,T,0). Unfortunatly, this expansion leads to significant difficulties in 

matrix element calculations for high numbers of total angular momentum. We would like 

to investigate the behaviour of the components of the expansion (3) to provide necessary 

conditions for constructing of a suitable trial function for this approach._ 

To determine the asymptotics of the components of (3) when R --, 0 we make use of 

the Chang-Fano relation [14] between the bipolar harmonics and Wigner D-functions: 

Yjlti (R, f) = ~ L T,~r;). vtf m * ( a, /3,-y) Yi2m (0, 0), (5) 
m=µ(>.) 

where the coefficients Tli;>. are expressed through the Clebsch-Gordan coefficients: 

1 

TJm>. = [(l + A(-1)''+'2) 21.!...±.2.__)] z (/ oz mlJm). 
l,lz 1 + Oom · 2J + 1 1 2 

The relation (5) allows us to express the components of the wave function expansion (3) 

in terms of the components of expansion ( 4): 

J 

F;;/ (R,T,0) = ~ L Tlz':). Yi2m (0,0) R11 
T

12 cf,\ (R,T,0), 
l-,=m 

- { 11 = J -12, 
where 11 = J + 1 - 12, 

for A= (--1)1
, 

forA=-(-1)1
. 

(6) 

From this representation it is seen that the functions F;;/ have the asymptotics O (1) when 

R-+ 0 for the states of normal parity and O (R) for the states of anomalous parity. It is 

to be noted that, when R = 0, the components F;;/ with different m are dependent on 

each other and may be expressed through one component, for example Ff>.. 

The behaviour of the co·mponents in the ;,eighborhood of the nuclei coallescence point 

restricts to the choose of intrinsic variables describing the trial func:tion. The functions 

Gf,7
2 

(R, T, 0) of the expansion ( 4) do not depend on the angle O at R = 0 [12]. Hence, the 

components of (3) have the angul~r dependence, when R --> O, and this dependence is to 

be taken into account. It is hardly reasonable to use the distances between particles: rab, 
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Taµ and Tbµ (the so-called Hylleraas variables), as intrinsic coordinates with expansion (3) 

because, for Tab = 0, Taµ and Tbµ are equal to each other, ·and it is impossible to deter­

mine the angle variable O in terms of them. On the contrary, the spheroidal coordinates, 

( = (Taµ +Tbµ}/ R and T/ = (Taµ ~Tbµ)/ R, at R. = 0 give, respectively, the radial and 

angular dependence of the function F;;/. It is quite surprising result because the Hylleraas 

coordinates are very useful with the Schwartz expansion (4) [3-5]. 

Now consider the behaviour of the components of (3) when three particles lie on the 

same li~e (axial singularity). To do this let us express the wave _function in terms of the 

coordinate~: a,/3, R, x., y,, z,, where the first three coordinates are spherical coordinates 

of the vector R, and the last tlm~e are coordinates of the ver;tor r with respect to the frame 

of the spherical coordinates of the vector R. The singularity occurs :,vhen the coordinates 

x, and y. become equal to zero. In this case the posit.ion bf the moving_.fram~- is indefinite. 

.It is known that. the wave function is infinitely differentiable beyond the coallescence 

points [15]. Therefore it may be expanded in a Taylor series around a regular point placed 

on the axis: 

,T,J>.(R ·)- '°' i.iJ··( a R ·).1 J+i..._J.\( a R · ·) ~Af ,t - ~ x.y • .,,1 a,fJ, , ... TP '¥At a,/J, ,x.,y.,-. , 
i+iS.J (i) 

( 
2 2)1/2 where p = x, + Y, . 

Multiplying the function wif by Di;',,, ( o-, /3, -y) and integrating over the angular variables, 

we obtain the component of expansion (3), F;;,-'. Ont.he other hand, integrating first over 

the angular variable -y and considering that 

1
2,r 

i j J). , -
x,y. 'DMm (o-,/3,-y) d-y ~c 0, for· i + j < m. 

we find that F;;,:' (R, p,-y) = pm H/,,:' (R,p,-y) and the functi~ns H;,,:' are bo~mded in th<' 

neighborhood of the axis. 

We now can construct the expansion for the wavt:' funct.ioi1 that defines th<' Rayleigh­

Ritz variational J>rnct:'clure for t.he stationary Schrocling<'r equation. Using th<' spheroidal 

" 
i 



coordinates we introduce the expansion for the components F;;,/' of (3): 

F!/'(R,e,11) = Rm[(e2- 1) (1 -112))m/2 x 

.x L Cn Ri,.ej,.IJk,. exp (-(an+ /3n0 R), 
(8) 

and {~n~~n, '.f>.:(-l)J,J. 
tn>Jn, 1f.\--(-l), 

that takes into account the asymptotics of the axial singularity since 

R ! 
p = 2 [ ( e - 1) ( 1 - 112

) l 2 
• 

The inequality establishing admissible values for powers of the variables R ~nd e provides 

the behaviour: F;;/ --> canst for normal parity and F;;/' ~ R f~r anomalous parity, when 

R --> 0. Note that the condition connecting the com'ponents at the coalle~cence point of 

nuclei compliJate~'the computation of the matrix elements and it will be omitted. 

For id~ntical i11iclei tlie Hamiltoriian ·co~mtites with the perm~t~tion ~~erator of parti­

cles Pab= (R, r) -> {-R, r ), and the wave function can be decomposed on parts symmetric 

and antisymmetric under permutation: 

iJ!fj' (R, r) = (1 + Pab) iJ!fj (R, r), 
(9) 

q,fja (R, r) = (1 - Pab) iJJ;{f (R, r), 

The operator Pab acts on the Wigner functions: PabD'f.rm = (-1)1 Df.t,-m' which deter-

mines a symmetric and antisymmetric parts of the components of expansion (3): 

F!/• (R, e, 11) = [F~>. (R, l, 11) + .\ (-l)m F~>. (R, e, -11)] , 

F~>.a(R,e,11) = [F,;?(R,e,11)- .\(-lr F~>.(R,e,-11)]. 
(10) 

The components F;;/ are here either even or odd with respect to the variable 17. Therefore 

it is necessary to retain either ,even or odd powers of this variable under the sum sign in 

(8). 

To describe the behaviour of the wave function, when R --> 0, we make use of the 

representation (4). Symmetric and antisymmetric terms of the components of the wave 

function expansion ( 4) are of the form 

a{,1; (R, r,0) =· [af.}, (R, r,0) + (-1)11 G{,1, (R, r,1r - 0)] , 

G{.1; (R, r, 0) =. [af.1
2 

(R,r,0) - (-1)11 a{,}, (R, r, 1r - 0)], 

0:S8<1r. 

8 

(11) 

) 

. l 
'( 

i 
>J 
! 

I 
·N 

!i 
1 'j. 
~ 

When Gf.}: (R, r, 11) (t = .s or a) is odd with respect to the variable 17 = cos 0 then it 

vanishes at the coallescence point of the .nuclei (we recall that component G{.}. does not 

depend on angular variable_ for R = _0). Thus the necessary corrections to the behaviour 

of the function F!,.>.t (R,e,11) can be done by using the formula (6) for symmetric and 

an6symmetric terms respectively. 

The representation (8) .for the symriletric wave function \'(as for the first time used 

in [16] for calculating of the energy level of the mesic molecular ion ppµ in a state with 

total angular momentum J = 1 and normal spatial parity. 

3. Calculation of matrix elements 

Substitution of the basis sets of (3), (8) into the functional 

(iJ!,HiJ!)/(iJ!, iJ!) 

reduces the initial equation (1) to the generalized algebraic eigenvalue problem 

Ax= .\Bx, (12) 

where the matrix A is composed of the .Hamiltonian matrix elements (iJ! ii HiJ! j ), and B is 

the overlap matrix of basis functions (iJ!;, iJ!j), both are symmetric. 

To compute the matrix elements in (12), we carry out at first integration over angular 

variables, it allows us to obtain the system of differential equations in a three-dimensional 

domain of intrinsic coordinates describing internal position of particles. As a next step, we 

rewrite that system in spheroidal coordi,nates of the two:--center problem: R, (, 17. Then, 

.inserting the basis functions of the expansion (8), we reduce the problem to the calculation 

of certain integrals that can be found analitically. 

Before computing the integrals over angles, we rewrite the kinetic energy ,operator in 

a convenient form: 

1 [ 1 B 2 B (J -1)
2

] 1 
T = 2µ12 - R2 BRR BR + ~ - 2µ3 ~ ••. (13) 

Here J is the operator of total angular momentum, I is the operator of the muon orbital 

momentum with respect to the center of mass of nuclei, and the last term is the operator 

9 



of the muon kinetic energy, where the ~ector r; 'is expressed in terms of the cylindrical 

coordinates, ;,p,z., with respect to the frame'of reference of spherical coordinates of the 

vector R. We recall that the position of the reference frame of spherical coordinates is 

defined by the Euler angles a,/3,0 (a and /3 are spherical angles of the vector R). 

The first term in (13) acts only on the functions dependent on the intrinsic variables 

of the system, whereas the operator of the total angular momentum is expressed in terms 

of the Euler angles and its action on the Wigner functions is defined by 

J,.,vfjm = -m v'k"..,, 

J±Vit"m = - (±Jz, -iJy,) Vfjm = ±JJ(J + 1)-m(m ± l)'Dfjm±l• 
' • ' •: '•a ;• ' 

where Jz,, J71 and Jz, are components of the vector J with respect to the moving reference 

frame. The position of the moving frame is determined by rotation ~f the reference frame 

of the spherical coordinates of the vector Ron.an.angle;. The operator I in the moving 

frame is given by expressions: 

,·. a 
z., = -i 8;' 

l± = - (±lz, - il ,) = ±-- - z- - p- . , . za [a a] 
. Y p8; 8p 8z 

Since the components of J and I commute ([J;, l;) = O, i = x', y1
, z'), we may transform the 

second term of (13) as follows: , 

(J -1)2 J2 + 12 -2(J,l) 
2µ12R2 = 2µ12R2 

J 2 +·12 - 2J.,l., J~l'_ + J'_l'+ -----=---+~--~ 
2µ12R 2 2µ12R2 

· The kin'etic energy operator of the muon in the cylindrical coordinates may be written 

1 { 1 a2 
1 a a a2 

} 

- 2µ3 p2 8;2 + p 8pp 8p + 8z2 • 

Next we insert the expansion (3) into the kinetic energy operator (13) and integrate 

over the angular variables. Upon simple calculations, using the ~xpressions obtain~d for 

the operator components and the orthogonality relations for the Wigner functions, we get 

the system of equations for the components of the expansion (3): 

J 

L (Hmm' - ~mm•e:)F;} = 0, 
m'=µ(~) (14) 

m=µ(-\), ... ,J; 

IO 

1 

'.l;J 

"" 
,;,) 
\ 

1 { 1 a 2!!_ _ __!__ [c,2 + =-c] + Hmm=- -R28RR 8R R2 p 
µ12 2 

J(J+l)-m2+z2m2/p2} + Pm +V(R,p,.:); 
+ R2 2µ3 . (14') 

l 'f = ,:.:m±l [=-(m ± 1) ± £,]. m,m±l 2µR2 p 

Here 
8 8 2 m 2 1 8 8 82 

£=.:--p-, p =----p---
8p {)z m p2 p 8p 8p {)z 2 ' 

JJ,. {[ J] }1/2 -Ym,m+1= l+bmo-\(-1) [J(J+l}-m(m+l)] , 

-Y;;.'~l,m = -y;;,\n+l• 

and V (R, p, z) is the potential 'energy of the C'ouloml, interaction. So, the prol,lem of 

separation of angular varial,les is completed. 

Now the Hamiltonian may be finally writ.ten in -the spheroidal coordinates of the two­

center problem: 

1 { 1 {) 28 
Hmm = 2µ12 - R2 BRR 8R + 

· 2 [ ( a
2 

a ) ( a2 a )] 
+R2(e_,,2) (e-1)c R{)RfJE,+8c +(1-,,2)11 R{)R{)T/+8,1 + 

2,- [ ( 2 
) ( R a

2 
a ) ( , 2 ) ( a2 a ) ] 

+R2 (e2-TJ2 ) < -l T/ anac+ac + l--,, < RaRa,,+a,, + 
r 2 

2 J (J + 1) - 2m2 
} I 2 + n2pm + R2 + 2p3 pm+ V (R,c, ,,) ; 

(15a) 

r2 
where R2 = (e + T/

2 
- 1 + 211:c,, + ,c2); 

_ ;;;,~m±l [<'I p ( [) iJ ) ] Hm,m±i---2 -(m±l)±-- 1/---l-- + 
2µ12R ·p c2 - 112 iJc a,, 

11:,;;.:m±l [m ± 1 p ( i) i) )] 
+ 2Jt12R2 p- ± ~2 - ,/· < i~ - '1 ;1;1 ; 

( 15b) 

Hmm'= O; when Im - m'I 2: 2; ( !cw) 

2 4 [m2 (<2 -- ,/) 8 2 ) fJ fJ 2) iJ ] 
pm= R2 (e2-TJ2 ) P2 - De (c - I DE,- Dry (1- 11 iJ~ ; 

( ) _ 1 4c . _ R C 2 2)-V R,c,T/ - n + R2 (e _ ,,2)' p _ 2 y(c - 1)(1 - ,, . 

11 



and the parameter K. = (M, - M,.) / (M,. + M,) determines the shift of the origin of the 

vector r from the center of mass of nuclei to tJieir geometric center. 

To determine the matrix elements {wi,HW;) it is necessary to insert the basis functions 

{8) into {15a-c}. Considering that the element of volume in the spheroidal coordinates is 

equal to R 5 (e2 - 172) /8, we find that fractional powers and rational parts of expression 

are cancelled out and only a polynomial of variables R,I; and 11 multiplied by exponential 

remains. In this way the problem reduces to the computation of integrals of the form: 

r,m(a,P)= 1"° dR 1"° Jt1;mexp(-(a+P()R]dl;, 

The first integral after integrating by parts is reduced to 

and rn = j 1 

11n d11. 
-I 

r a = m!(l-m-1)! ~{l-m+i-l)!(_{J_)i 
. Im ( ,/1) pm+! (a+ p)l-m ~ (l - m - l}!i! a+ /1 · 

The J>asis functions (8) are either even_ or odd with respect to the permutation of heavy . 

particles. To simplify the computation of matrix elements we separate the part linearly 

dependent on the asymmetry coefficient K. from the Hamiltonian (15). Then the remaining 

part connects basis functions of the same permutational parity, whereas the separated part 

connects functions of the different parity. 

One can see from the formulas (15a-c) of the Hamiltonian, it is well fitt~d to the 

calculation of the adiabatic systems. Indeed, the reduced mass of the heavy particles µ12 

in this case is much greater than the reduced mass of the light particle µ 3 , and a ratio 

µ = p.3/ µ.12 can be used as the adiabatic parameter of the system. Off-diagonal terms 

of equations (14)- (15) and the part connecting symmetric and asymmetric components 

of the wave function are proportional to the small parameter µ., and, thus, the quantum 

numbers m and the eigenvalues of the permutation operator are approximate quantum 

numbers of the adiabatic systems. 
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4. Results 

Here we shall analyse the results of computation of the binding energy levels of me­

somolecular ions of hydrogen isotopes. Partially they were published earlier in [2,7,19] 

and they were obtained with the use of some slight modifications of the.method we have 

expounded in this paper. Without going into details we explain only the strategy of choice 

of the sets of the basis functions: 

The basis functions (8) depend on the nonlinear parameters a and /3. Search for optimal 

nonlinear parameters for every basis function is a cumbersome task. Therefore, in practice, 

a set of nonlinear parameters a;,,1 ,f3mt is used which depends on a component number m 
and on a permutation parity of two heavy particles t of a given basis function. The wave 

function is a complicate function of the variable R, and it is convenient to introduce· two 

groups of nonlinear parameters that provide good convergence of the "xpansion at the 

vicinity of zero and at long distances. In particular, this trick was successfully applied to 

study weakly bound states when a molecule is extended in the coordinate space. Here we 

use two sets of nonlinear parameters in all calculations. 

The eigenvalue for the certain state of the mesomolecular ion is computed as follows. 

For fixed values of nonlinear parameters the.problem (12) is solved for a given state, either 

ground or excited. Then the eigenvalue is minimized by varying nonlinear parameters. 

Since the estimation for the energy derived from (12) provides the upper bound estimate, 

the minimization retains this property and only increases the accuracy of the solution. 

The. nonlinear parameters we have used here are cited in [2,7,19]. 

The algebraic problem for eigenvalues (12) was solved by inverse iteration method 

(it can be found, e.g. in Ref. 17) for the following reasons. First, a particular bound 

state is calculated for some values of nonlinear parameters optimal for the g.iven state. 

Therefore, it is sufficient to look for only one eigenvalue and the remaining part of the 

spectrum is not necessary. Second, this method provides less computational time. We 

make use of the symmetric structure of the problem and the number of operations is about 

n 3 /6 multiplications which is significantly lower comparing to other direct m~thods of the 

eigenvalue computation. This is especially important for calculations with a large number 
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of basis functions when the computational time of the problem (12) rapidly grows with 

the number of functions and very soon becomes dominant. 

As the number of basis functions increases, the algebraic eigenvalue problem (12) 

becomes more and niore singular. The inverse iteration method is the most stable one for 

the solution of that problem. However, it also cannot ensure the stability of eigenvalues for 

large matrices. The stability is achieved when we s_olve the following regularized eigenvalue 

problem [18): 

A.x = >.B.x, where A. = A + {jD, B, = B; 

where {j is a small parameter, and a diagonal matrix Dis composed of elements /a;; - >.b;;/. 

That removes from the spectrum infinite eigenvalues defining the singularity of the problem 

and causing instability of the true eigenvalues. To be successful this procedure requires 

the following condition: 

t: (//A//2 + IIBll2)1/2 I/xii 1/2 « 1; 

· [(x,Ax)2+(x,Bx)2
] 

where :i: is an examined eigenvector, and c is a round-off error [18]. When an exponential 

expansion [3-5] is used, the latter condition is not satisfied, therefore the only way is 

to increase the precision of c_alculations to quadruple precision. In our calculations this 

condition was checked and it was fulfilled even when 2600 basis functions were used. The 

parameter {j was taken in the interval 10-14 _ 10-15 and its variation allowed approximately 

estimate the accuracy of a calculated eigenvalue. 

The energy levels of mesomolecular ions are reported in Table 1 (normal parity) and 

Table 2 (anomalous parity). The values for S- and P-states presented in Table 1 have been 

computed in Ref. 2. The only exception is the calculation of the weakly bound state of dtµ 

with J = l for which a more accurate series of computations was performed and listed in 

Table 3 below, here n; is the number of basis functions employed. The values of D- and F­

states obtained with the use of this variational method are published for the first time. The 

corresponding series of computations with a growing number of basis functions are reported 

in Table 4 (the number of basis functions was pointed out in parantheses). The energy 

levels of mesomolecular ions with anomalous parity have been studied in [7,19], here we 

present only the res'ults (Table 2). In the calculations we made use of the following values 
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J V 

0 0 

0 1 

1 0 

' 1 1 

2 0 

3 0 

Table I: Binding energies -t: J., (in e V) of mesomolecular ions of hydrogen 
isotopes with spatial parity.>.= (-l)J. 

ppµ ·ddµ ttµ pd1, ptµ dtµ 

253.1523 325.0735 362.9097 221.5494 213.8402 319.1396 

- 35.8436 83.7711 - - 34.8340 

107.2658 226.6815. 289.1419 97.4980 ·99.1262 232.4714 

- 1.97475 45.2057 - - 0.6600 

- 86.4936 172.7022 ' - - 102.6486 

- - 48.8376 - - -

Table 2: Binding energies -E:J.- (in eV) of mesomolernlar ions of hydrogen 
isotopes with spatial parity .>. = - ( -1 )J. 

JV ppµ ddµ 

1 0 13.5400 22.5942 

2 0 - 9.8203 

3 0 - -

tt,, 
-----

27.4122 

17.7713 

5.4187 

15 

pd1, 

-- -- --

3.6849 

-

-

pt,, 

1.5788 

-

-

dti• 

9.12-17 

7.8990 

! 

I 
i 

I 

' 

I 



of physical constants: Mp = 1836.1515m,, .Md = 3670.481m,, M 1 = 5496.918m., m,, 

206.7686m.,Ry = 13.6058041eV. The energy levels have been obtained in Ref. 2 with the 

use of muonic mass m,, = 206.769m, here we convert these values to the given mass s~t 

adding the energy shifts computed in Ref. 20. 

Tables 6-8 contains a comparison of muonic molecular calculations with the best liter­

ature results. One can easily see that S- and P-state energy levels are in a good agreement 

with the highly accurate exponential Slater-type basis set [4] results. As far as the states 

of higher rotational numbers is concerned the situation changes. The only one result that 

is lower than ours was obtained with the use of the same Slater-type basis set method 

for the mesomolecular ion dtµ ( J = 2) [5]. The reason is that the evaluation of angular 

integrals with bipolar harmonics of high angular momentum and/or anomalous spatial 

parity (Eq.(4)) becomes very laborious. In any case our results seems to have the errors·of 

computation comparable with the error dependent on the uncertainty in the measurement 

of the mass values. 

An important characteristic of a molecule is its mean ·size. In Table 5 we present 

mean sizes of mesomolecular ions of hydrogen isotopes for states with the total angular 

momentum J 2': 2 with normal parity in units e = n = m,, = 1. The accurate values 

of mean sizes of mesomolecular ions with J :S: 1 of normal parity were calculated in 

Ref. 21 (in our approach we reproduce usually four figures of their results). Mean sizes of 

mesomolecular ions of anomalous· parity·have been ·c~lculated in Ref. 19. 

We have also studied the possibility of the existence of other bound states. The op­

erator H - e,E, where e is the energy of the molecule dissociation, has as many negative 

eigenvalues as there are bound siates of the molecule. Therefore, if we insert a trial function 

of high dimension we have the right to expect that a finite-dimensional matrix A - e,B 

exactly reproduces the number of negative eigenvalues of the initial operator and thus 

determines the numb_er of bound states of a molecular system. This estimation has been 

performed for all the systems presented in Tables 1 and 2 and for the mesic molecular ion 

ttµ with the total angular momentum J = 4 with the use of about 700-800 basis functions 

and this investigation has shown that there are no other bound states for mesomolecular 

ions of hydrogen isotopes. 
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Table 3: Series of calculations of the energy level of a weakly bound state 
o{ mesic molecular ion dtµ. 

i n; -en (n;) 

1 1513 0.65923 

2 2084 0.65968 

3 2174 0.65985 

4 2313 0.65990 

5 2660 0.65999 

Table 4: Series of calculations of binding energies -E:Jv (in eV) of meso­
molecular ions of normal spatial parity with the total angular momentum 
12': 2. 

ddµ(J = 2) ttµ(J = 2) dtµ(l=2) ttµ(l=3) 

86.48790 172.69753 102.64146 48.83234 

(160) (160) (212) (160) 

86.49237 172.70066 102.64422 48.83570 

(222) (222) (274) (222) 

86.49361 172.70215 102.64861 . 48.83764 

(426) (426) (550) (442) 
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ddµ 

ttµ 

dtµ 

ttµ· 

" 

Table 5: Mean sizes of mesic molecular ions of normal spatial parity with 
the total angular momentum J 2: 2. 

J -eJ R Tb r.a R2 r2 
b 

2 86.494 3.910 2.688 2.688 16.86 10.03 

2 172.702 3.298 2.359 2.359 11.76 7.423 

2 102.649 3.599 2.634 2.408 14.15 9.376 

3 48.838 4.040 2.750 · 2.750 17.77 10.49 

r2 
a 

10.03 

7.423 

7.923 

10.49 

Table 6: Comparison of muonic molecular calculations (normal pariiy, 
J = o, 1). 

J V This work Ref. 4 Ref. 1 

ppµ 0 0 253.1523 253.152332 253.0 

ddµ 0 0 325.0735 325.073540 325.0 

ddµ 0 1 35.8436 · 35.844360 35.8 

ttµ 0 0 362.9097 362.909770 363.0 

ttµ 0 1 83.7711 83.771216 83.9 

pdµ 0 • 0 221.5494 221.549410 221.5 

ptµ 0 0 213.8402 213.840179 214.0 

dtµ 0 0 319.1396 319.139722 319.2 

dtµ 0 1 34.8340 34.834491 34.9 

ppµ 1 0 107.2658 107.265971 107.0 

ddµ 1 0 226.6815 226.681678 226.6 

ddµ 1 1 1.97475 1.974817 1.956 

ttµ 1 0 289.1419 289.141783 289.2 

ttµ 1 1 45.2057 45.205856 45.2 

pdµ 1 0 97.4980 97.498160 97.4 

ptµ 1 0 99.1262 99.126501 99.0 

dtµ 1 0 232.4714 232.471594 232.4 

dtµ 1 1 0.6600 0.660178 0.656 

T8 

Table 7: Comparison of muonic molecular calculations (normal parity, 
J 2: 2). 

J 1, This work Ref. 5 Ref. 3 Ref. .1 

ddµ 2 0 86.4936 - 86.4341 86.3 

ttµ 2 0 172.7022 - 172.5264 172.7 

dtµ 2 0 102.6486 102.64891 102.6318 102.5 

ttµ 3 0 48.8376 - - 48.7 
--·-- -· ---- J -- -- -- ---------- _____ _] 

Table 8: Comparison of muonic molecular calculations ( anomalous parity). 

J l' This work Ref. 8 

---- ---- ,------- ~··· ·· 1~--
PP/1 I 0 l:{.;,400 13.542 

ddµ I 0 " • r: • , ·)· r:: r:: 22.c>!H2 _2.,,9,, 

11,, l 0 27.4122 ·27.4Ia 

pd11 I 0 3.(i849 3.G84 

pt,,. 1 0 l.5i~8 1.566 

dt1, I 0 19.12-1', 1 !l.124 

ddp. 2 () !l.820:l 

tt,, 2 () 17.7713 -

dt11 2 () 7.8990 -

tiµ 3 0 5.4187 -

·~ 
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There exists a less complicated but also less rigorous proof of the statement. The shift 

of energy levels due to the rotational motion of a molecule is proportional to mµ/ µ 12 [22]. 

According to this rule we may extrapolate the energy levels given in Tables 1 and 2 to 

higher values of J. All the extrapolated values belong to the continuous spectrum which 

means that the corresponding bound states of mesomolecular ions do not exist. 

The authors would like to express their gratitude to Prof. L.l. Ponomarev for collab­

oration and worthful discussions and to Prof. H.J. Monkhorst for the given possibility to 

carry out bulky computations of a weakly bound state of mesom~lecular ion dtµ. We are 

also thankful to our colleagues from the LCTA Computing Ce.nter helping us in numerous 

calculations. 

Appendix A. Variational form in spheroidal coordinates 

Matrix elements of the Hamiltonian('¥;, HIJt j) can be determined from the variational 

functional: 

J 

('11, HIJt) = f L { T~m + !,;',m + ,;/m-1Tm.m-; + 
m=µ(>.) 

}'~:.n+1Tm,m+I + V(R,e,'7) IF~A12
} ~

5 

(e2-'72
) dRded']; 

where elements T compose the operator of kinetic energy and are of the form: 

" 1 {18Fml
2 

1 [aF:,. ( 2 8Fm 2 8Fm) 
Tmm = 2µ12 8R - R(e2 - '72) 8R (e - l)eaz-- + (I - '7 )'7 8'1 + 

(( , 2 _ ) oF:,. ( _ 2) oF:,.) 8Fm] J(J + 1)- 2m
2 jF. 12 + ., 1 e ae + 1 '7 '7 8'1 8R + R2 m + 

e2 + '72 
- 1 + K-

2 
p2} . _l_p2. 

+ 4 m + 2µ3 m> 

T" _ ~{- 1 [aF:,. ( · 2 _ 8Fm _ 2 8Fm) 
mm - 2µ12 R(e2 - '12) 8R (e l)'IJ ae + (1. '7 )e O'IJ. + 

+ (<e2 _ l)'IJ oF:,. + (l _ '12 )eaF:,.) 8Fm] + e'l p 2 }· 
ae 8'7 8R 2 m ' 

p2 = 4 [m2(e2 - '7
2

) IF. 12 - DF;,(e2 -1/Fm - DF:,(1 - 2/Fm]. 
m R2(e2 - '12) P2 m 8€ ae O'IJ 1/ OTJ , 

Tm,m±I = T~,m±I + T,;',,m±li 
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" 1 • [e.,, P ( a . a.). ] · 
Tm,m±I = 21112R2 Fm -;(m ± l)Fm±l ± e - ,,2 1/ ae - e OTJ Fm±I ; 

" "' . [m ± 1 ' · p ( a · a ) ] . 
Tm,m±1=2µ12R2Fm -P-Fm±1±e2-112 eae-riaTJ Fm±!' 

p = /(e - 1)(1 - ,,2); ,;, = (Ah - Ma)/(Ma + Mb); 

JA { [ Jl } 1/2 -Ym,m+I = 1 + hmo.\(-1) [J(J + 1)- m(m + l)] J, ]A 
-Ym+I,m = lm,m+J• 

Matrix elements T" connect basis functions'¥; and '¥j of the same pi;rmutation parity and 

arc equal to zero for functions with opposite parity; whereas matrix elements T" connect 

functions with opposite parity arid vanish otlwrwise. 
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