





1. Introductlon ) .
~The experlments w1th Ar and Cr 1ons [1 27, have demonstrated
ban enhanced a-partlcle y1e1d whlch cannot be explalned by the
'evaporatlon from a compound nucleus (2, 3] The decay of the
_d1nuc1ear system, whlch is formed in th1s reactlon, was ex-
pected to happen with hlgh probab111ty due to dynamlc reasons
(;[4], before the system equlllbrlum is establlshed. ; .
: In Ref. [5] one of possible realizations of that assump-
tion has been discussed. It was established that when increa-
sing: the'vmass-asymmetry n=(A1-A2)/(A1+A2), where A1 and A2
are the fragment mass .numbers, the forces :arise .which. make
the system approaching the decay barrler. The source of these
forces is the coupling of the radial and ‘mass- asymmetry modes
_of, motlon. In [5] the parameters of 1nert1a of the dlnuclear
system have been obtained. The coupllng of the R and n-modes
ihas been found to be weak for near symmetrlc conflguratlons
- and it enhances strongly if m increases.

" - For s1mp11c1ty the coupllng of the R and n-modes has be—
en treated c1ass1cally in [5], e.q. the Newton equatlons for
the averages have been solved In, that approach the cons1de-
ratlon .of quantum fluctuatlons has _been reduced to the renor-
: mallzatlon of the rad1a1 potent1a1 by the zero-polnt v1brat1-
‘on energy The temperature 1nf1uence was not con51dered More
co'rectly the fluctuations in rad1a1 motion can be. taken 1nto
account if the ‘evolution of. the system is descrlbed by the
Fokker-Planck equation (FPE). In the diffusion approach the
dinuclear system evolution is described by a small number of
the collectivehvariablesfwhich interact with a "thermostat"
formed by the remaining degrees of freedom. The adequate dy-
namic equation of this model is FPE for the distribution
. function f(q,p,t) of collectlve coordinates q and - con]ugate
‘momenta p.

c The d1ffu51on model has been found successful in the
Vdescrlptlon of the distribution of deep inelastic colllslon
products [6] and the fission fragments of an exited compound
nucleus [7]. In this connection, the methods of solution of
FPE have been elaborated.
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As noted in [5], due to the nucleon transfer from a
light'td a heavy nucleus the dinuclear system removes to the
potential barrier. In this work we shall consider the depen-
dence of the distance R between the fragment centers on the
mass-asymmetry in the framework of the diffusion model which
allows us to take into account the barrier penetration, gquan-

tum and temperature fluctuations.

2, Model
In the notation of the Ref.[5],
Hamiltonian of the dinuclear system in the following form

we take the collective

1 -2 1 *2 .
- —_ - B_Rn+ V(R (1)
Hcdl 2 HR+ 2 Bnnn RT n ( 'n)'.
where u=mA1Az/(A1+A2) is the reduced mass, V(R,n) 1is the
potential energy,
. . .
Bnn“€+Bn’ Rngu : ,

Expressions for Bn and € and their values for the considered

reactions are given in ([5]. The method of calculation of
V(R;n) is described there as well.

So far as the tensor of inertia doesn’t depend on R, the

FPE for the distribution function f(R,h,pR,pn,t)
corresponding to Hamiltonian (1) has the form
af _ _, af _ _ of , _ov _of
3t = ~ (BeePrtHay n) 3R (HynPy? Rnpn) an’ 3R ~op_
au au au : of ‘
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Here 7 is the radial friction coefficient, D is diffusion
coefficient connected with 7 by the Einstein fluctuation-

‘dissipation relation
D= 7T : (4)

: * :
-where T is an effective temperature,

P

R T
T

% hu& [ hwR]. (s):

T = — coth 5T

the
-is - inverse  to. the .

In (5) hw /2 is the zero vibration energy, T is

thermodynamic. temperature. The tensor u”

tensor -of inertia of (1): ,
—6 /B + 1/u , "€/B ' “hn= 1/ﬁ ' T (6Y
To 51mp11fy the solutlon of (5) we take the average
value of 8V/dm as it has been done in [5]
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Qhere Vlﬁf) 1s the value of the dr1v1ng potent1a1 in ‘the
initial A2=A2 A= =A +A,. In this
case the motion along R and n-modes takes place in the valley
on the energy surface. k

(f1na1 A —A ) conflguratlons,

One of its walls is infinite and the
other has a finite height. Therefore one can notice that our
task is similar to the consideration of the descent of’ the
fissile nucleus from the saddle-point to the scission 1line
[7]. Since the motion along collective variables is almost
classical, one let us search the FPE solution in the form. .of
a multi-dimensional Gaussian with the time-dependent parame-
This method is called thewGloba; Momentum Approach [7].

The Gaussian distribution is completely determined by 'its

ters.

first moments,

g,(t)= [qear, (o= [prar (8)
and second moments,

2,,(8)= [(q,-3)) (q,-3,) £ ar= x,,(t),

v, (t)= [(0,-B) (B £ ar=w (), (@

b0 (07 [0, 7B (9,5 £ are v,
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where i,j=R,n and dI'=dR dden dpn.
Since the dependence of f on R has a particular interest



for us, we suppose for simplicity

f(RlT,lpRlpT,lt)=fq(RlpRlpT,) & (n-m), (10)

In this case the fluctuations of m are not taken into acco-
unt. The parameterization (10) allows one to reduce the num-
ber of equations for covariances. The function fq(R,pR,pn) is
a three-dimensional Gaussian. The dependence on Py, is inclu-
ded in f to take into account thermal fluctuations. Accord-
ing to (10) the change of the value of 7m is purely classical.

Using (1) and (7-10) and neglecting the moments higher

than second order ones, we arrive at a system of equations

for the moments. Coefficients uu, 7, D and potential energy

are supposed to depend on the corresponding averages.

dn _ = =
at unnpn+ uRnpR '
dp, av S . 1 a’v X
—_— - . —7‘1 — .- —_—= — 1
dt 3R RR' R RN N 2 aRa RR
dﬁ av 1 auRR =2 auRn -
. = > — (pR+wRR)- — (PRP.,.,'*'URT,)‘
dt am an an
au
1 nm, =2
- 5 ———(p tw__),
2 an m-nm

- - +
I (TR Wy D} '

dt a-}iZ R RT RN
dw au au - au _
RT)_ { RR = Rl = + + UL p.w (11)
— = — p W + — (p.w p.Ww ) — R
dt a7 R RR a7 R R ° N RR am N RN

2
by T+ 2y }
1
e THRnlan Tpz Yegm

dw, au au au
nn RR — RN - -— \ nm = .
‘.2{ — p W + — (pWw +p W )+ ——— p W } '
dt o RRD a0 R MM ° 7 RN a7 n o
. dwaR a2y .
at > Xpat Heemet Han“rn” 7“Rpr R 7“R'nwp R '
: -8R . R n
dwpnn ' auRR - auRn = -
At et Brng@nn~ —= PV, x= = (Pg¥ AP VL)
dt RR RT R NN 87 RUPR 87 R pT,R "R
L ] ) )
au .
_ _T)T), pnwp .
an n

The equations for the first moments differ from the
generalized Hamilton equation by the presence of the second
moments. These terms don’t appear when the fissile nuélehs
motion from the saddle-point is considered ([7]. It is
supposed there that V doesn’t contain the terms with R’ and
momentum covariances are neglected as small values of the
second order. Itkis possible to show in our case that terms
0.5-63V/6R?-xﬁﬂl ip “the eqhation for ER 'co:respond tb
renormalization of the radial potential by the zero vibration
enérgy. It 1is shown _in_ {51 ithat this effect . strongly
ihfluences the dinuclear system evolution. v ' ‘ ‘

' Approximatidn (7) and smallness of £ at the»'initial
interaction stage allow one to consider the R and n-modes as
normal in the definition of the ‘initial distribution
function. Both . the coofdinate_ and momentum  initial

distributions along R-mode are supposed to be equilibrium

a’v ]
aR2 Rllnl

R(0)=K, , B,(0)=0, x,,(0)=1"(0)/| )

0 (0)=T* ()1 (0), ¥ (0)=0.

R

Also along n-mode the initial coordinate distribution is

supposed to be a Jd-function and the momentum initial
distribution is equilibrium {7]

(0)=n', b, (0)=(2T(0)B (0)/m)"*,
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unn(0)='r(0)§n(0) (1-2/m) . (13)

b, 2 (0120, by (0)=0. (14)
In (12) and (13) Ri is the initial position of the radial
potential minimum, %' is 7 in the entrance channel.

It is necessary to supply equations (11) with the equa-
tion for the change of the excitation energy " during the
evolution and to use the following coupling between T and E"

T(t)=(10E" (t)/2)'"? - (15)

As in [5], for the radial dependence of the potential we
use the following simple parameterization

V(R,n)fzm+ (E,-E ) [3[ ;:j_z;m]z— 2( E?EN]‘] , : (16)

where R is the position of the potential minimum; Rh<is the
barrier radius and E (E) is V at R=R (R). Expression (16)
well approximates the realistic potentiql at R<R . At_R>Rb
the function (16) decreases more rapidly than the realistic

potential. Therefore it is better to use the following
dependence at R>Rb
R-Rm 2 R-—Rm 1
V(R,n)=E + (E -E )[3[——7—] - 2[ — ]1] ’ (16’)
b = R,"R, Ryl 1 14(r-R )"

which is sewed (up to the third derivation) with (16) at
R=Rb. The quantities Rm, Rb, Em and Eb depend on 7. These
dependences are supposed to be linear

1
A-A,
1 .f
A,-A,

R R e
(R-R) -(R-R)'

1
AZ-

R -R =(R -R )+ - (A,-R)), (17)

£
AZ

U —— —x

where V:(V:) is the depth of the potential pocket in the
initial (final) configuration. Also we suppose that

EI-EI ‘ 1
g= §+ ———(a,-3)),
A=A
2 2
a1 ~:1—E;1- 1
Bn= Bn+ ———(A~A). ' (18)
AZ—AZ

For the definition of T*(t) from (5) we also use the linear
parameterization

(hw ) =~ (hw)’

_ ' 1 '
huo = (hw ) '+ ———"_(al-a). (19)
A,-A, '

To simplify the solution of (11)
results, the following substitutions

and presentation of the

1-7
2

A2=

2 172
d _[ a® av] d A, FRR

»'dt Bﬁn 635 az !
can be done. »

The distribution function of the distance between the
fragméht centers in the exit channel is of a particular
interest for us. o

P(R,)=[f, (R.PuP,) dp,dp,= (2, (0) ™ Pexp [~ GO

solving the system of equations (11) with the initial
cohdition (12-14) we can find the dependence of the moments
of P(R,t) on the mass number of a’iight fragment A . Note
that the main advantage of the use of FPE for the dynamic
description of theﬂ dinuclear system is the ‘possibility to
include the diffusion through the potential barrier, thérmal
and guantum fluctuations.

3.calculational results
Let us consider the a~-particle configuration of the dinuclear
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All the necessary quantities
The

"window"

system as the exit channel.
entering into expressions (6,7,12-19) are taken from [5].
radial friction coefficient can be defined by. the
7=3.5,10"% .MeV +fm ’s.
in [9] that 7 can be increased more than by factor 1.5 for a

formula [8], However, it is indicated

strongly asymmetric system. The value of ¥ which has been
used in [10] is by one order larger. Therefore we fix ¥ so
that the complete fusion of nuclei was reached at the zero
momentum of collision (J=0h) for such combinations of nuclei
when the total mass is A>200 and the projectile is eithet c
or Ne. For simplicity we shall not consider the deformation

of parts of the dinuclear system.

"There is the term O. 5:’:)3V/a§3 “Zpn
(11) which is absent in the ordinary classical equation. This

in the equation for ER

When the value of R reaches. the
the

In this case

leads"tO' the following.
bend-point of the radialldependence of ‘the potential,
value of X begins to increase exponentially.
the value of R begins to increase quickly: as well and reaches
the barrier (R,) rapidly. This behaviour of R is illustrated
(Fig.1, “ar+'*'au at J=oh.

Slnce our _tensor .of 1nert1a does. not depend on R, then at

solid 1lines) for the reaction

R>>R such calculation loses sense. The d1nuc1ear system can
decay during the evolution to the compound nucleus. Due to
the small depth of the potent1a1 pocket we overestlmate'the
decay probability‘for the region near the entrance channel in
our calculation. That is why we are going to start the

consideration with a  more asymmetric conflguratlon. For

instance, in the reaction Ar+ "Au we start the calculation
2Ne+SFr. character;zed by a more

deep radial potential pocket.

with the .configuration
The_part of collisions
*Ne will

coming
to the conflguratlon w1th »2 appear as the norm
'_factor. ‘

' ) In Fig.1l the calculated dependences of R and X, on A
for the as

dashed lines.

initial configuration
The friction plays the<stab111z1ngvrole and
,decreasesfthe probability of decay of the dinuclear system.

ZNe+*'SFr are presented by.
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X (upper part)

Fig.1l Dependences of

Xpn (upper part) and

(ﬁ—Rh) (bottom part)
on A2 at J=0h, ¥=7x
x10"*MeV -fm"’s, T =

1.17x

=1.5MeV and r =

fm for the sys-
4°Ar+1 au

tem are
presented by solid
lines. Calculational
results for the ini-
tial configuration
ZNe+ ' PFr are pre-
sented by dashed lin-
es. The horizontal
dashed 1line in the

bottom part shows the
value of (R -Rm) for

the a-particle confi-
guration.

Fig.2 Dependence of
and
RR

(i-Rm) (bottom part)
on A2 at J=70h, ¥=7x

x10 **MeV -fm %s and
r"=1.17-2"qu for

the system 2Net+?Fr

in the entrance chan-
nel. Calculational
results for T0=1.5,

1.0 and 2.0MeV are
presented by solid,
short-dashed and
long-dashed lines,
respectively. The ho-
rizontal dashed 1line
in the bottom part
shows the value of
(Rb-Rh) for the

a-particle configura-
tion.



We suppose =7 +10"%*MeV -fm s and fix the window radius
x =1.17 PLCTEU ﬁote ‘that the  displacement of = the
calculatlon—startlng point from “Ar to *’Ne makes more
reallstlc the llnear approxlmatlon (7). In this case the
motion along n will start: practically from - the
Businaro-Geilone point [11]. It is seen (Fig.1) that in the
considered’ 1nterval of the change of R the value of Xn is
not so large and the Gaussian approximation is wvalid in (10)
The results of calculatlon of the functions R(A ) and
x (A ) - for the reactions *“ar+'"au and 12C #2mn  at Jg=70h
and varlous initial temperatures (To), are presented in
Figs.2,3. It 1is well seen that the results for these
reactions are.qualitatively different. One has §<Rf for the
‘reactioh e 232Th in the a—partlcle configuration and R>R
‘for fthe reaction j Ar+ au. Thus, due to the dynamlc
.couéling of motions along R and m-modes the relative yield'of
the_light particles ie:larger in the latter case. Probably
this mechanism can- explain a discrepancy of about one order
between the results of the statistical - calculation and
‘experimental data. Let us estimate the relative yleld of the

a-particles by the approximative expression
R

c /0, = I Pa(R)dR/I P, (R)AR ,
b , B

‘where P&(R) is ‘the distribution function of R for a-particle

configuration, ¢, and o  are the cross ‘sections - of the

a-particle production and the fusion, respectively. Our

estimations show that ‘

(oa/of)Ar /(oa/or)c = 4.5-

‘:This ratio is much larger than unity but it is less than
‘the _experimental result. Additional increase . .of the
' —partlcle yelld can be connected with the decrease of the
1w1ndow radius ‘for a strongly asymmetrlc configuration and
fappearance of. the weak rolllng in the exit channel [5].

i ‘ As ‘it is seen from- Flgs 2,3, the increase of.the initial

temperature leads to a more strong 1ncrease of Xpn and R. Thus

10

the thermal fluctuations decrease the stability of the
dinuclear system. The thermal fluctuations are more important
for the entrance channel where the gquantity <hu§/2 is

relatively small.
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4, Summary

Within the diffusion model, the evolution of the dinucleer
system to the compound nucleus was considered. It was shown
that behaviour of the system depends on the entrance channel.
Because of the dynamic coupling of R and n-modes of the moti-
on, the relative yield of the light particles in the reaction
©ar+'®’au  is larger than in the reaction 204%320n . This
fact is confirmed by the experimental data. The inclusion of
fluctuations influences strongly the results of calculation.
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