





o are assumed to play a role as hmdermg fa.ctors in tlle process of muonic catalysxsr Ha.vmg

Durmg the last decade, the energy levels of the bOund states of mesomolecular ions™ .’

: o of hydrogen 1sotopes were sub_|ect of mtensnve study of the fenomenon of muon catalyze(l _' -
; fusion [1——6] Cllaracterrstxcs of the bound sta.tes w1t11 the spatral parity /\ —'( 1) S §
k computed there, and especlally ones of weakly bound states of mesrc moIecular jons ddp B
and dtp deﬁnmg mamly tlle kmetrcs of physzcal processes Last year papers studymg;:

mesomolecular states w1th tlle so- called anomalous parrty A —:—( 1) were appeared [7— L

E '9] These states differ essentlally from the usual ones in therr plxysrcal propertles They -

' captured a muon they thhdraw 1t from a normal ca.talytxc cycle B f ,{ P
However, Wll-ll the growth of the total angular momentum the amount of energy level k

r
{

: calculatrons provrded w1th dlffercut methods decreases 51gmﬁcantly and already for the
I‘-—state of mesomolecular ion til,t there is not any varxatronal calcuIatron and the onIy one
was carrred out with the use of adlabatlc approacll f1]. In tlns paper we present the results‘

of calcula.tlon for the energy levels of 32 states of mesomolecular ions of hydrogen 1sotopes

It turns out that these states 22 states of normal parrty and 10 sta.tes of anomalous parrty,

i represent the whole llst of bound states of mesic molecular 1ons v

: The varratronal approach to be expounded below ‘was used in our prevrous papers [2 7]
- We extended the method to’ states of an arbrtrary spatlal parlty and a/total angular mo-

’ mentum J > 2 The form proposed for the tr1al functrons alIow us to take mto account '/

DR

peculiarities of a behaviour of the wave function components connected with the use of rota-
tional and spatial symmetries and to compute effectively matrix elements. As computation
shows, the instability doesn’t increase dramatically with the number of trial functions and

it allows to carry out calculations with more than 2600 basis functions.

1. Theory -

As it is well known, a hydrogen meésic moleciilar ion is a system of threebparticles: a
negatively charged muon 1, and two nuclei a and b of hydrogen isotopes (a,b=p,dor t).
The nonrelativistic Hamiltonian of the system in tlie Jacobi coordinates (e=h=m.=1)

is

1 1'11
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Here R is the position vector of nucleus @ relative to Ynucleus b with the masses M, > M,,
r is the position vector of the muon with the mass m,, relative to the center of mass of
the nuclei. We will connect a moving frame with this system with respect to which the
Euler angles will be determined. To do that we will direct the 2’ axis along the nuclei of
the molecule, and the z' axis will be placed in the pIane of three partrcles in the direction
of the muon.

Since equation (1) is invariant under‘three dimensional rotations, we may separate
the states with a certain quantum number of the total angular momentum J and its
projection M onto the z axis. The wave function may be expressed in terms of the Wigner

D-functions, D (a,8,7), dependent on the Euler angles of the moving frame:

\Il R l‘) Z Dﬂlm (a7ﬁ17)F (R r 0), (2)
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where 8 is the angle between vectors R and r... The Hamiltonian also commutes with the

operator of spatial parity Py : (R,r) — (-R, »r),‘héi'ing‘eigenvalues A=Tland A= ~1..

This operator acts on the Wigner D-functions-as follows: - -

7 . . EESTREA . N
PADijpr (4,8,7) = Digm (n + a7 = B,7 = 9) = (1)’ "™ D, __ (a8, 7).

To determine the wave function of a given spatial parity ), we introduce the symmetrized

Wigner D-functions

2J +1 H . :
#m (0 8,7) = [m} [D;!m (aBs7) + A (1) ™D}, . (a,ﬂ,‘r)] .

which are e:genfunctlons of the operators J » J, and Py:
.127) =J(J+1)DPR; J,DMm =MD} ;
g ‘\_P,\DM =D}, A=1,-1;

and are normalized so that

[da [sinpag Bl NS 8:7) it (@,8,m)] = 63 Satst o

" The wave function in the representation of the total angular momentum and spatiél

parity has the form

J
MR = Y DI (a,B,7) F(R,r,8);
m=pu(A) . ] (3)

_fo0, for A=(-1)’;
n() = {1, for A= — (—1)’;

This expressmn is a startmg point for futher construction of a variational trial function.

The states of parity A = (- 1) and ,\ = — (-—1) are called, respectively, the states with '

normal and anomalous parity.

"Another form of the wave function expanéion follows from the Schwartz representa-
tion [10] based on bipolar harmcinics. We will present it because it explicitly desc?ibes the
behaviour of the wave function of a stéte in the ;icinity of coalescence poihts of particles

with a given spatial parity and a total angular momentum:
R = Y vh 17 (R,#) R4 #5267, (R,7,0),
C lytp=T
fy—12)< T . (4a)

T for A=(-1)7;
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‘I’JM/\ (R,I‘) =. Z Y}}le ( ) Rll b Gl 113 (R’Tyg)» .
linicr .- : “9)
for A = — (—1)",
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The last expression is the so-called Kato coallescence condition [11 12]. Note that the

G, (R0) = 613, 0,79 [1 +

number of components in the expansion (4a) is equal to J, whereas in (4b) to J — 1,
which coincides with the number of components in the expansion of the state with the
corresponding parity in (3).

In the expansion (4b) I; and I3 differ from zero, therefore the asymptotic scattering
states of parity A = —(—1)", for R —+ oo, consist of an isolated nucleus and an atom
with nonzero angular momentum. Thus, thé energy of dissociation for the molecule with
anomalous parity is equal to the energy of the isolated atom with principal quantum
number n = 2: E, = —Rym,/4, where m, is the reduced mass of the atom with the
heavier nucleus. v : .

Applications of the Wigner’s D-functions to three~body calculation were developed
by many authors [13]. They differ in positioning of the moving frame of references and,
thus, they have different partition of the wave function to the components depending on
intrinsic coordinates of the problem. Our choice is convenient to the adiabatic calculations

involving two heavy particles and one light particle of an opposite charge.

2. The wave function

To obtain an accurate variational solution for the Schrédinger equation with the Hamil-
tonian (1) it is necessary to take into account the peculiarities of the behaviour of the wave *
function.

Symmetry allows to reduce the equation onto a subspace of states with certain quantum
numbers of the total angular momentum and spatial parity. The wave function of the

state as well as separate components of the wave function representation obeys certain



requirements imposed on the behaviour at the vicinity of points of collisions or in the case
of axial singularity when a position of a moving frame isn’t determined. In particular,
a three-particle system is properly described by the wave function (4) with well-behaved
components Gii/l\g (R,r,0). Unfortunatly, this expansion leads to significant difficulties in
matrix element calculations for high numbers of total angular momentum. We would like
to investigate the behaviour of the components of the expansion (3) to provide necessary
conditions for constructing of a suitable trial function for this approach.

To determine the asymptotics of the components of (3) when R — 0 we make use of

the Chang-Fano relation [14] between the bipolar harmonics and Wigner D-functions:

Vi (R,8) =ver Y T DR (@,6,7) Yum (6,0), (5)
m=p(})
where the coeflicients Tl‘:{:“\ are expressed through the Clebsch—Gordan coeflicients:

i+l '
TgEA::[<1-PA(’1) ) 2 +1 )] (b0 lym{ ).

1+ Som 2J +1

(-

The relation (5) allows us to express the components of the wave function expansion (3)

in terms of the components of expansion (4):

J

F2(R,7,0) = V21 > T Yi,m (6,0) B #2 G}, (R, 7,9),

bem - 0

' where {llz.l—lh brA::(mlf,J
hi=J+1~1;, forA=—(-1)".
From this representation it is seen that the functions F2* have the asymptotics O (1) when
R — 0 for the states of normal parity and O (R) for the states of anomalous parity. It is
to be noted that, when R = 0, the components»F,‘,’{\ with different m are dependent on
each other and may be expressed through one component, for example F_‘,’”\. ’

The behaviour of the components in the neighborhood of the nuclei coallescence point

restricts to the choose of intrinsic variables describing the trial function. The functions
G{;/l\z (R,r,9) of the expansion (4) do not depend on the angle 6 at' R = 0 [12]. Hence, the

components of (3) have the angular dependence, when R — 0, and this dependence is to

be taken into account. It is hardly reasonable to use the distances between particles: r,y,
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. r.,,., and ry, (the so-called Hylleraas variables), as intrinsic coordinates with expansion (3)

because, for rq, = 0, ro, and 7, are equal to each other, and it is impossible to deter-
mine the angle variable 8 in terins of them. On the c;)hfrary, the spheroidal coordinates,
€ = (rep+m,) /R and n = (ray —ry.) /R, at R\: 0 give, respectively, the radial and
angular dependence of the function F,‘.,’lA It is quite surprising result because tlx-e Hylleraas

coordinates are very useful with the Schwartz expansion (4) [3-5].

Now consider the behaviour of the components of (3} when three particles lie on thé
same line b(a.xial singularity). To do this let us express the ‘wave function in terms of the
coordinat;gé a, 3, R,z.,ys, 2, where the first three coordinates are spherical coordinates
of the vector R, and the last three are c.oordina.tes of the vector r with ;gspect to the frame
of the sphericaj coordinates of tle vector R. The singularity occurs when the coordinates

z, and y, become equal to zero. In this case the position of the moving frame is indefinite.

JItis :known that.the wave function is infinitely. differentiable beyond the coallescence
points [15]. Therefore it may be expanded in a Taylor series around a regulyar point placed

on the axis: . . '

UiF (Ryr) = D 2yl fij (o0 B, Ry 2) + o7 0} (0, B, By 2,0, 24) :
i+5<J (

/2

)2,

.
~—

where p = (.tz +y?

Multiplying the function \Pi} by 'D;{"m («,8,7) and integrating over the angular variables,
we obtain the component. of expansion (3), FZ}. On the other hand, integrating first over

the angular variable 4 and considering that

2r
/ iyl 'Dﬂ,"m(n,ﬂ,'y) dy =0, fori+j < m.
A .

we find that F2* (R, p,y) = p™HIM (R, p,v) and the functions HIX are bounded in the

neighborhood of the axis.

We now can construct the expansion for the wave function that defines the Rayleigh-

Ritz variational procedure for the stationary Schrddinger equation. Using the spheraidal

~1



coordinates we introduce the expansion for the components FIX of (3):
‘ mf2
F2)(R,&m) = R™M(€ - 1) (1—7)] ™
X Y Co R*En* exp (= (an + fa) R),
in > A= (—1)
and = sny g
in > Jn, ifA==(=1)"7

that takes into account the asymptotics of the axial singularity since

R RIS E
e -n o -t
The inequality establishing admissible values for pc;wers 6f the variables R and ¢ provides
the behaviour: FJ* — const for normal parit); and FJ* ~ R for anomalous parity, when
R - O; Note that the condition Conneciing the confpohents at the ‘coallé;cénce point of
nuclei compl‘ic?ateéi\the computation of thetmat:ri‘x elements and it will Be omitted.
For identical nuclei the Hamiltoriian commutes with the perm-lvixt’:ai:loh’oii)kéfatdf of parti-
cles P,,: (R,r) — (\»R, r), and the wave function can be decomposed on parts symmetric
and antisymmetric under permutation: £

Ui (R,r) = (1 + Py) U371 (R, r)

Pab) ‘I’bl (Rv l'),

The operator P, acts on the Wigner functions: PabD{wm = (hl) DM _my Which deter-

‘9
J/\a(R l‘) (1 ( )

mines a symmetric and antisymmetric parts of the components of expansion (3):
Fr{zAs (R7 {)77) = [Fri/\ (R, 67 T]) + A (‘l)m Fv:r,v,/\ (R7 £1 _T])] 9
ED (R,6,n) = [F2) (R.6,m) = M(~1)" F2) (R, €, -n)]

The components F2* are here either even or odd with respect to the variable 5.  Therefore

(10)

it is necessary to retain either even or odd powers of this variable under the sum sign in
® | |

To describe the behaviour of the wave function, when R — 0, we make use of the
representation (4). Symme;cric and antisymmetric terms of the components of the wave

function expansion (4) are of the form
G (R,,0) = [G1 (B, 0) + (~1)" G4, (Byrym —0)]
i3 (R,7,0) = [G1}, (R,7,0) - (-1)" GJ}, (Ryr,m = 0)], (11)

0<f<m. .
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When G’{l”;_: (R,7,n) (I = sora)is odd with respect to the variable = cosf then it
vanishes at the coallescence point of the nuclei (we recall that component Gle ?z does not
depend on angular variable for # = 0). Thus the necessary corrections to the b‘ehaviour
of the function F/* (R,£,n) can be done by using the formula (6) for symmetric and
antlsymmetrlc terms respectlvely ‘ L .

The representation (8) for the symmetric wave function was for the ﬁrst time used
in [16] for calculating of the energy level of the mesic molecular,lon ppp in a state with

total angular momentum J = 1 and normal spatial parity..‘-
3. Calculation of matrix elements
~ Substitution of the bas_is sets of (3);(8) inv;to‘t‘he‘fuﬁ(v:‘tiéna.l,
(¥, HE)/(¥,¥)
reduces the initial equation (1) to the generalized algebraic eigenvalue problem
Az = /\B:c,‘ (12)

wilere »the matrix A is composed of the Hamiltonian matrix. elements (¥, HY;), and B is
the :)verlap matrix of basis functions (¥;, ¥;), both are symmetric.

To compute the matrix elements in (12), we carry out at first intégr#tion over angular
variables, it allows us to obtain the system of differential equations in a three—dimensional
domam of mtrmsm coordmates descrlbmg internal position of particles. As a next step, we

rewnte that system in spheroidal coordlnates of the two—center problem: R ¢,n. Then,

Ainserting the basis functions of the expansion (8), we reduce the problem to the calculation

of certain integrals that can be found analitically.

. Before compﬁting the integrals over angles, we rewrite the kinetic energy operator in
a convenient form: S .
1 [ 108 .0 (I-1 1

“am | TmaRY Y m | 250 (13)

Here J is the operator of total angular momentum, 1 is the operator of the muon orbital

momentum with respect to the center of mass of nuclei, and the last term is the operator



of the muon kinetic energy, where the vector r.’zis expressed in terms of the éylindrical
- coordinates, 7, p, z«, With reépeét to the frame of reference of spherical coordinates of the
vector R. We recall that the position of the reference frame of spherical coordinates is
defined by the Euler angles @, 8,0 (« and g are spherical angles of the vector' R).

The first term in (13) acts only on the functions dependent on the intrinsic variables
of the system, whereas the operator of the total angular momentum is éxpressed in terms
of the Euler angles and its action on the Wigner fanctions'is defined by -~

Jo D = —m D o
IiDitm =~ (£Jor = iJy) Dy

=+V/J (T +1) - m(m+ 1)Dif 1,

where Jz1, Jiy and J,r are components‘ of the vector J with respect to the moving reference
frame. The position of the moving frame is detern‘l‘ined By rotation of the reference frame
of the splleriéal coordinates of the vector R on.an. angle v. The operator 1 in the moving

frame is given by expressions:

. a
Izl = —15;, . l

- ; 20 [0
L= .(:H,: zly:) ipa'y [Zap paz] .

Since the components of J and 1 commute ([J;, ;] = 0,i = ', 3/, z'), we may transform the
second term of (13) as follows: - AR

@-1)2_ 4P -2@3,1) AP -200, S IL,
2u12R? T 2p12 R? - 2p12R? 2#12R2

"The kinetic energy operator of the muon in the cylindrical coordinates may be written
1 (188 18 8 9\
—ﬂ'{pzav PRI 6Z’}
Next we insert the expansion (3) into the kinetic energy operator (13) and integrate
over the angular variables. Upon simple calculations, using the expressions obtained for
the operator components and the orthogonality relations for the Wigner fuﬁétions, we get

the system of equations for the components of the expanéion (3):

J
Z ,(H".""’

- 6mm’5) F'v‘rlz’A = 0’
m=p(3) o '

(14)
m=p(A),...,J;

10

D 19 2
Hm = 2 2
" lll_z{ RoRY or T B [‘C * E}
J(J 4+ 1) —m? 4 22m?/p? P
+ Rz } tou, TV (Repiz); (14')
'YJ/\ +1 (2
Hpypopg = —omdl (2
‘ ;mtl 2uR? [p(m:tl):tﬁ].
Here
a a 2 2
E:z——p—, P’zl:zll__l?_pi_a
(4 0z Pt pdp 8p 0827’

JA JX .
7m+1,m = Tm m+1

and V (R, p,z) is the potential energy of the Coulomb interaction. So, the problem of

scparation of angular variables is completed.

Now the Hamiltonian may be finally written in the spheroidal coordinates of the two-

" center problem: \

1 10 i
Hpm = — { R2

2[1,12 R2 ()H 81{

' 2 2 H? ;]
TRE - ¢ [( “(”c‘mas*as) (“”2)”(361%87;*57;)}*

2k 9 52 5 (15a)
T 1 (Rl + 5 ) + (1= (R +2)
R2 e@-n [( D7 Range +a¢) + (=) ¢ aRoy Ton)| T
J(J+1)—2m ‘
2
+Eg—Pm R? }+~2_EP31+V(Rv£"7);
r2
whereﬁ—:(f +7? ~ 1+ 2xény + &2);
Ja
Ymmt1 [ €7 P a J
Hpmar == |2~ (m+ 1)+ L {55 g2 ).
" T 2 R? [-,, ()% 0 (”05 5011)} ! 15b
N Yot 1 [g_fi Lo (29 (158)
Wl | p &y (565 " "51;) ’
Hpr = 05 when |m - m'[ > 2; (15¢)
4 m? (& -9%) 9 o 8 Y
P LA | - —_ ) 8
RZ (€2 _q2) [ o7 BT (¢ ’)85 oy (1-n )0,]
1 a¢ R
V (R, . T =2 ez —2):
W& =4 gy 2= (€@ - D0 - )
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and the parameter x = (M — M,) / (M, + M;) determines the shift of the origin of the.

vector r from the center of mass of nuclei to their geometric center.

To determine the matrix elements (¥;, H¥;) it is necessary to insert the basis functions
(8) into (15a-c). Considering that the element of volume in the spheroidal coordinates is
equal to RS (fz - 1]2) /8, we find that fractional powers and rational parts of expression
are cancelled out and only a polynomial of variables R, ¢ and 7 multiplied by exponential

remains. In this way the problem reduces to the computation of integrals of the form:

00 00 1
r,,,.(«:,ﬂ):/o .m/l R'¢™ exp[—(a + BE) R} df, and r,.:/_ln" dn.

The first integral after integrating by parts is reduced to

3 m—1)! (I—m+i-1)f p \
Tim (o, 8) = ﬂm“( +ﬂ)._m2 ((—m 1) (a+ﬂ)'

=0

The basis functions (8) are either even or odd with respect to the permutation of heavy

particits. To simplify the computation of matrix elements we separate the part linearly
dependent on the asymmetry coefficient x from the Hamilto‘nizm (15). Then the remaining
part connects basis functions of the same permutbationa.l parity, whereas the separated part
connects functions of the different parity. ) (

One can sece from the formulas (15a-c) of the Hamiltonian, it is well ﬂttgd to the
calculation of the adiabatic systems. Indeed, the redur:ed mass of the heavy particles p;
in this case is much greater than the reduced mass of the light particle p3, and a ratio

B = pafp12 can be used as tbe adiabatic parameter of the system. Off-diagonal terms’

of equations (14) — (15) and the part connecting symmetric and asymmetric components

of the wave function are proportional to the small parameter p, and, thus, the quantum.

numbers m and the eigenvalues of the permutation operator are appruximate quantum

numbers of the adiabatic systems.

12
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4. Results

Here we shall analyse the results of computation of the binding energy levels of me-
somolecular ions of hydrogen isotopes. Partially they were published earlier in [2,7,19)
and they were obtained with the use of some slight modifications of the>meth_od we have
expounded in this paper. Without going into details we explain only the strategy of choice

of the sets of the basis functions:

The basis functions (8) depend on the nonlinear parameters a and 3. Search for optimal
nonlinear parameters for every basis function is a cumbersome task. Therefore, in practrce,
a set of nonlinear parameters am;,ﬂmg is used which depends on a component number m
and on a permutation parity of two heavy particles ¢ of a given basis function. The wave .
function is a complicate function of the variable R, and it is convenient to introduce two
groups of nonlinear parameters that provide good convérgence of the expansion at the
vicinity of zero and at long distances. In particular, this trick was successfully applied to
study weakly bound states when a molecule is extended in the coordinate space. Here we

use two sets of nonlinear parameters in all calculations.

The eigenvalue for the certain state of the mesomolecular ion is computed as follows.

For fixed values of nonlinear parameters the. problem (12) is solved for a given state, either

" ground or excited. Then the eigenvalue is minimized by varying nonlinear parameters.

Since the estimation for the energy derived from (12) provides the upper bound estimate,
the minimization retains this property and only increases the accuracy of the solution.

The nonlinear parameters we have used here are cited in [2,7,19).

The algebraic problem for eigenvalues (12) was solved b& inverse iteration method
(it can be found, e.g. in Ref. 17) for the following reasons. First, a particular bound
state is calculated for some values of nonlinear parameters optimal for the given state.
Therefore, it is sufficient to look for only one eigenvalue and the remaining part of the
spectrum is not necessary. Second, this method provides less computational time. We
make use of the symmetric structure of the problem and the number of operations is about .
n'/6 multiplications which is significantly lower comparing to ofher direct methods of the

eigenvalue computation. This is especially important for calculations with a large number

13



of basis functions when the computational time of the problem (12) rapidly grows with
the number of functions and very soon becomes dominant. ]

As the number of basis' functions increases, the algebraic eigenvalue problem (12)
becomes more and miore singular. The inverse iteration method is the most stable one for
the solution of that problem. However, it also cannot ensure the stability of eigenvalues for
large matrices. The stability is achie;/ed» when we solve the following regularized eigenvalue
problem [18]:

A,z = AB,z, where A, = A+6D, B,=B;

where § is a small parameter, and a diagonal matrix D is composed of elements Jai — Abii).
That removes from the spectrum infinite eigenvalues defining the singularity of the problem
and causing instability of the true eigenvalues. To be successful this procedure requires

the following condition:

e (17 + 1217)" (o127 ! ik
. (z, Az)" + (=, Bz) :

where z is an exaﬁlined eigenvector, a;nd ¢ is a round-off error [18]. When an exponentia1
expansion [3-5] is used, the latter condition is not satisfied, therefore the oulyv way is
to increase the precision of calculations to quadruple precision. In our calculations this
condition was checked and it was fulfilled even when 2600 basis functions were used. The
parameter § was taken in the interval 10714 - 107" and its variation allowed approximately
estimate the accuracy of a calculated eigenvalue.

The energy levels of mesomolecular jons are reported in Table 1 (normal parity) and
Table 2 (anomalous parity). The values for S— and P-states presented in Table 1 have been
computed in Ref. 2. The only exception is the calculation of the weakly bound state of dip
with J =1 for which a more accurate series of computations was performed and listed in
Table 3 below, here n; is the number of basis functions employed. The values of D-and F-
states obtained with the use of this variational method are published for the first time. The
corrvesponding series of computations with a growing number of basis functions are reported
in Table 4 (the number of basis functions was pointed out in parantheses). The energy
levels of mesomolecular jons with anomalous parity have been studied in {7,19], here we

present only the results (Table 2). In the calculations we made use of the following values

14 i

Table 1: Binding energies —¢ J, (in eV) of mesomolecular ions of hydrogen

isotopes with spatial parity A = (—1)".

J v ‘ddp tiu pdp pip ‘ dip »
00 |. 62531523 325.0735 362.9097 221.5494 213.8402> 319.1396
01 35.8436 83.7711 - - 34.8340
‘10 107.2658 226.6815" |. 289.1419 97.4980 |. 99.1262 232.4714
11 -1.97475 | = 45.2057 - - 0.6600
20 . 86.4936 172.7022 - - 102.6486
30 - 48.8376 - - -

Table 2: Binding energics —c . (in €V) of mesomolecular ions of hydrogen
isotopes with spatial parity A = — (—1)".

J v 7413 Jd;; 12703 pdp pin dip

10 | 135400 | 225042 | 274122 | 36849 | 15788 | 19.1247

20 - 98203 | 177713 - - 7.8990

30 - - | sa187 - -
15




Table 3: Series of calculations of the energy level of a weakly bound state

of physical constants: M, = 1836.1515m., Mg = 3670.481m., M; = 5496.918m,,m, = { lecul dt
of mesic molecular ion dipu.

206.7686m, Ry = 13.6058041eV. The energy levels have been obtained in Ref. 2 with the

use of muonic mass m, = 206.769m. here we convert these values to the given mass set

adding the energy shifts computed in Ref. 20.

Tables 6-8 contains a comparison of muonic molecular calculations with the best liter- ) ‘ 4 Cony —e11(n;)
: : |
ature results. One can easily see that S— and P-state energy levels are in a good agreement [
with the highly accurate exponential Slater-type basis set [4] results. As far as the states : s : 1 1513" 0.65923
of higher rotational numbers is concerned the situation changes. The only one result that N 9 © 2084 0.65968
is lower than ours was obtained with the use of the same Slater‘type basis set method :
’ 3 2174 0.65985
for the mesomolecular ion dtu(J = 2) [5]. The reason is that the evaluation of angular : : :
. ’ ] 4 2313 0.65990
integrals with bipolar harmonics of high angular momentum and/or anomalous spatial R
; _ 5

2660 .- 0.65999

parity (Eq.(4)) becomes very laborious. In any case our results seems to have the errors ‘of

computation comparable with the error dependent on the uncertainty in the measurement

of the mass values.

An important characteristic of a molecule is its mean size. In Table 5 we present . )
Table 4: Series of calculations of binding energies —ej, (in €V) of meso-

mean sizes of mesomolecular ions of hydrogen isotopes for states with the total angular - molecular ions of normal spatial parlty with the total angular momentum
J>2

momentum J > 2 with normal parity in units e = A = m, = 1. The accurate values

of mean sizes of mesomolecular ions with J < 1 of normal parity were calculated in

Ref. 21 (in our approach we reproduce usually four figures of their results). Mean sizes of

. mesomolecular ions of anomalous’ parity‘have been ‘calculated in Ref. 19. - ‘ ’
g PoLae ddp(J = 2) ttp(J = 2) dip(J =2) ttu(J = 3)

We have also studied the possibility of the existence of other bound states. The op-

erator H — ¢, E, where ¢ is the energy of the molecule dissociation, has as many negative 86.48790 172.69753‘ 102.64146 1883234
eigenvalues as there are bound siates of the molecule. Therefore, if we insert a trial function i ) .

e . e . (160) (160) - (212) (160)
of high dimension we have the right to expect that a finite-dimensional matrix A — &.B :

. . ) o 86.49237 © 172.70066 102.644 .
exactly reproduces the number of negative eigenvalues of the initial operator and thus 22 48.83570
determines the number of bound states of a molecular system This estimation has been (222) (222) (274) (222)
performed for all the systems presented in Tables 1 and 2 and for the mesic molecular ion 86.49361 172'7021,5 102.64861 ' 48.83764
tty with the total angular momentum J = 4 with the use of about 700-800 basis functions (426) (426) (550) (442)

and this investigation has shown that there are no other bound states for mesomolecular

ions of hydrogen isotopes.
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Table 5: Mean sizes of mesic molecular ions of normal spatial parity with
the total angular momentum J > 2.

Table 7: Comparison of muonic molecular calculations (normal parity,

J —&y R ) Ta R? 2 r2
ddp 2 86.494 3.910 2.688 2.688 16.86 10.03 10.03
tip 2 172.702 3.298 2.359 2.359 11.76 - 7.423 7.423
dip 2 102.649 3.599 2.634 2.408 14.15 9.376 7.923
tip 3 48.838 - 4.040 2.750 +2.750 17.77 10.49 10.49

Table 6: Comparison of muonic molecular calculations (normal parity,

J=0,1).
J ol v This work Ref. 4 Ref. 1
ppp 0 0 253.1523 253.152332 253.0
ddp 0 0 325.0735 325.073540 325.0
ddp 0 ] 1 | 358436 35.844360 35.8
Hp |0 0 362.9097 362.909770 363.0
i 0 1 83.7711 83.771216 83.9
pdp 0-1o0 221.5494 221.549410 221.5
ptu 0 0 213.8402 213.840179 214.0
dtp 0 0 319.1396 319.139722 319.2
dtp 0 1 34.8340 34.834491 34.9
Ppi 1 107.2658 107.265971 107.0
ddp 1 0 226.6815 226.681678 226.6
ddp 1 1 1.97475 1.974817 1.956
ity 1 0 289.1419 289.141783 289.2
m 1 1 45.2057 45.205856 45.2
pdu 1 0 97.4980 97.498160 97.4
ptp 1 0 99,1262 99.126501 99.0
dtp 1 0 232.4714 232.471594 232.4
dtp | 1 1 0.6600 0.660178 0.656
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J>2).
B B
J v This work Rel. 5 Ref. 3 Ref. .1
ddp 2 | o 86.4936 - 86.4341 86.3
tip 2 0 172.7022 - 172.5264 172.7
dip 2 0 102.6486 102.64891 102.6318 102.5
tip 3 0 48.8376 - - 48.7
S LI ]

Table 8: Comparison of muonic molecular calculations {anomalous parity).

ppi
ddp -
ti
pdp
pti
dip
ddp
T
dip

tip

J v This_\vnrk Ref. 8
— b
1 0 13.5400 13.542
1 0 22,5942 " 22.595
1 0 27.4122 27.413
1 0 3.6849 '3.684
1 0 1.5788 1.566
1 0 19.1247 19.124

2 >0 9.8203

2 0 17.7713 -

2 0 7.8990 -

3 0 5.4187 -
19



There exists a less complicated but also less rigorous broof of the statement. The shift
of energy levels due to the rotational motion of a molecule is proportional to m,,/ujz [22].
According to this rule we may extrapolate the energy levels given in Tables 1 and 2 to
higher values of J. All the extrapolated values belong to the continuous spect\rum which
means that the corresponding bound states of mesomolecular ions do not exist.

The authors would like to express their gratitude to Prof. L.I. Ponomarev for collab-
oration and worthful discussions and to Pr;)f. H.J. Monkhorst for the given possibility to
carry out bulky computations of a weakly bound state of mesomolecular ion diy. We are

also thankful to our colleagues from the LCTA Computing Center helping us in numerous

calculations.

Appendix A. Variational form in spheroidal coordinates

Matrix elements of the Hamiltonian (¥;, H'¥,) can be determined from the variational

functional:

(V,HY) = /Z Tom + T + Vo1 Tim—1+
m=u(A)

RS
F¥mi Tmmir + V (R, €, m) lF,{.*V}? (€ - *) dRdt dn;
where elements T compose the operator of kinetic energy and are of the form:
1 [|8F,) 1 [aF,; ( 5 8F,, 5. OFn, )
o = || g | — 1=+ (- ——} +
T 2#12{ oR ' R(§2 —n?)| OR (-1 ( o
. OF;\ OF, J+1)—2m? :
+ (@ - e+ 0-mn2) G|+ T n

"on ) OR R?

E4n’-1+x2 5,1 1
sTn - TFp — p2.
+ 1 ™ +2#3 mi

. x 1 [0Fu (12 1y OFn .\ 2 aFm)
Tm'":zm{‘ﬂ(sz 2){ (“ RUTIRAK R r
I BF:\ 0F
((62—1)77 5% ™4 (1- ) i )_B_R—] +%7P3.};

arm

4 m?(¢? — n?) 2 2 Ifm Ol za_Fyl_,
= s [ P e B

) < ]
Tm,m:i:l = T:t,m:tl + Tm,m;{:h

20.

- 1 &, : P a8\ :
Tm,m:{:l zl’lszFm [P (Tni I)Fmil + 6—2—___7"2‘ (7785 —667]) Fm:tl] ’
ko [m+1. P :
Thmar = mFm [ﬁffmil = 7o (5— 3 )Fm:tl] ;

P2 -1 -2) o« = (My = Ma)/ (Mo + My);

) 172 o
77{:"1“ = {[1 + 6,n0/\(—1)1] [J(J;+ 1) - m(m + 1)]} s 7,{3“ m 7;{1’}'"“'.

Matrix elements 7' connect basis functions ¥; and ¥; of the same permutation parity and

are equal to zero for functions with opposite parity; whereas matrix elements T™ connect

functions with opposite parity and vanish otherwise.
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