





I. INTRODUCTION .

Even . Gell-Mann  with his powerful quantum intuition
considered quantum mechanlcs as the most un1ntu1t1ve sc1ence
So there is a great need to make the behav1ourv'of the
nonrelativistic microworld more predlctable The new exactly
solvable models may be extremely useful here. One such a .
simple model is suggested in this paper. o

It is instructive to compare the peculiarities of Lhev'

wave motion in the ordinary and in the discrete quantum -

mechanics:{1]. In the: last case ‘we can use the finite-
~difference Schroedinger equation with the step A = X ..~ X,
.Cxﬁ =.n 4; W(th'§ ¥Wn); hen=m=1): :

- [¥n + 1) -26(n) + Wn - 1)1/24% + V(o) ¥n) = E ¥n) (1)
instead of the differential one
Ll e+ Vo W = Ewm e

It is important to mention that eq.. (1) can be con51defed
‘here not as a finite difference approximation to eq. (2) but
as an example of equatlons for the descrlptlon of the wave :
motion . ‘along the lattices. It is supposed that ,_Lhe'»
discreteness of the variable corresponds here to the genuine
nature of the described object. -~ ' -
The special feature of the "discrete Schroedinger
equatlon" (1) is the f1n1teness of the width of the allowed
energy zone. It is most clearly revealed in the case of free
motion (V = 0). Both equatlons (1) and (2) have.the forbidden
zone for the negative energy values. For E < 0 the equations
(1) and (2) have the exponentially increasing or decreasing.
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solutions exp(*xx); exp(wn) with real == (-E)t72,
. # = arch(1-EA®). This can be verified by direct substitution.

For E > O there is a continuous spectrum with oscillating

solutions: linear combinations of exp(*ikx); with k = (E)*7®
for eq.(2); and of exp(+1kn) with k = arccos(l—EAz) for

eq.(1). But unlike eq. (2) the continuous spectrum of eq.(1)- 3

is bounded by the upper forbldden zone (see for example [11):

E<an®, see Fig.1. with a sandwich” type structure of - ';
- zones. Above’ this boundary the solutions of (1) are .

~forbidden zone

o) LI g,

dllowed zone
- has the* horizontal allowed

~forbidden zone forbldden -Zones.

combinations of exp(*inn *n) with % = arcch(EA®-1). That is

they have exponentially increasing or decrea51ng oscillations

above this boundary. For V(n) = Vo = const the allowed zone a

is obviously shifted by V.

The introduction of the "linear potentlal V(n) = h'
causes the inclination of ‘the allowed zone (see Fig.2.) "so .

. dthat for any fixed energy the waves are confined between the
lower and the ‘upper inclined boundaries. ‘Indeed, = the
‘character of the solution (whether it corresponds to the

‘allowed or to the forbidden zone) -can be determihed on the

interval including three nelghbourlng points accordlng to
. €q.(1) where the potential value is used at the middle point
only The width of the ‘allowed zone depends on A and not on
V. The variation of the potentlal vin) merely shifts the zone
, boundarles at different points n. For the linear potential
d the ‘allowed zone has the correspondlng linear boundarles

- The spectrum of the b
free motion over the lattice

0 .
///////////////////Xn zone between lower and upper\f:

S Fig. 2. The potential”
V linearly dependent

£ on the spatial .
co-ordinate - causes’
Es "the inclination of
A the zones shown on.
Fig.1. So for ™ ‘a
€t fixed energy E waves
£ have to oscillate
o between the  two
£, forbidden zones.
‘ There is an unbound—
£, j? T _‘ ” ed spectrum of equi-
n -
{ ////1/ distant levels E =~
{ , ' 1+nz; n=...-1,
' o, 1, ... .

As it will be shown 1in sec.Z2, vthe solutions’ of the .-
correspondlng Schroedlnger equation are the Bessel functlons
J (z) with the discrete variable a playing the part of n 4ih

,eq (1). The Bessel functions with the integer a are. ‘the boundf

states (quadratlcally summable standing waves; see Flg 4 ).

Their spectrum is equidistant (as for the osc1llator w1th the
continuous  co-ordinate) but unbounded: Em——+ . as
m — * o The behaviour of this spectrum by the variation of
the steepness of the potential slope of the suggested exactly
solvable model allows one to understand the pecullarltles of
more general quantum systems. For example, the discrete
oscillator well has the spectrum resembling one for the
square well with the.contlnuous co-ordinate. It becomes also
clear what perturbations of the potential . are required to
change the spectrum in the desired way (new aspects of
“spectral engineering” in addition to those considered in
[1]1). So we can produce a gap in the spectrum (Fig.® or “to
install an interval of dense levels in it (Fig.7), To 1nstall
bound states above the contlnuous spectrum (F1g )N ’



2. BESSEL FUNCTIONS

The first notxon about the Bessel functions as the

- solutions of the finite-difference Schroedinger equation
appeared in [2]. After that they were considered by [3] but
only for infinite potential well. It appears that much more
benefit can be achleved from exactly solvable models with the
Bessel functions. : :
The well known recurrence equation for the Bessel
functions - ’

Jgey (20 + I (@) = (a2 Jf2) , = (3
can be cons1dered as the finite-difference equivalent (1) of
the Schroedinger equation - (2). Indeed, rewriting (3) in

another form (by adding and subtracting 2Ja and dividing both
sides of the equation by 2A% = 2) we get

g, (23 - 21 (23 + J, Cz)}/2A2 - (avz) J (23 = J (2). (31

This is the f1n1te-d1fference Schroedlnger equation where the ;

part of the discrete co—ordlnate of the conflguratlonal space

plays the index a as ‘n in eq. (1) with the step A=1,

fixed energy E = 1 and the potentlal V(a) a/z ‘that is a

linear function of . | o
Two linearly 1ndependent solutions Ja(z), Ya(z) of eq.

(3 or 3’) are shown in Fig.3 (see [4], Fig.9.3). These Bessel

V{e)

Ja, “lFlg 3 The dependence
on index a of the
Bessel functions of
the first and second

o k1nd J (z) Y,(2) (see

 Yali0) (2] Fig.9.3). =

/

< Jxf10)

functlons of different k1nd with flxed z decrease and
1ncrease correspondlngly as functlons of index a inside the
potentlal barrler V(a). Thus from a phys1cal point of view

Y, are rot approprlate It may seem that J, is also

4

fphyslcally unsu1table because the amplitude of osclllatlons
of Jy is increased inside the upper forbidden zone (J is

swinging more intensively with a moving to the left as we see

in Fig. 3 ). Actually, there is a continuum of solutions

represented by J (z) Y, (z) in the Fig. 3. Choosing discrete
values a with the stepg A=1, we. get the a-lattice .and

relative discrete values of J (z), Y (2). Every shift of this
‘lattice: «a 4—»”d a+te <1 g1ves a ‘new solution- of

eq. (4, 4°). For the integer .a the functions Iy sat;sfy the
condition ([4], eq. 9.1.5): ‘

. ~r_4Ct . :
J_a(z) = (-7 J,(2) v 4

‘this provides the exponential decrease of Jo with integer «

for a — -a . So[; among the contlnuum of different

:functlons J there is a countable manlfold of physically
:acceptable functlons which are bound states confined between
;both forbidden zones (see Fig.4). These bound states form the
,equ1d1stant spectrum because the energy :shift dE ="1/z is

equ1valent to the shift of the a-scale by éa =1 due -to . ‘the
11near dependence of the potential on «: V() = az.
It is convenlent ‘to  number the bound- states-

W (o) = Ja N 79 () =] otn - rhose J  which have- fractlonal a
'represent the unphys1cal solutlons for continuum of ‘energy

values between these levels W(E=e¢tn/z; a) = Ja+€in ie< .

It is easy to predict, in accordance with Fig.4, that in
the limit z — o the discrete spectrum of eigenstates I

- becomes the continuum band as is required for the free motion

along the lattice, and in the limit z — 0 there will be no
levels (zero density of levels). '
The model under consideration allows the variation of

,the value of the flnlte—dlfference step A: The change of A by

factor s is equ1valent to the change z — z/s%, E — E/s®
So, the decreas1ng of A accordlng to Fig.4 makes the spectrum
more dence as the increasing of z. ;

If we changed the boundary conditions and install an
infinite potential wall at a = 0 , the bound states would be



' Fl? “Bessel functions
z) as

bound state wave

functlons on -the lattice
a=0, 1, 2, with
linear potential Via) = oz
for different values = of
1nc11natlon parameters
1Ca); 2 (b) 4(c) and
flxed energy value E = 1.
The exact sense have the
point values of J (z) only

Em

and the dotted llnes are

introduced merely to

connect these points. They
emphasize the ex?onentlally
decreasing inside

both the forbldden zones
but with sighn oscilla-
tions in the upper one.
- For a less steep slope
(b,c) the equidistant
spectrum becomes . - ‘more

“of the levels E ‘in"the

r1 jht-hand side of Flgs
a,b,c). All bound sta

functions for the fixed

‘..A potential are equivalent

_oc up to the shift of - the

co—ordlnate a.

|

2|

U

dense (see the ladders.

those J, with the fractional « which are zero at. a =0 (see
(3. But with increasing level number they become more and
more close to our Bessel functions with iteger a. .
All bound- states J for fixed z are identical up to the
a-shift (invariance for translations along the potential
slope). Orthonormality condition -and completeness relation
coincide due to this fact (see Appendix):
Q=+00 o

| | a_g; J (s) Ja(s) =6 . (5
In the case'of the continuous coordinate x the physically
meanlngful solutions of the Schroedinger equatlon are the
Alry functlons shown in Flg 5.

? . Airy function - the

ut.ion of the Schroedlnger
equatlon (2) with the linear
potential V(x) = x. Compare
with its discrete analog Ja

«~ on Fig.4 and Flg 3. The!Air
- solution no
uadraticall 1ntegrable ‘and

- describes the .wave. .which
unlike Ja ‘flies” away “down

the potential hlll

' ® fx)

v&)

The  inverse ‘problem - approach. [1] allows the
transformation of spectra by shifting a finite ‘number  of
levels-and providing-the corresponding perturbation V(o) —
V(a) + AV(o) of the potential and new eigenfunctions in the
closed form (new exactly solvable models) expressed through
J,{z) . In the case of the continuous coordinate x this was
done by Calogero and Degasperis [5]1 and Grosse and Martin
[6), see also [1]. : o

The intuition which we get considering - the exactly
solved model of the Bessel elgenfunctlons J (z) allows us to
make qualitative predlctlons about the transformatlons of the
linear potential requ1red to change the 1n1t1ally equ1d1stant
spectrum. So, a gap in the sequence of levels can be produced”
by addition of a step potential :

7 .



{o for o < 0

Vi) = . .
: Vo for a2 0

as is shown in Fig.6. To the vertical part of - the potential

V(d) E Em.
_]
— Fig.6. The ener a
— Mingthe level ‘spggt?ug
—{ produced by the ste

perturbation
~which is shown in the
‘lower part:- -of the
figure. According to
Fig.4,  the rarefying
of the local ' spectrum
can: be -caused by
rising the steepness
of - the potential
slope.  The ladder .of
.energy levels E 1is

< ~ shown on the right.

RN

;-'Avr(o:())é‘

éhape (maximal steepnésé)fthere corresponds ihe zero density
of :levels. ‘It is worth mentioning that unlike the discrete
quantum mechanics it is impossible to produce" an arbitrary
gap in the spectrum by a local perturbation in the case of
the ordinary Schroedinger equation - with. .a continuous
co-ordinate x. e ) e
‘ The.tightening of the. levels in some:.region is caused by
a beveled step potential -

, 0 for a < O
V() = { g for 0<asN
-Vo for a > N
as is shown in Fig.7. , ,

So Figures 4,6 and 7 provide us with 'the intuition of
spectrum structure for the arbitrary shape of the external
field on the * lattice. Numerical calculations confirm the
predicted behaviour of the perturbed spectra as is

AV(a).

Vi)

E

Eq Fig.7. The local level

RN

“horizon
.- allowed

condensation is caused
by the. perturbation
AV(x) Eroducing the
al part of the

zone in

. accordance with Fig. 4.

QUalitatively shown in Figs' 6 and 7.;ﬁFor example;’ i£ is
evident that the spectrum of the discrete oscillator with the
potential V(n) = n® on the half-axis (n2 0) is rarefied at

!

Fig.8a. The discrete
- oscillator has the

upper forbidden
zone = inside the
potential well

(dashed linel). The
. upper. levels are

3

¥ « almost degenerated.



hlgh energles due to ‘the increase in the steepness of V(n) at
larger values of -n unlike the equidistant spectrum in the
continuous case. The upper energy levels E_ are proportional
to m®- 1. This is almost as for the square well with the
- continuous co—ordlnate The -discrete oscillator on the whole
axis (n =0, __1 +2,...) has additional energy levels
corresponding to even eigenfunctions (symmetrical relative to
the origin). These new levels become more and more near to

ones of odd states with the increase -in energy (Fig.8a). It

is also worth noting that “the inverse discrete oscillator’
(Fig.8b)with V(n) = - n® has the symmetrically reflected
spectrum of the direct one (reflection relative to the point
E = 1) unlike the  continuous . .case: The unvisible upper
boundary of the allowed zone 1s 1n this case outside the
'potentlal hill. The dlscrete osc1llator spectrum is also
changed if the mlddle p01nt of the well is posed between the

£ V()

~oscillator. Its upper
forbidden zone is outside the
potential curve. It$§ spectrum
is the reflection of one in
the Flg 8a with respect to
the point E = 1.

Fig.8b. Inverted discrete

discrete cofordinate values. Another example ’cf such a
spectral symmetry is shown in Fig.9 with - discrete. bound
states above and under the continuous spectrum.
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_Fig.9. Potential barrier (a) and well - (b) ~with" bound
states qabove (a) and under (b) the continuous spectrum. The

er boundarxes of the allowed zones are shown with:. the

up
Eted lines here. The wiggly lines denote the bands. of * the
contlnuous spectra

The wave functlons corresponding-to some‘ bound states
for potentials in Fig.9 are shown in Fig. 10.- Solid lines
there are wave functions for E Ez, Ee (for bound  states
below the continuous spectra: a b, ¢ ; and for bound states-
above it: a’, b’, ¢). _

The consldered f1n1te—d1fference model can also be thep‘
step to the better understandlng of “the corresponding
multi-dimensional systems and the systems ‘with the perlodlcal
plus addltlonal potentlal (for = exact solutlons with “the

continuous variable for periodical plus llnear potentlal see
the paper [71). -

11



bl
. .Fig.10. Bound states under (a, b c) and above (a’, b’,
¢’y thg continuous spectrum for potentials - ?hownd in
Figs.Sb, ga,correspondlngly The symmetrical states dalan a’ .
b and. b*, ¢ and ¢’). are equal ,up o the sign. Dashed lines i
b, ¢ are -¥, and in a‘’, b’, ¢’ are +¥ from a, b -¢. The lines

are only connecting discrete values-of ¥(E,

12

CONCLUSION , ,

The suggested model is a new one of the set of exactly
solvable models [11- reveallng the rules of :spectral
engineering: - construction of quantum systems with,“.the
arbitrary allowed spectra: . : : A

The experience we get with the Bessel functions can be
applied to the consideration of the. 1nterchannel motion [8]:
motion over the discrete co-ordlnate numberlng of the coupled
Schroedinger equations.

The authors are thankful to A.I.Shirokova for numerical -
calculations which allowed to make . clear some 51gn1flcant
detalls of the f1n1te—d1fference solutions..

APPENDIX. COMPLETENESS AND ORTHONORMALITY OF 3 (2.
At first, it is easy to ~check that both the

orthogonality and completeness conditions

a=+0 " n=+00
Y W (a) W () =6__ Y W () W (a’) = 6 (6).
nm
a_ [} n=-0 e

can be written in the same form (5):

L@ S @ 6 @

Indeed changing ¥ — J\;ﬂd‘the summépiunHYariables wefge£:

O=+m T Q=+ . AR a=+0 - ..
L 'Iam Joun = Opm — L Juimn Jo —™ L Jawp']a':

a=-0 ’ o’ =-0 g _— a=-

= 6, which is the same as (85), andfa‘iu,ayrlb'gOuSIyi

n=+® ' = +00 o B—#m ' o
n=-m " '—’ ﬁ_?mjﬁ ’3+p 6 -o-

- Now let us derlve the orthogonallty condltlon Accordlng
to eq.(3) we have

J (z) +J, 0,2 = Ela + m)/z}‘Ja+m(z) , (7

O+ m+1

13-



anﬂ(z) + Jw'n () = (@a + nv2> Joun(@ . (&

Multlplylng eq. (7). by Jo (z) and eq. (8) by Ja+m( z),. and
summing .them over. all a we get the same expressions in the
rhs. Subtractlng the resulting equatlons we get: -
e A=+ :

: {2(m - n)/z} L J,.. 22 J aZ2. =0 . N 4°))

‘ o=- m
ThlS 1mp11es for m#n the orthogonallty condition. From .the
_ well known integral representation

T _ .
Jn(z) = 2% _i gxp(iz sing + ing) d¢

- we get the normalizing condition (using ¥ exp(ing) = 6(¢)):
. n
a=+m

r J (z)lz =1,
o=-0
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