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1. Introduction. 
It is known that the s-wave cross section of the fusion reac­

tion X(a,b)Y is described near the threshold e~ of the channel 
a+X by the formula /1/ 

in ,•, A 
a (e) =1¢8 (R=O) I~ - , A =const , 

V 
( 1) 

where R is the distance between the fragments a and X, ¢
8

(R) is 
the wave function of relative motion of a and X, and v =ff.e71,I is 
the relative velocity of their motion.The formula can be made more 
accurate by taking into consideration the coupling of the channels 
a+X and b+Y in the factor A (see, for example,/2/). For an 
arbitrary partial wave J it is convenient to write the reaction 
cross section through the Jost function tfre)=lffre) I -e-i~J of the 
system a+X 12,31: 

in 2 A OJ (e) =lfJ(e) I-· -
V 

( 1.a) 

determined from the relation 

kJ·lf (e) 1-1 ·RJ- ¢J(R) - sin(kR-J•:JC/2+6J(e))/kR (2) 
J R--0 e R-+oJ 

and coincident with 1¢i(R=O) I -e-i6J as J=O. 
If the Coulomb interaction ( 1/R) occurs between the fragments a 
and X, formula (1) is reduced to the known Gamov formula 

in 2 A 
00 (e) =Co(£) ·v (3) 

(where C~(e) =lf0(e) 1-1= 2•'.JC/V/(e2'.JC/V -1) is the Gamov factor), 
which well describes a great amount of experimental data on fusion 
reaction cross sections of the type X( a, b) Y in the range 20-100 
keV of the colliding energy e and is used for the extrapolation of 
o6n(e) in the limit e~ /1,4/. 

Here we investigate deviation from the Gamov formula due to 
an interaction additional to the Coulomb one (it is not 
necessarily a short-range interaction) in the entrance channel and 
discuss manifestations of the effect. 

f r,fr~tJ!!iHi:'lfo~~ !iHcrmy, I 
f: • ' 
' llil-e~1n.t.1:r. z::(~' ;1,~n1;:.mt~~~2 l 
:! h~i,~fH-... 1f«--iT~!-..! .1~ ' 



2.Screen1ng e!!ects 1n !us1on reactions o! the type D(d,p)T 
near the threshold o! the channel d+D 

Recently, the problem how to improve the Gamov formula (3) 
has arisen in describing the screening effects in fusion reactions 
X( a, b) Y for slow collisions between nuclei ( a) and atomic ( or 
molecular) targets (X). Really, the latest experiments /5,6/ have 
shown the cross section of fusion reaction D(d,p)T to deviate 
noticeably from formula (3) at low colliding energies ( £ ( 5keV). 
It has been established in papers /6-9/ that it is necessary to 
take into account an electron screening in the channel d+D. At the 
energy "' 1keV this effect makes the reaction cross section "'40% 
larger than the cross section for the reaction d(d,p)T on bare 
nuclei d, and this ratio grows exponentially if the energy 
decreases /8,9/. Let us investigate the electron shielding for d+D 
fusion in the limit £+0. To calculate the searched-for Jost 
function !ic) (2) of relative motion of d and D , we use the 
adiabatic representation /1 o, 11 / , successfully applied to the 
analysis of three-body systems such as d+D /9/. 

In the approach, the system of three Coulomb particles d+D is 
described by a system of an infinite number of ordinary 
differential equations /10,11/ 

II Z1Z2 J(J+1) 00 

¢1k8> + 2M(£-E1k8>- 7r - 2mr )¢1k8> - ~ U1g,3~)¢jpR)=O 
pJgJu 

II Z1Z2 J(J+1) 00 

¢1u(R) + 2M(£-E1&R)- 7r - 2mr )¢1&R) - ~ u1u,jfi)¢jpR)=O 

................ 
with the boundary conditions /9/ 

¢1k8> = 1ol ·6Jo 
R+O -f 

¢1&R> = l!ol ·6J1 

pJgJu 

(4) 

l 
I -1 

(4.a) 
¢1£R) = 0; 1=2, •·•,oo; p=g,u 

2 

!) 

i• 

\ 
I 

i .. 
" j 

{ 
~I 

l 
1/v2·(¢1k8)+,.i,1&R)) - jJkR)-ta&,£) -nJkR) 

R---.ro 
1/v2·(().>1fR)-¢ 1&R)) - -t4E) -nJkR) 

1.v1pR) - 0 ; 1=2, ..• ,oo ; p=g, u 

(4.b) 

where <!>ipR> are the wave functions of relative motion of the 
nuclei d, ( ip) is the set of quantum numbers of the two-center 
problem ( an electron in the field of two Coulomb centers z1and z2 
at fixed R ) and p=(g,u) characterizes the parity of the · 
two-center-problem wave functions relative to the rearrangement of 
nuclei /12/, EibR) are the eigenvalues of this p;oblem,k=v'2M(E-E~) 
is the momentum of a ch~nnel, E1 =E 1fro)=E 1&oo)=-2 , Uip~~- are 
the effective potentials of the three-body problem /1(}/, J is the 
angular momentum of the system d+D, ta&.£) ,t4£) are the elements 
of the real symmetric reaction matrix, M is the reduced mass of 
the system d+d. For the "symmetric" system d+D (with the identical 
nuclei) there is no coupling of the states with different parity 
P=(g,u) (U1g5fi) =Uiu5i> =0 /10/ ), which allows us to solve the 
problem ( 4) for the functions (j.>ik8> and (j)j&R> separately. 

Because the small parameter 1 /2M of the problem equals ""2 • 1 o-4 

here, we can omit the terms u1P~~P' in the system of equations 
(4) . For this case only the first equation for ().> 1k8> with the 
potential 

z1z,., 
U1fR) = R~ + E1k8> (5) 

remains in the system ( 4) and the boundary conditions ( 4. b) are· 
reduced to ¢1k8) ~ jJkR)-ta&.c)·nJR) /9/. It is known that this 
one-level approximation works well in the region of low energiec 
/10,11/, for the system d+D it is,;; 5-10keV 18,91. This gives us a 
poss1b111 ty of testing the screening effects in the. range from 
extremely low energies to the experimentally attained energies "' 
3-10keV. In the paper/9/ the calculations in the approach were 
performed for the region 0.25-10keV , they are in good agreement 
with· the semi-classical calculations based on the classical 
trajectory Monte Carlo method/8/. Here we have performed the 
calculations for low colliding energies £➔0. In Fig.1 the 
calculated function lf0(i::) i-1of the system d+D is given ,where one 
-can clearly see oscillations of the function. 
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The function lfbE) ,-1of the system .d+D for the state J=0 
calculated in the one-level approximation of the adiabatic 
representation. 

To understand the effect and to search for its possible 
stronger manifestations in other fusion reactions X(a,b)Y let us 
consider a simpler interaction than (5) in the entrance channel 
a+X of the reaction. 

3.Resonance amplification of the reaction X(a, b)Y near the 
threshold of the channel a+X 
First, let us consider the simplest model when there is no 

long-range Coulomb interaction in the entrance channel a+X, and 
an additional interaction is given as a rectangular potential well 

{
-V R,;; 0 

U(R)= O, O . In this case the 
0, Ro> 0 

Jost function of the 

system a+X is found from the equations*> 

*) The simple consideration is analogous to the problem of 
overbarrier reflection of a quantum particle for a potential 
barrier with spherical symmetry presented in book /13/. 
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~- lfo(E) 1-1s1n qR0 = s1n(kR0+60) 

lfo(E) ,-1cos qR0 = cos(kR0+60) 

where k2=2ME, q2=2M(E+V) , 60 is the S-wave phase shift for 

scattering on the potential U(R) . One obtains 

V 
if0(E) ,-2=1 +fQsin2CkR0+60) 

0 . 

-2 Vo 
E + v0 "'fmax =1+e 

- 2 - " -2 E+Vocos qR0 fmin = 1 

(6) 

(7) 

So, the S-wave cross section of the reaction X(a,b)Y oscillates 
according to ( 1. a) 1f the energy E changes. The maxima of the 
oscillations are at the points 

x?c 1+2n)2 

En = 2 - Vo • 
8MRa 

(8) 

where n= v,v+1, ••• ; v is the number of bound states in the 
potential U(R). The amplitude of the oscillations is defined by 
the depth v0 of the well and decreases with growing n. The first 

·V 
maximum f~=1+-0 is more strongly marked.If it is close enough to 

E 

the threshold E--0, the reaction has the resonance behavior near 
the energy Ev· The oscillation period 

£n+1- En= 
x?cn+1) 

MR2 
0 

(9) 

is determined by the interaction range R0 , the reduced mass M of 
the system a+X and increases if n grows. 

In Fig.2 the dependence of the function !f0(e) ,-2on the 
parameters v0 and Ro of interaction U(R) is demonstrated. The 
dotted curve has the resonance behavior as e..O, since here the 
maximum of the first oscillation is at. e0=0.23. A similar 
consideration is possible for the high waves Jf.0 too. But the 
resonance amplification of the cross section as e..O is compensated 
for by the centrifugal barrier for the case J#O. 

5 



Fig.2. 
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The functions lfbe) IL for potential wells with V
0

=M=1. The 
dotted curve corresponds to the well with the radius R

0
=1, where 

there are no bound states, and the maxima of the first and second 
oscillations are at points e0=0.23 and e1=10.1, respectively. A 
sufficiently deep level appears in the well if its radius is 
increased to R0=2.5 , and the maxima of the first three 
oscillations are at points e 1=0.78 , e2=3.93 and e

3
=8.66. The 

solid curve corresponds to this case. 

Let us apply this simple consideration to the above-analyzed 
reaction D(d,p)T. Using the model suggested in paper /7/, we 
define the interaction in the channel d+D as 

{ 

Z1Z2 
U(R)= ,r- - Vo, R..;Ro 

0 , R>Ro ' 
(10) 

where Vo =-E1iO) + E1i<D) =-E1,Ht) + E1,D> "'40eV, Z1=Z2=+1 and Ro 

(J 

-~ 

,,. 

>,, 

ff 

is of the order of the effective radius of the ground state of the 
D-atom*~ 

This rough model is very close to the one considered above; 
nevertheless, such simplification yields sufficiently good results 
for the reaction D(d,p)T at low energies 1f compare with 
the numerical calculations /8,9/. 
Using the above approach for the rectangular potential well 
can get the Jost function for the potential (10) (see also/7/) 

2 

one 

-2 Co<q) ·Cc+Vo> 
lflE) I = 1 1 1 '> ') 
~ ~+cv -R- +~·Ce+v Y-R-L> -cosL/3 

( 11) 
~ 0 0 4 0 0 

M M 
where /3 =qR0- 4-ln2qR0 + arg I'(1+i4 ), q = Y2M(c+V

0
) , Mis the 

2 2x 
reduced mass of the system d+D, c0 (q)= 2xlv , vq=Y2(E+V

0
)7M. 

V·(e q-1) 
q ') 

The value En of the oscillating function lfo(E) ,-Lmaximum 

V 
f~~x= c5cq6-c1+ Eo > c12> 

n 

can be found from the equation 

M M 
q11R0 - 4-ln 2q11R0 + arg rc1+14 ) = (2 + n) •X 

n n 

having the solutions close to (8), where n = v,v+1, ••• ; vis the 
number of bound states in the well (10). 

Let us estimate the period and the amplitude of the 
oscillations as E...0. Since 30 bound states (v =30) are located in 
the well describing the vibrations of the ion D~ (here we 
approximated the well by the potential (10)),one can estimate the 
period of the oscillations as 

x?(v+1) x?30 
€ -€ ~ ~ 

M1 n~ ~ "' 3 •27eV"' 0.4eV 
2·10·10 

- ------------------------------------------
*) For the present we cannot strictly fix the value of R

0
, but 

even this simple model is useful for a qualitative analysis of the 
reaction. 
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_ ') 
and the amplitude of the oscillating function lfb£n) I Lat n=v can 
reach the value of the order of 

2 ,, 40eV 
f- "'C0(q)•(1+- ). 
. max Ev 

The estimations are in a good agreement with the numerical result 
presented in the previous section (see Fig.1). 

The oscillations manifest themselves for the system d+D only 
at low energies, that is in the region not reached experimentally. 
However, it is interesting to estimate the possibility of 
revealing oscillations caused by the electron shielding for other 
fusion reactions. Recently, the experimental data for reactions 
n+3He (D+

3Hi) at low energies "'5keV have been obtained /14/,where 
the still unclear deviation of the function 

A(€)= o!~b€) ·V•C0tq) 

from the constant value by the factor of the order of ,,,5.10-2 has 
been found /7/. Such growth of the function could be explained by 
the correction V01£0 ,estimated for the reaction to be /7/ 

V 102 
o~-----.-.-~ en - 5·103 - 50 

and the period of the oscillations 

'.lt'?(v+1) 
€n+1- En>~ 

MRo 
exceeds here the period for the system d+D because of an essential 
increase in the number v (the number of bound states in the well 
describing the system n+3He) and a decrease in the quantity R

0 
(R0-R01z1z2 ). The final answer to the question could be obtained 
from a numerical calculation of the reaction analogous to that 
presented in Sect.2 (see also /9/). 

4.Fusion reactions for light nuclei of the type t(d,n) 4He 
It is surprising that clear formulae (8),(9) also describe 

so~ characteristics of 5He nucleus. So, for the resonance series 
3 5 
2 in He, €v=16.75MeV , Ev+1=19.8MeV and £v+2=24-25MeV 

(the resonance energies referred to the ground state of 5He) , 
determining the cross section of the reaction t(d,n) 4He near the 
threshold d+t /15/,we have 

8 

I 

I 

i 
j 

[
£ - £ ] n~xp = £v+2 - €v+1 = 1.4-1.7. 

v+1 V 
( 13) 

Since the first resonance, Ev=16.75MeV, above the threshold of the 
channel d+t is considered to be the first excited state of 5He/15/ 
( the radial part of the wave function of the state is 
characterized by the 2S-state of a harmonic oscillator /16/), the 
number v equals 1 and, according to the formula (9), the parameter 
nv is 

th v+2 3 
nv = v+1 = - , . 2 

which is in agreement wtth the experimental value (13). 
Formula (9) also gives the realistic estimation for the 

channel radius of the 5He -nucleus in the channel d+t: 

R0 = x•luc;i _8 ) "'14 fm . 
v+1 V 

The simple formulae could be useful in analyzing of energy 
spectra of other light nuclei. 

5."In flight" fusion reactions in mesic atomic physics 
The nuclear synthesis reaction, "in flight" fusion, in mesic 

atomic physics of the type 

tµ + d - 4He + n + µ 

pµ + p-+ d + e+ + µ 

(14.a) 

( 14. b) 

formally differs from the reaction D(d,p)T considered above only 
in the length and energy scale: 

ae = 0.529·10-8cm-+ aµ= ae/mµ = 2.6•1o-1Jm 

£<5>= 27 eV-+ €(~)= £<5imµ = 5600 eV. 

Since there are maximum two bound states in the potential well (5) 
(they are bound states of the mesic molecules dtµ and ppµ /10/) 
and its depth is estimated as 

9 



Vo =-E1&Htµ) + E1&Pµ,tµ) = ~-£(~) ~ 8 keV 

one can assume the following estimation for a typical period and an 
amplitude of the cross section oscillations: 

x?(v+1) 10·3 
3 2 3 £ -£ · ~ ---,..- ~ ---•5 · 10 ~ 10 -10 ev 

v+1 
V MR2 10·10 

0 3 
-2 -2 2 Vo 2 8·10 

fmax - fm1n ~ 0o<q) "f ~ 0o<q) ·-£- · 
V V 

The strongest manifestation of the effect is to be expected in the 
system pµ+p where the depth of the effective potential well is 
such that only one bound state can be located in the well ( the 
ground state of the mesic molecule ppµ) and even its insignificant 
deepening leads to a new bound state here /1 o, 11 /. In Fig. 3 the 

lfo(Elr1 
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300 400 E.ev 

The function lf6£) l- 1of the system pµ+p for the state J=O. 

results of the calculation of the function lf6£) 1-1for the system 
pµ+p are presented. The calculation has been performed in the 
so-called "simple approach" of the adiabatic representation /17 /: 
problem (4) for the first two states ¢

1
k8) and ¢

1
&R> of the 

adiabatic expansion with the reduced mass 

!lll::(~+mµ>·~l(~+mµ>I~, 

10 

instead-of M =J·~/ma , has been solved. The simplification 
yields accurate re,sul ts as compared to mul tilPvel approximations 
of the adiabatic approach for describing slow collisions in the 
system "mesic atom + nucleus" for the case of equal masses of 
nuclei /18/. For different masses, the "simple approach" yields 
less accurate results /19/. We have to note that the curve in 
Fig. 3 really corresponds to the case of a resonance near the 
threshold demonstrated in Fig.1 (the dotted curve). 

Let us estimate a possibility for the experimental study of 
the effect of oscillations in mesic atomic collisions. As is known 
(see, for example,/20,4/ ), the constant Adt of the nuclear 
reaction d+t- 4He+n petermined by formula (3) is at least two 
Orders of magnitude as large as the constants of all other fusion 
reactions in hydrogen-isotope mixtures. As a result, the rate of 
reaction (14.a) is maximal as compared to other "in flight" fusion 
reactions.The rate of the reaction reduced to the liquid hydrogen 
density N0 as£~ is estimated as /7/ 

T
') . 2 

A!dt) = !15 lf6£) ~-AdtNo ~ Co(q) ·AdtNo = 
(15) 

= 8. 5 .10?1. 3-10144. 25 · 1022 s-1 ~ 0.5. 105s-1 

which is in agreement with the numerical results A!dt) =1.2·105s-1 
/3/ and AI£) =1.15·105s-1/21/. Fig.4 shows the function 
lf6£) l-

1
for the system tµ+d calculated in the "simple approach". 

Here one can see the resonance (the first oscillation) at point 
_') ') 

£=£ = 76eV (v=2), where lfJE) I tC0(q) increases to~ 30, and the ~ 
rate of tµ+d "in flight" fusion (14.a) at the point is equal to 

A1t<£=76eV) ~ 2-106 s-1 
( 16) 

and is nearly an order of magnitude as large as the rate of the 
muon decay Ao=0.45•1068-1 However, it is quite difficult to 
distinguish the resonance from other mesic atomic processes 
accompanying the reaction ( 14.a) at these energies.For example, 
the rate of slowing down of tµ atoms at the energy range is 
estimated as /22/ 

Ael~ a81 •v•No ~ 10-1~10~4.25·10228-1~ 10118-1• 

11 
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Fig.4. 
The function lf6£) i-1of the system tµ+d for the state J=0. 

We have to note that the result (16) obtained in the "simple 
approach" for an "asymmetric" system tµ+d may be essentially 
different from that of multilevel calculations /19/. It is also 
necessary to take into consideration the molecular effects/23/ 
(that is, the influence of the change tµ+d by tµ+D2(DT) in the 
entrance channel of reaction ( 14.a)) near the thresholds of the 
channels tµ+d and dµ+t and the resonances for improving the 
accuracy of calculations of the rate of reaction ( 14.a). The 
estimation using an effective potential of electron screening in 
the entrance channel of reaction ( 14.a) /24,25/ shows that the 
correction for the electron screening is negligible. 

The effect of increasing the quantity lf6£v) 1-21c~qv) is the 
strongest for the system pµ+p (see Fig.3): 

lf6£) 1-21 c5Cq> ~ 70 (17) 

as £=Ev• O, and what's more. {C6qpp)/Cb~t)}2~ 36 (see Fig.3 and 
4 ). So, the summary coefficient of amplification of the function 
lf6£=0) 1-2 for the system pµ+p may be equal to the factor 2.5-10

3 

as compared with the same function lf6£=0) 1-2 ~ c5C~f£=0)) for 

12 

the system tµ+d. But the constant '¾>P of nuclear reaction p+p •· 
d+e++v is 25 orders as small as the ~~nstant Adt of reaction d+t 
➔4He+n, and the rate Afpp=lf6£v) l·-¾>PNO of nuclear reaction 
(14.b) even at the maximum is negligible as compared with the muon 
decay rate A¥P« A0• 

Nevertheless , the effect may influence the rate of weak 
processes /26/ 

pµ - n + V ( 18) 

in hydrogen. Really. the strong growth of the function _.., 
I f6£) I "-for the system pµ + p as £ .a increases the muon cloud 
density near the proton in the pµ-atom at slow collisions pµ + p 
and, in principle, it· may visibly change the effective rate of 
µ-capture (18) in dense mixtures due to an additional contribution 
of the channel pµ+p - p+n+v. It is interesting to study the 
possibility more carefully in view of planned experiments on 
measurement of the µ-capture rate in a mixture of hydrogen 
isotopes. 

6. Conclusion. 
We have shown that the cross section of the nuclear reaction 

X(a,b)Y has an oscillating structure at low energies. If the 
maximum of the first oscillation is close to the threshold of the 
channel a+X ,the cross section has a resonance behaviour.To analyse 

the effect the clear formulas (7)-(9) have been derived. 
Two interesting manifestations of the effect found in mesic 

atomic physics, the resonance amplification of the rate o~ 
tµ+d➔4He+n+µ "in flight" fusion and the growth of the muon cloud 
density near the nucleus in a pµ-atom at slow collisions pµ+p , 
demand, in our opinion, further careful consideration in view of 
planned experiments on muon catalyzed fusion and on measurement of 
the µ-capture rate. 

The presented formulas would-also be useful for a qualitative 
analysis of other threshold reactions of the type X(a,b)Y in 
quantum physics. 
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MeneH<l1K B. C. 
PeJoHaHCHoe yc11neH11e RAePHOH peaK41111 X(a,b)Y 
s6n11J11 nopora KaHana a+X 

E4-91-132 

. HccneAy~TCR OTKnoHeHHe ce4eHl1R.RAepHOH peaK41111 X(a,b)Y OT $opMyn1>1 
raMOBa 3a C4eT A06aB04HOro K KynoHOBCKOMY B3al1MOAeHCTlll1R BO BXOAHOM KaHa-. 
ne: noKaJaHo, 'lTO ce4eH11e peaK41111 oc411nn11pyeT np11 Man111x aHepr11Rx cTonK­
HOBeH11R.· PeaK411R HOCl1T pe30HaHCHblH xapaKTep, ecn11 MaKC11MYM,nepBOH 0~411n­
nR41111 HaXOA11TCR s6n11311 nopora KaHana a+X. tlnR Ka4eCTBeHHor.o aHan113a a$$eK­
i-a nony4eHbl npocTble coornoweH11R •CBR3blBalOlll11e nep110A 11 aMnn11TYAY oc411nnR­

·411H C napaMeTpaM11 B3al1MOAeHCTBl1R. B 4aCTHOCTl1, OHl1 np~ACKa3blBa~T oc411n~ 
nR4H11 ce4eH11H peaK41111 Cl1HTe3a X(a,b)Y np11 Man111x aHepr11Rx CTOnKHOBeH11R 
RAep (a) C aTOMaM11 (11n11 MoneKynaM11) Ml1WeHeH (X), TaKl1X KaK D(d,p)T np11 , 

·CTOnKHOBeHl.111 RAep feHTep11R (d) C aTOMaMl1 AeHTePl1R (D),11 onl1Cb1Ba~T cep11~ 
'peJoHaHcos 3/2+ B He, onpeAenRIOUl11X ce4eH11e peaK41111 t(d,n) 4He s6n11311 
nopora d+t. 3Ta oco6eHHOCTb ce4eH11H npl1BOA11T K peJOHaHCHOMY yc11neH11~ CKO-. 

· poem RAepHOH peaK41111 "Ha neTy" tµ+d ➔-4He+n+µ B npo6neMe MOOHHoro Ka Ta-. 
n113a· np11 ( .. 76 38_ 11 MOH<eT nosn11RTb Ha CKOPOC.Tb µ-3axsaTa B nnOTHOH CMe­
Cl1 1130TOnOB BOAOPOAa. · 

Pa6oTa s111nonHeHa B na6opnop1111 RAepHblX npo6neM 0HlU1. 

1. 

· Melezhik V.S. 
. Resonance Amplification of the Nuclear Reaction X(a,b)Y 

Near the a+X Channel Threshold 

E4-91-132 

De~iation of thecros~ section for the nucle~r reaction X(a,b)Y from 
.-the.Gamov formula due to an interaction additional to the Coulomb,one 

in the entrance channel has been analyzed. It is shown that the reaction 
.cross section has an oscillating structure at low energies. If the maximum 
of the first oscillation is close to the threshold of the channel a+X, 

·.it has a resonance behavior. To analyse the effect, simple relations 
between the period and the amplitude of the oscillations with parameters 
of the interaction have been derived. Specifically, they predict _the cross 
section.oscillations of fusion reactions.of the type X(a,b)Y for slow col­
lJs)ons · between nuclei (a) and atomic (or. molecular) targets·.(X), as, 
for_example, the reaction D(d,p)T between deuterons (d) and deuterium · 

• atoms (D), and d11scribe the· known. resonance series 3/2+ .in 6He determin­
. ing the cross section of .the reaction t(d,n) 4He near. the threshold of 
the channel. d+t. The·peculiarity of the cross sections leads to the reso·­
narice: amplification of the rate for-a muon catalyzed fusion reaction; 
("in. flight", fusion) tµ+d :- ~He+n+µ at the energy .. 76 eV and may .i nfl u­
ence the µ-capture rate in a dense mixture of hydrogen isotopes • 

. . · The investigation has been performed at the Laborator,Yof Nuclear 
Problems, JINR; . .. . , 
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