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Introduction

Relativietic quantum theory has a. trouble, its. simplest mani- :
festation being the  instantaneous. - spreading of the-free par- ”““H
"~ ticle packet. Let the particle be localized somehow in a’ bounded
region \Q - at a moment t =0. Immediately after the moment the - S
particle can be found in a region VB 7,<, separated from ﬂlé\ T
E by ‘an arbitrary distance \R "y Bee e.g. /Ifal. This- means that .

’it is possible to transmit a signal from ‘ této \6 with: the super-%
;:luminary velocity. So one "deals here with ‘the problem of compatibi—”‘
,7lity of the basic postulates of quantum theory and’ special relati-»<g

vity.” g

The acausal probability to find the particle at \é o ,Vatf,fﬁ

o f< R/c “turns. out .to be. very emall. if (R - ct) exceeds the par—"./‘
' I;ticle Compton wave—length’ i ~)p = h/mc, see 19 5f," Therefore, ‘the -
acausality is particularly pruminent in the cases of low mass (or

: ~mass1ess) particles such as. the photon or the neutrino. As to the-‘fw
:p photon, one meets problems with its localization, see e, g /IO II/
. 80 the photon: packet spreading problem is- i11 defined. ‘In. spite of
,’ﬂthis the velocity of . the photon propagation has been investigated :
w'since 1930 by using a more realistic approach then in /1"9/.'For'

' f;instance, an excited atom localized in* \é was considered as, a

~photon source. ‘Another- (unexcited) atom localized in' \6 :
gserved as a- photon detector. For the relevant papers /1 / ‘The -
f*list of references of this. review can be supplemented by the. papers
./13-21/ The result of these investigations can be formulated as . -
follows : if the problem is” properly gtated and accurately calcula—j,
ted, then the velocity of the signal transmission by means of the :
photon does not exceed the velocity C: '

] Let us stress that the problem arises only. if particle obser-
! vables are involved. The quantum fields and observables constructed
_~in their terms (e.g., electric and’ msgnetic fields momentum and :
energy- densities of the field, current density ) behave causally in
hlocal theories, see,e.g /22, 12 23/. HoweVer, this does not- gsecure
the causal behaviour of the observables constructed from the positi-:
ve energy parts” of the fields, i.e. observables pertinent to the g
4partic1e interpretation of quantum fields.,'»ﬁf- :

Here I investigate the propagation of a fermion, using neutrino
‘as.an example. Several possible statements of” the problem are: gi- S
“ven in Sect. I in the order of increasing enerality. It is shown in
Sect. 2 why the simplest ‘variants used in '. and,/s/ cannot'be‘—
4exploited in the fermion case. The reason is that the free Dirac s



fermion cannot be strictly localized in a bounded region. An
approximate or '"effective™ localization of the fermion is possible
but ‘only within the precision not exceéding the fermion Compton
wave~-length A .

Sect. 3 presents my approach. As in the photon case, it.is
grounded on the possibility of effective localizing the nonfree.
fermion  within a region with dimension much less than A .
For instance, the electron or neutrino originating from J?
radicactive nucleus are emitted from the nucleus volume ,its dimen-
sion being much smaller than Ae or A, « To describe the
processes of neutrino creation in \é and detection in \5 ,
I use the Heisenberg picture of quantum field theory with the
four-fermion weak interaction., The result of the calculation turnms
out to te causal : reutrino propagation velocity does not exceed
¢ within the precision of the neutrino localization by its source
and detector, ’

I. Forms qf the Relativistic Causality.Criterion

The simplest formulation is packet spreading. Let GQ
desoribe one free particle, localized at t = 0 in a volume \4 so

that the probability of finding it outside bg is zero. Then
. i2
KBIRED[ = (RN B = Bl By | 1))

D (t) = exp(-iHt) D Bo=198> ) (1)
is the probability of finding the particle at the moment t)’O '
in a state P , localized in a reglon V) at a distance R
from V@. H is the particle Hamiltonian, P, ig the projec-
tor on the one-~particle state qg + According to special rela~

tivity, the probability (I) must venish at t < R/c. Different
variants of the formulation were used in [I-7/.

let us generalize it.
a) One may replace P in (I) by another particle ‘observable
X; which is in & sense localized in ¥ « If the particle -
is described by a quantum field, then X" may be the operator of
the number of particles in  Vj s €.8. see /24/ . Then, ,
(4}#),X5! Qk(t)> : " would be the average number of particles
in at the moment ¢ which also must vanish at t < R/c-

b) Real particle interacts with other particles, the interac-
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Then, the probability of finding particle in Vo at t > 0 may not
vanish even if there was no particle initially(let?%dénote thé initial
no~particle state)., For instance, the particle-can appear in

as a virtial one (together with other particle ). The probabilif;
must be considered as the "background" one, €.g. see 712,23/ L;t th
state 9% differ from 4% only by the presence of one addition;l )
ticle in Vet t =0 . me difference e

ak@ = R Xy [ 0 () - <A@ [ % | By ‘
2)
woulé be{nonVanishing entirely due to the presence of the initial
pa?tlcle in \f » other causes of the particle appearance in &é
being excluded in (2) . The ‘difference must vanish if + < R/cx)-
-One may rewrite (2) as ‘

4 X»(f)=<‘ps_‘ Xz(t) 19> - (&, h‘ﬂ‘”%)
Xz(t,=eiHIXjb e-tht' ; , (3)

. Here X;@) is the Heisenberg operator corresponding to *3 .
ts calculation may happen to be simpler than solving the Schroedin-
ger equation in order to fing i) .

c) The localization'of the initial particle in \4 is the re-
?ult of a preraration process. Its idealized description can be
included in theoretical formulation of the disc
inifgnce, an excited atom can be considered as a source of locali-~

ze :

. ihoton state, the photon being the signal carrier. A theoretically

1p eér source is an external current localized in \2/'2 The exter

na current is a prescribed function of time which does not change

when emitting photons. In s ]
; . ect.3, I shall use an extern
the fermion which carries the signal.Now ' ' S e 7 ”

a X%y =L X011 @) - { @ | Xt0) | 1,

' (4)
;: the change of the observable Xb which is due. to the switching on of
Cig.exteznalysource. Here Xi(t) is the Heisenberg operator (coin-
Xl?f)w th‘:Q at t = 0 ) when the source has been switched on,
(, is the "background" Heisenberz operat us
or wh
has not been switched on, oo % ’ o Mhem the soure
X .
)In order to compare <“P;(")1Xa 1[/’: &)
ought ngt use Just. the difference: one may consider its ratio
;nst?ad. But it is the difference which is éimpler to caicuiéte.
or instance () le-, | P21 and { B ()| Xy [ Be)S may contain

divergencies which are absent in their difference.

ussed problem., For

with the background, one

4

d) The appearance of the sigral carrier in \é can be detected
by observing the change of the state of other particles in Vz, ,
the channge being the consequence of their local interaction with
the signal éarrier.rIn particular neutral particles can be detected
by means of charged ones. So one can replace A; in (2)-(4) by ot-
her observables); which are constructed in the same manner as Ab
tut from the operators of other particles. Of course, g, must be
localized in \@ in a sense. The vanishing of

AY,0)={ & [ 5()- ()| P) .

at t < R/c is the example of the general form of the causality
criterion: no charge in V, (as compared to the background)
can be till the moment R/c. »

2. Fermion Localizability

2.I. The description of localization of the signal source
and detector needs a notion of coordinates. The special relativity
theory uses coordinates } . measured by rods and watches, i.e.
the Minkowski coordinates, MC. The derivatives in the Klein-

Gordon or Dirag equations are over just the MC. The coordinates are
used also dgg parameters, numerating the field degrees of freedom
Alt) W(Zf) etc. The locality of interaction of the fields is
defined by using MC. .

Other coordinates are also discussed in relativistic quantum
theory, namely particle position operators and their eigenvalues,
e.g., see the review > + Their properties (hermiticity,transfor-
mation properties,etc.) are usually discudsed in the framework
of the theory of one free particle (an example of the exception is
the paper /26/). However, the main problem in this topic is the re-.
levance of the position operators to the outcomes of real measuring
devices. The relevance is obscure because the particle interacting
with the measuring device is not free,

In the problem of signal transmission the choice of a coordi-

B ﬁate is dictated by the following reason, -One deals with the special

relativity requirement "signal velocity must not exceed c ". The
velocity must be defined in terms of MC and just the coordinates
must be used.

2.2, The packet spreading problems, which are discussed in
/1'5/. need the initial state q% which is strictly localized within
8 bounded region. However, positive-energy states of the free



Dirac fermion are described by the spinors %( (x) which cannot van- the same centre as V does but has the redius r = r + ct (or to

ish outside a bounded region V/ ,see Appendix A.In other words, there find it within a larger region containing Vt /6/). Note, first, that,
exists no free spinor % such that Pi(¥)=5, [ ¥, 5)|* would the definitions (6) of the probabilities (criticized above) were used
venish outside V . 76/ in 7957/ Byt it is more important to stress that this criterion

The theorem "Violation of Causality" by Hegerfeldt allows differs - from the requirement "signal velocity cannot exceed ¢ "be-
nonlocalized initial states, but the state allowed by the theorem ; cause the measurements related with the criterion do not determine
hae the property of $(X) decreasing asiXl-~ = . faster than : any signal velocity. "
exp(~ Kz 1Xl) where K,> @m  (then one can realize the condition (I) : \ . . ,

2.5. There are empirical facts which give evidences for the

trom /¢ or (21I) from /7/). But this decreasing is forbidden for
fermionic states, as is shown in Appendix A,

2.3. The papers /1-1/ define the probability of finding the sprea-~
ding particle in the volume Vusing the expression(q} @) M C]%(t))
which in the case of the Dirac fermion &sasumes the form

existence of much better fermion localization than that pemissible
for the free fermion. For instance, one may conclude that neutrino
emerging from the process €7+ [Ig aﬁ‘*,/.f[/ . was locallized at
some instant of time in the volume of the nucleus whose dimension

is much smaller than A,.It is possible also to detect neutrino in the

(‘f’?ﬁ,”ﬂ{)%»:{,‘llx.}f)%S(Ilt)rl /V,,;/‘; ;[:'Xé;" l;]/i)(})/q) . (6) region with dimension << }, , e.g., using the known reaction
Vell- Arfe . Note that the localization of a nucleus as a whole
This is the limit of the sum of probabilities to find the partic- also can be realized within the precision <<h (e.g., in the
le in the states l]d lx) localized in small volumes V; which fom the crystal lattice). In these examples, the neutrino is not free; it
volume V : V=5; V . The related measurement must reduce V//t} is created or absorbed. The related localization measurement cannot
in each measurement act to one of the states ()‘/ . suppy/ /21, 28/ be described entirely by classical means because the description of
There are reasons to suppose that no such measurements exrst in the the creation or absorption needs guantum field theory. Using the theo-
" case of a fermion because there exist no physical means to localize ry I shall describe the first stage of the neutrino localization in
strictly the fermion within an arbitrary small volume V,. . This is which the neutrino transforms into heavier and easier detectable
true, e.g , for the measurement which reduces to free fermion sta- particles. As to the measurement of the latter, I use the usual pos-
tes. The paper 8/ argueé the impossibility of such a fermion locali-~ tulates of the quantum measurement theory ’
zation by means of a bounding potential, . 3, Reutrino propagation velocity

There exists another expression for the probability of finding

the particle in a volume V: The form d) of the causality criterion is used. Signal carrier

is the neutrino. It is supposed to be detected using

jd"x s, (}JV*[;)ijZ; t)[2=1 <w"[ V}S(t)} ’2 . . the process of the type V+(f->Ar+&~ . The related elementary
A (7 ' reaction is V+nNn-pse”, where i is one of the nucleus
It corresponds to the measurement which reduces ¢ 5(%,t]  to the . neutrons ). It is bounded, stable and is localized effectively in
states "VV which is localized in V the approximate localization the nucleus volume Y, . The occurrence of the reaction is supposed
being now allowed. The state ()VV 1s determined by the concrete ’ to be detected by the observation of the resulting electron, A1l
measurement process. If one represent ) as 3¢ , then (7) particles v,n,p,e are described by quantized fields and the inter-
would depend on (/! phases while (6) does not depend on them. action Hamiltonian is taken in the Fermi four-fermion form /31327,
Expression (7) is allowed for fermions, and it was used in (I) and
shall be used in sect., 3 below. . x) ] .
2.4. TLet us comment the causality criteribn used in 79,6,7/ . The small probability of the reaction is irrelevant to the super-

luminary velocity trouble considered, If t

It states that the probability of finding the particle at the moment ¢ i 7 he probability of the

‘ ; superluminary velocity does not vanish within the measurement er-
within a sphere V of the radius [* must be less than the probabi-

: . v - . rors (however small it be), then there arises the logical paradox
lity of finding the particle at t=0 within the sphere Vy which has _ 1in the framework of the special relativity:the effect may abolish

its cause 9’30]



Gl @y, 9.0, + @l $.0Y. | (8)
(one may have in mind the V-A variant).
As an observable YD of the form d), I take the operator of the
number of electrons in a state (j/” which is approximately localized
in and near a volume \, , V,C ), , see Appendix B,

Yo=hshs 5 A =T YA G | (9)
S, (e I m =1

A/“(%)zjdé}’zr Q,, d/‘ (i)jr) QX/,["/J;) =
=fd% s, M., (L§)P.0G).

Here A,‘ is the part of the electron-positron field ¢ which
annihilates electrons, T 1s the operator projecting onto this
part, see Appendix B. .

The average of ,4;14” in a state P is equal to the number of
electrons in P s irrespective of the presence of other particles
in % , Ap there can be only one electron in the state gu” s the
average is simultaneously the probability of finding the one- elect-
ron state L,U” in ¥ (for more details see /5, gect. 4).

The source of the neutrino (localized in \{, ) is described by
the prescribed Grassmarm function’ ?(x) . It is introdﬁced in the
Dirac equation for the neutrino field

(-‘[/aa/« + m)%:?{»“,

{ Ay, Ay =1, (10)

(11}

by analogy with inserting an external current ] into the equa~
tion for electromagnetic potential A 0 Z’ =T +..

This is equivalent to the addition of the term {%,1 @p
to the interaction Hamiltonian (8), The function 7(?);‘} is localized
in ‘the ‘volume Vs and is switching on at the moment t = O, being
zero before.

Unlike the neutrino source resction € + BB-—vuf +V the exter-
nal gource can create antineutrinos together with neutrinos
(and also annihilate them). However, only the neutrinos. are detected
by the process v+n.;p+e‘ ,and therefore, the signal transfer
from V; to V‘o is realized by the neutrino only.

3.X. Now the problem consists in the calculation of the change
of the number of electrons, approximately localized in V$ which 1is

8

due to the switching on of the neutrino source in

ANL) =P IAT O AL L) = A ) Aye) 199 (12)

where P is the ‘state "one neutron and no other particles"; Aj {l‘/
ie the Heisenberg operator (coinciding at t=0 with the Schroedinger
ore [I,b , see (9)) in the case when the total Hamiltonian H contains
besides the free part H: the interaction

Hy= Bl Qd,rylg
(12)

and Az[t) ig the "background" Heisenberg operator of the case
lz=0 . /4»( t =C) =AHy . The "backgroung" in (12) origirnates,
e.g., from. electrons which can sppear in \/z’ at t> 0 due to the pro-
cess n4[)+e“ﬂ/ , the process being the virtual one becsuse n 1is a
stahle bounded neutron.

To calculate (I2) one has to find the Heigenbers operators

Yop (KHland 4 (XF)  because
Al e) = Ju'x 3. ‘//:*('i)f/[fy‘ 3, M, (i,j?)%lz"v (52 (12)

see (9) and (II). Note that ” may be omitted in (I4) because /7%'21:‘//.‘2’
see App. A and B, '

"To find the Heisenberg operator ‘f/e (;, t) "means expregsing it
in terms of all Schroedinger operators ¢, L'i)' W, (%), lf/l;,{;)’ h (%)
or, equivalently, in terms of the Schroedinger creation-destruction
operators (because the former can be expanded in terms of the latter,
see (20) below )., This expression allows one to calculate (I2) since
we know how to calculate averages of the creation~ destruction ove-
rators in the state CP’ see below.

3.2.50 we need equations for the Heisenberg operators ard their so-
lutiong. The equations can he obtained by using ¥ :—b[% HJ;

[“:)}//“9/“ + MV)H('/V,] =‘2— &/E 05”6/} [J}”'I 0%?.] , (15)
(’[/’//,‘:3“+Me)%?=— 6/4'3_' [%,? 0%?}091{,? . (16)

(i3 +mar UGY) s, == Sl Oy [Gi O] D)

The equation for 9}1’? is similar to (I7) : ([L(X} is the
effective potential which binds nucleons ir the nucleus. The equati-
ons for the "background" Heisenherg operators ( SU without the sub-

9



script g ) differ only by omiseion of the term # in the equati- ving the came power of g . We obtain

on for (ﬂ, .

. 5 N ' MU ' . 2
o iet \/Jgdx’%»;}‘ite the eguations in the following 1ntegral‘ fornm, (f“'[ = (]I)j + fSy// : %-’ - }ny , (22)
. b © _ pt_ ) o)
\F (XZ‘ L[)u (x*é) f [[y f& Sy(x-;(}/z(j).f ):I 21 —% “%( ’ J;L/‘ “Wf }y(l‘} (23
(15"}

e 941,58 § ) [y 1) 0, (5)] Oay3) - | %“’=f&v0%"f%f‘a%*1=%”’) (o)

- i) Fo= "t ; - » .
%?(x,t}:({ef(x,ﬂ +9 ), da, 4% S‘,(x—#)[%?/y)lg%?(y)]0%@,1_ f S, [%fa f]ﬁ%() _

(16°)

P
=)

(25)
. ~ ' o { w (¢
The equations for %97 and ¥ay are gimilar to (I6'), let . Note tha‘t (i differs from ) , see (25), because )1{,7 differs
ue call them equation (I7:.) and (I8’), respectively. The fj‘llowing from 4‘71/,,{“’ , see (22):
notation: g=GN5 , X=(x¢ s ys(g,t) was used; (/7 are solu= )
tions of thg corrisponding D)irac eq%at%ons in the case ;u= 0 and e (x) /‘l SL (X-y)[l/’flg) ﬁw%[‘tr/)] o yf(‘gf/ (26)
G = 0 ("free solutions")., They can be represented as 3.3, Now one can calculate AMQ , see (I2), (I4), in the
i ) } o ) - first nonvanishing approximation. Using y/f_,,j y/(l) ,74 ?ﬂ(‘)
Spi’[,’f): f/ljx'[’f S(X, ¢ ; X', ()).,"u(x') . (19) and analogous expansion for (ﬂ? , one obtams

' - a Nt =[d% fdi« 2 ).
see, €.8., (8.67) in /31/. It follows from (I9) that 7‘”7{(",“/ coinci- / Z"ﬂ ‘zu“ &)
des 2t t = O with the Schroedinger operator 5[/(") « Therefore, <CP}9/C;/; ;,‘t) ‘IUC?« (;:l‘) _ %j; [; f}lﬂu [;('7‘/> ?VE{")
, o i AR pX=(27)

the Heisenberg operator (p[x,t} at t = 0 also coincides with tf’(x) :

3 ’ r - N
e terimin § e anothen vaomm vepresentavion ot -t v’ the =[x Jd YOt | gty ey
e presentation  of W as the qje? %2 % %(&} +
expansion over (Schroedinger) creation-destruction operators, e.g.
("H’ (I © u)
‘f/ef(xt ja ,2 l_“(/%’)f(/) “Ep )d + U"{'/)r)e‘(/”“' Et)y ] (20) _ +§(‘1U ) %(HSUC ) + Ce. o+
7 # [t},{b)f %p) ‘{(o)fsu&,) + e c .
Here EP:I//:).’fml . Analogous expansions fdr t/{,f and %f must + g ( i Z'I/[" Wfq/u)) wa
contain spinors and Vv which are the solutions of the time- The term o% the order isappears in (27) because ()U,?) “ ,
independent Dirac equations with the nucleon potential. So the ex- see (23). In all the terms of (27) one may replace e("’_?}l' % by
pansion must contain also.the sum over bounded states. the positive-energy part ﬂ%f , see the note after (I4). The
One can represent the Heisenberg operators SV(X t) in terms part gives zero when acting on P . I'H,Véff{):(} and (@ l(n%*)*:()
of L/Jf(x t} using the perturbation approasch described in/36’37/- . (recall that P 1ie no-electron state)., Therefore, the terms ~
Simultaneously, the Heisenberg operators will be represented in terms j and also the next to the last term in (27) disappear. So using
of the Schroedinger ones a{/()f} or a,bt, see (I9), (20). o (25) and (26) and noting that (CPISI‘]’)zﬂif S contains an odd
Iet us expand ! number of fermion operators, one obtains ;
- n -
tp[x):;nw ? ()p(n)(x) ) x=(xt) (21) i A%(f/=<4>12+tzlcn>= L RPI*, (28)

insert the expansion in (I5’) -~ (I8*) and collect together terms ha-

10 n



Rsfdlx'l}’g’t(x’)fdzS;(x'-j)[ﬁ,}(y)ﬁ%f(y)]ﬁf//‘;_r_g[y—ﬁlwzj- (29)
The vector R47~,i?;f %}&;D in (28) contains components of two
types : I) one proton in all possible states, no other particles
( l;U-’ creates the proton, (}’,," annihilates the initial neutron);
2) one proton plus one antineutron in all possible states plus the
initial neutron ( t[{,f creates an antineutron). All components I) are

orthogonal to all components 2) and
AN = AN s () = IR p|I*+ IR, U2, 30

t

I R,fPszZ,,,.,ﬁi’x tly%mgdiufd;; Se ["g")&,ﬂr(ﬁ)etg"?" (31)

1 X 2
Quitgle™ ¢ 0 [T, (4% S (5-2) pe) "

Here u,,,-[g) is the proton spinor of the energy E}. s U, (4] is the
initial neutron spinor of the energy E,<m, . The quantity gAM(t)=
:n R‘qa”’- is the inclusive probability to find the electron of

the process V+n-»p+€~ in the state ({22 : one does not obsgerve the
proton and therefore, the surming 3,. must be performed over all pro-
ton states; AM(t)z l Q;“P”z is the inc]izsive probabi]ﬂ.ty of_finding
the electron of the process V+N->ntp+n+e (or ¢-> h+p+e” becau-
se the initial neutron is not affected). This process takes place

in the finite time interval (0, t ) and neutrino and electron states
are not plane waves. Therefore, the energy-momentum conservation doeg
not forbid the process absolutely.One can avoid the discussi.on of the
contributiond N‘z assuming that our detecting measurement allows one
to separate the probabilit¥ AA/i to find the electron without the
accompanying antineutron X/,

3.4. Let us discuss the obtained result for 4Aj(t)=|| R,QDHf In the
r.h.s of (31) one has the product of the function 9(9/%”(“2"2,,/1'1’25,,‘.‘/‘})’}13/
and the function Lt,.ly):u,,ly)eX/J[-iE,.lvl,,). The function Sy(y_;) is
known to vanish if the interval (y - z )° is space-like, e.g.,
see /39/. Therefore, 9(#) vanishes outside the future lil.ght’ cone
of V_g . The latter 1s defined as the set of points y:[ﬂq,g,) such

x) Note that a similar situation occurs in the case of the photon
exchange between the external current (the photon source) and
the atom (the photon detector),seethe footnote in seect 2 of the

author paper /3
12

e o

that y, > 0 and all intervals (y - z)2 are time-like with respect

to the points 2:(:2',[]) , ;'.:E l{; see fig. I.

Fig, I.

t
i
X 7
The forward light cone .of VS

ﬂth A f
,/;// DI
/// Lt is shaded; the support of

//’ U (5,t) is dotted,

<}

- The function d,,(g') is localized in the four-dimensional region
gel/n o, 55>L7 . The product of_b’(j}. and U,,(g) does not
vanish only: wher: supp uh(g) can intersect with supp B/g) , i.e.
at t > t =R /e, R, being the distance between Vi and v, :
R, = min [Z-F), 2¢ ge V, , see fig. I. So Al% vanishes at
t < R,/c. If Unly)l  ie nct exactly zero outside V, then 4A(¥)
would not be exactly zero at t« Ru/c but it is evident that this
would not contradict the causality. One gets the causal result within
the precision of the neutron localization, The precision is related
in no way with the Compton wave-length of the signal carrier, the
neutrino, )

Recall that the electron of the process V+I‘l~—'/3+€‘ is detected
ir the region VD approximately. Note that the Va dimersion ig of
no importance for the obtained result (actually the V.

% dimension is
much greater that the V, dimension).

3.5. The above caiculation has been performed in the Heigenhers
picture. In sect. 3 of /38 I have calculated the inclusive quantity
similar to Aﬂé in the usual interaction picture. This was dcne for
the case of external current —> photon—>detecting atom, The calcula-
tion turned out to be much more cumbersome than in the Heisenberg pic~
ture. It was demonstrated how in the final result there arized the
strictly causal photon D function ingtead of the Feynman propagation
function D. which naturally appears in the interactiocn picture ang
does not vanish outside the light cone (see equation (33) in /384.
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An arbitrary state of the fermion is g superposition of positive-
ernergy Dirac states
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@, (x) =le3/3 z‘_:,'z-ﬁ}l/‘)) U, [ﬁf)zZX/a(L'/ix‘) L p=4239 . D

S Pt mlu(pr)= Byt (pr) | Ep=liftent ] (am

Fourier transforms of (//,‘ (x] describe the same state in the
- momentum representation

Y (5) = (am)7 [d% ¢,,(,ﬁ}e,x/; (epi) (A.3)

Bp)=5,.,, Crlp) b lr) - (3o

Four functions ()Uﬂ (Xx) or %, (P) are not independent because
they are determined by two arbitrary furctions (¢ Iu) only. Cne can
VeI‘lfJ that )’é (P) satisfies the equation

¢,‘ ﬂ/“,¢ \ y})rﬂ/“,Mf)ID tmt ‘S V)/Zm (A.5)

where [] is the known pesitive-energy r\rodertor. Equation (A.5) i
equivalent to (O(P ﬁm}¢ E ;}ar" will be used instead of deallr\g
with the explicit solutlone U, (,D,/‘) of equation (A.2),

let us show that the four _u ;tiont// (X) carmot ‘have bounded
supports so that /)(x)_z [([/N[x)[ cannot vanish outside a bounded
volume V .

Suppose the contrary. Then éﬂ (P} , see (A.3), are entire
(analytical everywhere) functions of three complex components /& ,

Pl . [J; of the momentum P , see the theorem IX.I2 from /40/

Then ( 11 J. also must be entire because ¢:/7 S . But actually
(n ¢ ),, are not entire if ¢/« are, because /] contains the functi-
on |/P2-+m-‘ which is not single-valued (and consequently analyti-

cal) everywhere. So our supposition that /u(x) can have bounded
supports is not consistent with the equation ¢= ﬂff . Por another
proof see/“/. '

The result can be improved by using the theorem IX.I3 from
I shall use its particular (onesided) variant:

/40/.

"Let f(X)E}f(RJ’ and let ][[')cxp(é" %] EZ,Z{R‘ Jat all b < a .

Then f(P) , Pourier transform of f(%  , is analytic in the -~
tube region 3 Io fImp’ <a } ". - :
Note that 7((,,) has one more property which I do not need.
To apply the theorem to our case, suppose that jf{x)a’3 <99 , then
SU/“U,ELL for M =1,2,3,4. Suppose thatl%,lx)[<CﬂeX/)[-a.lXU
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outside a volume V . Then all premises of the theorem are satisfied

for Yu , in particular %(;)exp[{-} i¥le/’for all b< a . So fbﬂ(ﬁ}
must be ~enalytical in the tube

[Imﬁl =[(Tmp,)" +/fm,01)1’1. ({[m/J; )if/z< a -

Let us show that the supposition a > m contradicts the equa-
tion -I7p . Indeed, if the functions ¢/u are analytical in the
tube (Im 5l<a , then the functions [1‘] %}/“ cannot be analytical
there because due to 1/, +m* the functions ﬂ/mz are not
analytical in the region (Impbm , in particular when m<(Imlo f<a
(see below for the proof of the statement). The obtained contradic-
tion means that | ,.l cannot decrease outside V faster than
Cl‘exp(-q{il):C/,.gx'p[-m[ifg)[)‘d) s where £>0 . The smaller
is £ , the stronger is the restriction for Spﬂ « It is.possible
that the restriction can be further improved by other means, e.g.,
one would be able to show that )lf)ﬂ[ cannot be smaller than

C/“ IX1"2exp i-m IX1) " outside V .
I still have to prove that [Tuv is-not analytical if[Im,E})m‘
i.e. I should prove that Vf' tin? is not single-~valued at[Impl> m,

The set of the branch points of \/ 24 ma (the cut origins)

can be found by using the equation p *P‘*Pﬂ'” =/, Let PK ﬂ“*"o}
and rewrite the equation as

sz,:'=ml+2kﬁ,f ) Z-K_PKO)KV:U > _K5112/3 - (4.6)

To describe the set, I use P /92 and P as running variab~-
les. Then, the first equation in (A.6) shows that [G) = [Imljbm at
all f).( . The second one means that G.LJD if ]5 and ¢ are vectors
in the same three-dimensional space. The function m has no
branch points in the region [Imﬁkm «The cuts from the branch points
must be directed to the infinite point : this gives the needed branch
opr’-fm’ which is equal tow’_:;ﬂ_ both for positive and negative real
values of Py, [4,P3 - So the branch points and cuts are outside the
region [Imp[<m « In particular, they are present atmélImp[Sa if a> m,

So the following fact is proved: if f (X)d*x ig finite, then
j)(x) cannot decrease faster than Cexp( ,2[I+£)l)(|/,\\ outside a
bounded region (in particular, at [X| 0o ). Here £ is positive
and can be arbitrary small. This fact determines the possible appro-
ximate or effective fermion ldcalization.
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Appendix B )

By definition the projector ] » see (A.5), is equal to the
sum of projectors onto two independent positive-energy solutions
of (A.2)

M (=2 U B A), 3, wr(fr)tpdfis)=§, - (8.1)

In the momentum representation the projection with the help of
}]M,(ﬁ) is realized by summing over ¢ only, see (A'S)f without
integration over momentum. This means that f7 is diagonal in the
momentum representation

”,uv (P) 9) = n/uV(P) S(P ?/

(MELGI =[5, M (63) B05) =5, Muiiipoiy . @D
" Therefore, in the coordinate representatlon one has
M (B35 )= (27} [d' (i e /7,‘,(/1,;)5‘7/- ’ 5.9)

=(2m) [4*p ¢ ‘PEI 0, (5] = 1, (3-4) -

Here, one can use (A.5) or (B.I) for n y(P)

Using (B.I) one can verify that{l‘ll,lfe)/M (see (20) for ¢ is
equal to A,.(x) , see (II).

The spinor ([Jz in (9) which is lLocalized in and near- V, can
be represented as (/J (x)= 14‘#2 17/“"“'5)€ (5) where’g" (y}ls superpogi-
tion of positlve—energy and negative-energy spinors such that
Suppg;- bg s = I, 2‘3,4. It can be shown that

| l{)/% ()| < const exp (-mp) (B.4)

at _P >> 1/m , where is the distance between )? and l_/g)
p= min[i—g) VY€ Vb, . Let us note. that according to App. A l&)D o3l
nmust satisfy simultaneously the inequality

“f",“ (X)l> exp(-m(l-rg)/J) , £>p -
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