





Jolos and Dénau as early as in Refs. 9-11. The TQM Hamiltonian has been constructed as the first set
out on the basis of a sufficiently generie microscopic Hamiltonian®~*. With their seminal work® the
authors of TQM heve set the method for microscopic treatment of the collective quadrupole degree
of freedom to enroll approximate bifermion SU(6) algebra, referred to as Quadrupole Colleclive
Algebra (QCA)'?. Since exact boson realization of QCA aze available (Cf, e.g. Ref 12), the
passage to bosons is straightforward what made il possible to obtain the TQM Hamilionian and
physical operators directly, without having tc resort to mapping of matrix clements. However, this
approach encounters problems too. In particular, since the SU(6) symmetry has been enforced® ',
this necessarily lays down conditions on the amplitades of the collective pairs, composing QCA. The
authors of TQM have pointed out that the relevant constraints, to be referred to as SU(6)-enforcing
conditlions {SU(6)-EC), can be inferred from the Jacobi identities what is, as a matler of fact, an
intricate problem to solve. This fact might have been the reason that the further development of the
approach, based on enforced symmetties, remained dormant for some time.

Due to recent publieations!®1%, the enforced symmeiry approach has been increasing brought
1o bear on the problem of microscopic foundation of IBM-1. Rigorous derivation of ihe ensuing
8U(6)-EC and explicit microscopic coutribution of Dyson, Holstein-Primakofl and Schwinger (SR)
realization of QCA (sach of them interrelated with the SU(8)-EC) have been itemized in Rel. 13.
The developments presented in Refs. 13-16 have enabled us to advance a new approach to the
microscopic substantiation of IBM-1, to be referred te as SU(6)-Boson Extended Random Phase
Approximation (SU{6)-B-ERFPA). While we shall return to this point in Sec. 2, it suffices for the
moment to characterize S3U(8)-B-ERPA as follows. The key role in this approach is played by
the collective RPA quadrupole phonon operators subjected to SU(6)-EC. Substituling the SR of
the constrained RPA quadrupole phonon operators and their commutators into the Quasiparticle
Phonon Model'™ (QPM) Hamiltonian (an established microscopic model} we derive a genvine IBM-1
Hamiltonian with coefficients, depending on known microscopic quantities and on the ampliiudes
of the constrained phonons. This microscopically deduced IBM-1 Hamiltonian will be referred to
as SU(6)-B-ERPA Hamiltonian. The unknown phonon amplitudes have been determined from a
variational principle with constraints that ensures minimum of the SU(6)-B-ERPA Hamiltonian in
the collective subspace in conjunction with fulfillment of the SU(8)-EC {Cf. Sec. 2).

The consistent treatment of the symunetry governed dynamics and of the SU(8)-EC, that go with
it, constitutes the major innovation of the SU(6)-B-ERPA, being a part and parcel of the entire
theoretical edifice.

The purpose of the present paper is twofold:

(i) to present an outline of the 3U{6)-B-ERPA approach to the microscopic justification of IBM-1
(Sec. 2) and its computational realization (Sec. 3);

(i} to apply SU{6)-B-ERPA in an illustrative microscopic celculation of IBM-1 Hamilionian



parameters for the ®~™Zn jsotopes (Sec. 4). Experimental deta, pertaining to the energics of
low-lying collective states in these isotopes are available’®. The parameters of IBM-1 Hamiltonian
have been previously fitted to this chain of isotapes!®. To the best of our knowledge, microscopic
calculations of IBM-1 parameters for Zn isotopes have not been reported. These are the reasons
behind our choice of these nuclei as object of our illustrative numerical investigations. Microscopic
calculation of IBM-1 parameters in Pt isotopes are now in progress and will be reported elsewhere.
In additien we plan to perform calculations within the-SU(6)-B-ERPA for nuclei in the region of Sm
isotopes.

In keeping witk all, that has been discussed thus far, the subsequent treatment will provide the
outline of SU(6)-B-ERPA as one possible way towards meeting the demands for & seund microscopic
theory of IBM-1.

2. AN OUTLINE OF THE PRESENT APPROACH

As was stated in the Introduction, partial contributions io the development of the SU(6)-B-ERPA
are contained in a series of papers'®~*%, In this section, for the first time, we present the full account
of the theoretical underpinning of SU{6)-B-ERPA. A detailed expose is presented with purpose to
publicize more widely the basic ideas and the mathematical apparatus (;I this alternative approach
to the microscopic foundation of IBM-1.

Prior to setting up the SU(8)-B-ERPA, we recall a few items pertaining to the IBM-1 Hamiltonian
(whose microscopic derivation is the ultimate end of the SU(6)-B-ERPA). The standard form of the

latter reads'*:
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Performing the needed recoupling in the tensor products featuring in (2.1}, one can represent
the IBM-1 Hamiltonian as an S0O(3)-scalar, built from the generators (d3,s, st don, d das, 1,0 =
0,1, £2) of the canonical SU(6) algebra in Schwinger realization (Cf., c.g. Ref. 12). The Hamilto-
nian (2.1) conserves the total number of s- and d-besons, N, which, for a given nucleus, is postulated
to be equal to the number of pairs of valence nuclecns ("IBM-counting rule”). This is in essence a
free parameter. The parameters in IBM-1 Hamiltonian ate wsually determined by the least square



‘fit to'observed nuclear properties’™%. The variation of these paraméters with mass number is smooth
and fits are remarkable. 0

' The main aim of any n':l.icroscopic approach to the "SU(6) phenomenology” is to relate the free
parameters of Hrga—1, featuring in (2.1),to the microscopic quantities of an established fermionic
Haniiltonian. Developing the SU(6)-B-ERPA, we have utilized 2s reference the Quasiparticle-Phonon
Model Hamiltonian for spherical nucle. Detailed presentation of QPM and its applications can be
found in Ref ' 17. (The QPM has been shccessfully used for description of the fragmentation of
quasiparticle and collective (phonon) states in wide excitation energy interval). Within the QPM
Bogolubov’s quasiparticles and phonons are beinig used as simple modes of excitations, instead of
the nucleon degrees of freedom (hence the name QPM has come into being). More specifically,
we employ a particular QPM Hamiltonian including an average nuclear ficld as the Saxon-Woods

potential, superconducting pairing internetions and isoscalar quadrupole-quadrupole forces {Cf. eq.
(1) of Ref. 17):
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The notation {r = (», p}} is used; the summation {37} for {r = n} is over the nentron and for
{r = p} over proton states. The single-pacticle states are specified {if there is not ambiguity) by the
quantum numbers jm; E; are the single-particle energies; A is the chemical potential;G and & are
the respective strengths of the monopole pairing and quadrupole-quadrupole interactions. The pair
creation and quadrupole operators entering in the scalar products in (2.2) are defined in a standard

fashion:
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Where f;# stand for the reduced single particle matrix elements of the operator (ir)?Ya.().
In reality Hpi., given by (2.2) is nothing else, but the schematic spherical single particle pairing-
plus-quadrupole Hamiltonian, which constitutes the main part of the QPM Hamiltonian (Cf. eq. (1)
of Ref. 17).
By performing the canonical Bogolubov transformation
at, = wal + (-1 "v04-m . (2.5)

and introducing subsequently multipole phonon operators®
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we cast H,., into the usual quasiparticle-phonon representation:
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where: in the definition of Q}'F,- the index ) denotes multipolarity, u denotes 2-projection in the
laboratory syster, and i is the label of the solution of the RPA dynamical equation;
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“The chemical potential A, and correlatlou funciion A, are calculated accordmg to the known
equations™. We note that the fragment of the monopdle pairing interaction that does not contribute
to the formation of ¢; (Cf eq. (2.10)), featuring in H,., has been casi aside. Short of the first
term in eq. (2.8), the rest originates from the guadrupole-quedrupole force, involving the normal
product of :(M; - My):. As to the quadrupole operator, its explicit form in the quasiparticle-phonon

representation reads:
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Note that the first term includes summation over collective (i=1) and noncollective phonons (i =
2, .., iman)-

It is evident from eqe. (2.1) and (2.7) that phenomenological and reference Hamiltonian are in
different representations, which makes it difficult to compare them. Since direct construction of
the boson image of H,,;,, (employing standard boson expansion techniques) does not automatically
yield Hrgn—1 one has to elaboraie a special procedure which allows to single out from H,',“,, the
fragment with a boson structure, identical to that of the Higm—, defined by (2.1). The essence of this



procedure, which was formulated in principle and used hy the creators of TQM®~1, can be stated
as follows. It has been assumed® !, that there exists a subspace of guadrupole collective states,
which are weakly connected with the rest of states. Such being the case, the set of operators, which
generate this class of states, are bound to constitute, at least approximately, a closed algebra (which
has turned out to be isomorphic to SU{$)?1%). The ﬁossibility 1o use known boson realizations { Dyson,
Holstein-Primakoff and Schwinger, see Ref. 12) of the Tatter greatly facilitates the bosonization of
the reference Hamiltonian and produces a genuiné 5U(8) boson Hamiltonian if SR of QCA is used.

We now turn to the choice of the collective subspace in SU(6)-B-ERPA. From eqs. (2.7) and
{2.11), il is apparent that the Hamiltonian ! i and the quadrupole operator My, aze buill out of
the set of operators Q2u:, Q;’m-, B(j52u), p=0,%£1,£2,:=1,2, <+eybmaz- The latter set of operators
constitutes the building blocks of the reference Hamiltonian. In addition, by acting with the Q;ﬁd
operators on the phonon vacuum one generates quadrupole collective (i=1) and noncollective (i =
2, ..., imaz) phonon states, It is thus natural to choose as collective subspace the set of states, generated
by the (Qf,;-operators acting on the vacuum. Such a choice is further supported by observation
{established in Ref. 13) that if we assume, according to Janssen, Jolos and Donan® 1!, that this
collective subspace is weakly coupled with the states of another nature, then the set of operators
Qu1, Qhaty (@21, @%1] approximately closes the ensuing SU(6) algebra QCA. Tndeed it has been

shown'? that:
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plus sums involving [(A =2,: > 2)} "scattering” terms.
The explicit form of Cpurp and Dyyr, is given in Ref. 13 (Cf. eqs.(22) and (23)) and will be of no
use further, We stress that, if the "scattering” terms in commutation relations (2.12) and (2.13} are

cast aside, the set of operators

{Qusr O (@20 @ha ] (D, Qs (@2, Qo) (2.14)

will compose a closed algebra, but net necessarily the Lie algebra. It has been proved™, that the

necessary and sufficient conditions that the above set of operators form a Lie algebra, are given by:
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for k=0,1,2,3,4, and any j, 7z,
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Constraints (2.15)-(2.19) constitute the so called 5U(6)-EC.

In virtue of eq. (2.15), the commutators [@4,:, @) and [QF,;, Q1] vanish identically (Cf. eq.
(34) in Ref. 13), thus ensuring the elimination of redundant operators in the set (2.14). While it is
by no means a trivial matter to infer constraints (2.15)-(2.19) from the condition that the operators
set (2.14) forms a Lie algebra (sufficiency), it is easy to show that, if egs. (2.15)-(2.19) are satisfied,
then the set of operators {Q,,,l,q;;,l, Q21 Q;ll} composes & Lie algebra (necessity). The exploit
form of the Lie algcbra under consideration, the so called QCA reads (Cf. egs. (36)-(38) in Ref13):

[Q-z';l..ll [QﬁrllQ;:l]] = wa ;;-1 + CSWQ;;;:. (2-20)
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QCA is isomorphic to the Cartan-Weyl 5U(6) algebra (Cf. Sec. VII of Ref. 13). The explicit iso-
morphism QCA45U(6) in conjunction with the SU{6)-EC have permitted to construct microscopic
Schwinger boson realization of QCA, which is directly associated!? with the IBM-1. The SR under
consideration can be written as (CL eqs. (51)-(53) in Ref. 13):

. QYR = N-24} (2.23)
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where the quantity C is defined by eqs. (2.18) and (2.19).

This quantity has been shown!? to measure the deviation of the two-phonon norm from unity.
It teflects the fact that the constraint opera.torsc{Qi'SR, Q5?}, which are an SU(6)-approximation
image of the two-quasiparticle RPA phonon operators (2.6), accourt for Pauli principle in average,.
since in virtue of eqs. (2.18) the quantities C} should not depend on the angular momentum of the -
phonon state. We intend to undertake in the future in-deep investigation of the nagging question of
spurious states associated with violation of antisymmetry® 2" as it stands in the SU(6)-B-ERPA.

We see from eq. (2.26) within the SU(6)-B-ERPA the total number of bosons can be associated
with the integer number, nearest to C'-1.

To emphasize the fact that eqs. (2.23)-(2.25) represent the SR of the enforced QCA, the notation
QSR Q*‘m has been used for the constraint RPA phonon operators. Exact boson representations
for the operators B(;,v;,v ; LM), needed to bosonize the teference Hamiltonian H, ., have been also
constructed in Ref. 13 {Cf. eqs. {(67) and (69)).

(27 + 1)*B(j5;00) = E[wf; Y+ {82307 E: &t ds, - (2.27)
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We arc ready now to deduce from H,,,,1 - the fragment with the IBM-I hoson structure. To this end
we first sepa.ra.t.e the collective part of H, ..., 1 € the part including the collective operators anl, sz
This in fact a.mou.nts to restricting the summatmns in ths of eq. (2.7) t0 ipqr = 1. Upon replacement
of the operators {B(j7;00), B(35'; 2¢), @y, @74}, featuring in the collective part of H,,,,, by their
boson equivalents (given by (2.27),(2.23},(2.24) and (2.28), respectively), the collective part of H. ..
acquires precisely the form of the IBM-1 Hamiltonian (2.1).

The term by term comparison of microscopically derived and the phenomenclogical IBM-1 Hamil-

tonian (2.1) leads to following microscopic exp:essions for the IBM-1 Hamiltonian parameters:
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the quantity Zy; has been defined before (Cf. eq. (2.9). With the aid of transformation b’ —
h+ (N —1)(Ch, - C4,), Cp = Cp + (Ch, — 2C4,), the most general IBM-1 Hamiltonian (2.1) can
be transcribed to a six-parameter form. In the sequel we shall deal with the sct of six parameters
(K,F,G,C}}).

Fiom eqs. (2.29)-(2.33) it is evident that all the parameters except ¢, have correct signs
{Z11, Za > 0; 23 < 0). Bowever, we are not able to obtain a negative-valued C_; in the present
approach. The inclusion of the isovector part of the quadrupole-quadrupole force could hopefully
resolve this "sign” problem™.

We have seen that the physical assumption of the collective quadrupole degree of freedom being
weskly connected to the other degrees of freedom amounts to a iruncation of the shell-model space
to the collective subspace generated by the constraint quadrupole phonon operators{ @R}, given
by egs. (2.23) in conjunction with the SU(6)-EC. Decoupled collective subspace under considera-
tion is, in fact, the totally symmetric IR [N, 0% of the SU(6) group. Acting repeatedly with the
operator @+5® on the highest weight state § hws >= (:/_:T)-i | 0} of [N, 0%], one constructs the entire
(N+5)!/(N15!)-dimensional subspace, spanned by the monomials

{((::))1/2 H (dry | 0)}

whete n, + 32, n, = N (Cf. Ref. 12). -

It is this decoupled subspace IN,0%] which has engendeted Hp_grp4, the IBM-1 Hamiltonian
with microscopic expressions for the parameters given by eqgs. (2.28)-(2.33). Once the closure of
QCA has been enforced, the problem of the fermions to bosons mapping has a well defined solution,
since a full scope exact boson realizations of QCA=SU(6) are known and can be directly used'?.

We emphasize that since the SU(6)} based Hp_ppp, is an approximation io the QPM Hamiltonian,
we do not impose the requirement on the Hp_grp, spectrum to coincide exactly with the spectrum
of the QPM Hamiltonian. This procedure differs from the ones in Refs. 26,27,

‘We have succeeded to derive microscopically & Hamiltonian which possesses the ensuing SU(6)
sd-boson form (2.1). This is a crucial siep, but as seen from expressions (2.29)-{2.35), ihe coeflicients
of our microscopic IBM-1 Hamiltonian depend on (1, ¢)-amplitudes, which are not defined as yei. In
order to determine the coefficients of the derived Hamiltonian {30 that il can be used in microscopic

calculations), we need a procedure to determine the nnknown phonon amplitudes.



However, no consensus seems to exist as to how to proceed in general case. Klein and Vallieres
have proposed® that the collective pairs be determined by = variational condition on the trace of the
Hamiltonian. On one hand, in the case under consideration it is natural to determine (¢, ¢) from
variational principle which ensures that the collective isoscalar quadrupole phonon states lie lowest
in the energy spectrum, and thus are maximally separated from the rest of the states (Ci. Ref. 29).
Oun the other hand the SR of QCA and hence the resulting microscopic IBM-1 Hamiltonian are to
be considered in interconnection with the SU(6)-EC, since {Qau1, @31, [Q2u1, @Fa]} close the QCA
if and only if the constraints (2.15)-(2.18) are fulfilled.

Therefore we shounld formulate the variational principle in question in such a way that it ensures
simultaneously: a minimum of the obtained microscopic Hamiltonian Hp_zrpa in the collective one
-phonon states space and fulfillment of the SU(6)-EC.

Translating this condition in mathematical terms we can write's:

1
§{(hws | Q3 Hp_papa@t™? | hws) — wZ — 3 wIL

k=0,2,4
-3 dlC — Agn(Cr— 1N} =0 (2.36)
k=02
Zyn =Y (4P - (¢)]=r (2.37)
Di=0 k=024 (2.38)
Cy—C,=0 k=02 (2.39)
Cy— 1[Ny =0 . (2-40)

In eq. (2.36) symhol 6{...} implies differentiaticn upon the independent variables 3 and ¢. In the
variational problem (2.36)-(2.40) the phonon amplitudes ¢ and ¢ are normalized to an arbitrary
constant (r = 2 in the case of RPA). The necessity of a generalized normalization and its effect on
the B-ERPA solutions will be discussed in more detail in Sect. IV.

We note that SU(8)-boson image of the third term in H, .. gives no contribution to the expec-
tation value (hws | Q*Hp_prpa@S®t | huws), because it changes phonon number (see eqe. (2.7),
(2.23) and (2.28)).

As already stated in Refs.15,16, a part of the SU(6)-EC: D, = Dy = 0, = C3 =0 are tnv1a.11y
satished and for this reason they do not appear in the variational problem with constraints expressed
by eqs. (2.36)-(2.40).

If SU(6)-symmetry governed dynamical problem (2.36)-(2.40) is solved, the quantity C {(and
hence N = Int[C™']) defined by egs. (2.18) and (2.19), is determined. However, it might be useful
to introduce an additional requirement €' = Pigry -, where, in purticular, Npy can be the total number
of bosans prescribed by the "IBM counting rule”. The constraint (2.40) reflects just this additional

requirement.
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The unknown amplitudes {1, ¢} needed to specify completely the microscopic SU(6)-sd boson
Hamiltonian Hg_ggps can be determined by solving numerically the above mentioned problem.
Carrying out the requisite differentiations upon 1, and ¢, we cast eq. (2.36) into a more

exphiat form:

21
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Omitting all the terms which are nonlinear in 4 or ¢, we obtain:
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This system can easily be solved analyticelly:

2‘}'2 (5" _w)-l
( ;1’ ) = Zu Fivsn w3y ulf) ( e 1) . (2.42)

i (E.ﬁ.‘h + w)_

Substituting these expressions into the definition Z;,, given by eq. (2.9) we get:

z Z (Fap w0 (ed,, — @) =1 . (2.43)
qiia
Equation (2.43) is nothing else but the RPA secular equation (Cf., e.g. Ref. 17), while eqs. (2.42)
give the standard RPA solutions for (3, ¢) amplitudes for a separable force.

The full problem (2.36)-(2.40) is an extension of RPA (ERPA) in boson representation with SU(6)-
constraints. {That is why the abbreviation SU(6)-B-ERPA has been introduced.). An inherent
{feature of the SU(6)-B-ERPA is the consideration of the SU(6) symmetry governed dynamics in
interconnection with the constraints dictated by the enforcement of SU(6) symmetry. As e matter
of fact this pattern is not wnfamiliar in other selfconsistent schemes. As pointed out in Ref. 30, in
the framework of SU(6)-B-ERPA the SU(6)-EC play a role similar to that of the optimized RPA
boundary condition, introduced in Ref. 31; the purpose was to extend the Selfconsistent Collective
Coordinate Method®? in such a way that it becomes applicable in the vicinity of RPA crifical point

too.
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3. COMPUTATIONAL ASPECTS OF THE PROBLEM

The symimetry governed dynamical problem, formulated in the previous seclion, is essentially a non-

linear problem with respect to the unknown amplitudes ¢ and ¢ and can in principle be stated in

different forms: as an overdetermined system of equations; as a Lagrange problem with constraints

and so on. In Ref. 30 a formally equivalent mathematical problem has been treated approximately
by simple scaling of phonon amplitndes, but with no guarantee that the SU(6)-EC aze fulfilled.
Proceeding as in Ref. 15 we choose the way of direct generalizalion of the RPA problem regarding

it as a minimization prablem with constraints in form of equalities in the sense of classical non-linear
progtamming (see e.g. Rel. 33, ch. 1). Thus the dynamical problem results explicitly in a system
of non-linear equations which expresses the necessary condition for optimization of the Lagrange

function (2.41}, formed by the energy expectation value in one-phonon states, the normalization

condition (2.37) and the SU(6)-EC (2.38)-(2.40):
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The quantities I',5 and G featuring in eqs. (3.1) are defined as:
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They stem from the derivatives of quantities Zy, Zg1, Cr and .y, in ( ;.'1’3 ), what can easily be

Jida

checked with the aid of eqs. (2.16) and (2.19), wrilten in a modified form:

G = E[ f}:("‘” 11’.11:: 5}2,(?*‘)@,;7]

inia
[ ;ﬁ,('f’ Vb — G.(:J)z(qs) ‘?551:5:] .
Jlﬂ

In the numerical method we employ the vector of unknowns contains on an equal footing the
vector of Lagrange multipliers (w, ). We solve numerically the problem iterating simultaneously,all
the components (4, ¢,w, A). In principle, the condition for local convexity of the Lagrange function
in the optimization point should be checked, but this requirement can not be met directly in practice.

As we mentioned in Sect. 2 the first two lerms in the Lh.s. of eqs. (3-1) together with eq. (3.2) )
form just the usual RPA problem. The inclusion of third term in egs. (3.1) leads to a non-linear
generalization of the RPA referred to as ERPA. The latter takes into account the BB-terms of the
Hamiltonian H,,. (2.7). In solving the general problem of 8U(6)-B-ERPA we use iwo options: (i) the
B-ERPA-option, where Lhe total number of bosons is not fixed {it includes all the terms in eq. (3.1)
but not the last one and all constraint conditions excluding eq. (3.5)), and (ii} the BN-ERPA-option
in which the total system of equations (3.1)-(3.5) is treated.

The BN-ERPA non-linear system of equations is solved numerically by means of an aulo-
regularized Gauss-Newton iteration process®®, executed by the program-package REGN®, Because
the gradients of the constraint conditions go to zeto in the vicinity of the solution so that problems
becownes strongly ill-conditioned, we have used a new (unpublished) version of the program REGN,
which realizes an iteration process scaled according to Marquardt®” and then auto-regularized (see
Ref. 35, eq. (18)). We employ as initial approximations the RPA-values of (¥, ¢,w) given by eqgs.
(2.42) and (2.43) and zero values for the Lagrange multipliers (A).

13
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Figure 1: Comparision of the leading componeats of the phonon amplitudes (3, ¢) calculated in RPA
and B-ERPA.
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The dimension of the system (3.1)-(3.5) is [2 x (the number of finj m.e.} + 7] in the general (BN-
ERPA) case. Practically it includes 70-150 unknowns/equations when alf the fj1 matrix elements
in one sub-shell arcund the Fermi-surface are taken into account. Solutions sre constructed with
high accuracy: the maximal defect in satisfying every single equation is not greater than 10-1°,

Solutions of the system (3.1)-(3.5), which realizes the "bosonized collective phonons”, keep gen-
erally some common features (the number and position of the leading components} with the usual
RPA solutions, but at the same time some distingnishable differences can be observed (see fore more
details Fig. 1). In particular, it is evident that the BN-ERPA solutions zre not result of a stinple op-
eration (like scaling) on the RPA ones. The picture shown on Fig.1 changes from isotope to isotope.
As to the question about the total number of BN-ERPA solutions in the collective sub-space (for
RPA there is only one solution), we are unable to give a definite answer. From the general point of
view the number of solutions of a non-linear problem (ERPA, B-ERPA, BN-ERPA) should be more

- than one what is demonstrated (for the case of ERPA) on Fig. 2. In this ease we have found 4 sccond
branch of solutions which approaches the first {RPA-like) branch in a point, where ERPA solution
become complex. The same can be observed for the B-ERPA solutions (on Fig. 2): they also become
complex for a definite value of the quadrupole strength x. In the B-ERPA and BN-ERPA cases we
have not fonnd a second solution of the system {3.1)-(3.5), but ihe only one which originates from
the usual RPA solution.

253w, MeV

0.016 0.018 0.020 0.022 0.024 Q.026
-4
£, MeV fm

Figure 2: Dependence of the energy of 2§ state on the strength of quadrupole-guadrupole interaction
within TDA, RPA, ERPA and BN-ERPA.
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4. DISCUSSION OF NUMERICAL RESULTS FOR Zn

ISOTOPES

To carry out the microscopic calculations of the IBM-1 Hamiltonian parameters (Cf. egs. (2.20-
(2.33)) we have employed the values of Woods-Saxon potential parameters published in Ref. 38.
These prameters have been chosen in such a way that the resulting level scheme and wave functions
give reasonable description of the properties of low-lying states and mean square radii in the region
of Zn isotopes. The values of monopole pairing interaction strengths G, = 0.260MeV and Gy =
0.264MeV are fixed so as to reptoduce the even-odd mass differences. In Table I we present the
single particle levels, used in our calenlations. The total number of quadrupole matrix elements f;;,
{Cf. eq. (2.4)) between the s.p. states (Table I) amounts to 98. Ameng these 49 are neutron and
49 are proton matrix elements. Methodical calculations bave indicated that in fact only 28 matrix

elements {14 proton and 14 neutron m.e.) for s.p. levels around the Fermi surface play a significant

role. Therefore only these have been used in our calculations.

Table I: Single particle energies for Zn isotopes

nij

neutron energies, MeV

proton energies, MeV

1sipe
1Pa,u‘z
1P1,.'2
1dss2
1ds/2
28172
1fara
2pas2
1f5.2
2p1/2
1ga/2
22
338149
2dg)2
1g7/2
12

-37.39918
-29.95807
-28.67243
-21.66252
-18.79695
-18.28062
-12.76614
-8.83220
-7.06067
-7.19288
-3.50583
-0.58232
-0.38138
1.09788
3.00672
5.66360

-38.12718
-30.54278
-28,79809
-21.97828
-18.12351
-17.65574
-12.70211
-7.46996
-6.20901
-5.17669
-2.91440
1.91519
3.13861
4.9414%
6.25283

7.13096




The values of the constant of the isoscalar guadrupole-quadrupole interaction satisfying the con-
dition wgypy = E;;ﬂ’ OF rpy = E;;"’L are denoted xp, or rr, respectively.

In the first place we have verified to what extend the SU(6)-EC given by egs. (2.15)-(2.18)
are satisfied within the conventional RPA and TDA. From the resulis presented in Table II, it can
be seen, that strictly speaking, neither the "equality” part, (Cf. egs. (2.18)) nor the "vanishing”
part {Cf. eqs. (2.15} and (2.16) in the case of RPA) of SU(6)-EC are antomaticatly fulfilled. It
is also seen, that if we define N = Int{C-}, where @ = 3(Co + €2 + Cy), the values of N agree
quite well with the "IBM-counting rule”. In general outline it seems reasonable to utilize RPA as a
starting approximation in solving the SU(6) symmetry governed dynamical problem defined by eqs.
(3.1)-(3.5).

Table II: Degree of fulfilment of the "SU(6}-EC” within RPA and TDA

Nucleus | Approach Nigu | N | G Co | Oy | Do | Dy | Dy W,S,‘?,
5170 RPA 4 3 1043019 |0.40 | 0.19 | 0.08 | 0.16 | 0.08
TDA 41022]009]0.20]0.600.00)0.00| 0.00
86Zn RPA 5 3042|021 )039|0.18|0.080.16 | ©.08
TDA 4]022)011]|020|000]000|0.00]| 0.00
887 RPA 6 3 1027 |0.25|0.41|0.13 | 0.10 | 0.16 | 0.098
TDA 6015|013 |0.21|0.00 [ 0.060 | 0.00 | 0.00
™Zn RPA 6 3 |0.10 045|067 |0.07| 019 0.28 | 0.008
TDA 7 1007 [0.18 | 0.27 [ 0.00 | 0.00 | 0.00 | 0.00

In Table IIT we present the values of the IBM-1 Hamiltonian parameters evaluated microscopi-
cally by using expressions (2.29)-(2.33), alongside with the fitted!® IBM.1 parameters in %®Zn. The
amplitudes (s, ¢) featuring in these microscopic expressions have been computed without taking into
account the SU{6)-EC (RPA and FRPA cases, Cf. Sec. 3), and with the SU(6)-EC "switched on”
{B-ERPA and BN-ERPA cases, Of. Sec. 3). In the latter case where these conditions are satisfied
by construction, the maximal value of WJ(:} decreases considerably, as required by egs. (2.15). From
Table IIT it follows that the neglecting of the SU(6)-EC destroys the overall agreement between the
calculated and fitted parameters: the values of (F,&,C}), calculated in B-ERPA, or BN-ERPA are
cioser to the phenomenological oties, than the values of (F, G, C-'E,) computed in RPA or ERPA. As
to the d-boson energy ', the bosonized theories B-ERPA, or BN-ERPA yield iarger values than
RPA, or ERPA (for the same values of the quadrupole-quadrupole strength x < xr). The value of
N, calculated according to eq. (2.26) in conjunction with SU(6)-EC, i.e. in B-ERPA, is quite close
to the value, prescribed by the "IBM-1 counting rule”,



_ Table III: Values of IBM-1 Hamiltonian parameters in different microscopical approaches in **Zx for

K=4K,andr =2

N R F a Cq c, cy Wik,

IBM-1 6 | 1.1740.04 | 0.084 | -0.085+0.038 | -0.63+0.07 | -0.4010.06 0.11+0.04
RPA 3 1.04 0.829 -1.85 3.20 3.30 3.30 (.098
ERPA (4| 106 |0.892 -1.65 2.94 2.94 294 | 0.088
B-ERPA | 5 2.07 0.471 -0.472 0.70 0.80 0.80 0.011
BN-ERPA ! 6 2.13 0.350 -0.394 0.60 0.69 0.68 0.008

As we have already mentioned (CE. See. 2, egs. (2.20)-(2.35)) since we use only the isoscalar
quadrupocle-quadrupole force, we fail to reproduce the signs of C?i-,

All conclusions, stemming from Table II1, hold for the other isotopes as well. Using the calculated
values of IBM-1 parameters as input in program PHINT? we have obtained spectza of low-lying states
in #-7Zn which are too stretched compared to the expetimental ones. This is not surprising at all,
because, as stated in Sec. 2, in the course of derivation of the IBM-1 parameters we have related
only the collective quadrupole phonon subspace (A = 2,1 = 1) (Cf. egs. (2.12)-(2.13)). Clearly,
whenever the space has been truncated, one naturally expects the occurrence of remormalization
effects, which will affect the values of the computed parameters. We have found out (at first time
heuristically) a mechanism that leads to comptression of the theoretical spectra. This mechanism
consists in reduction of the normalization constant r, featuring in eq. (2.37). A case in point is
shown on Fig. 3. One sees that by renormalizing the value of r from r = 2 to r = 0.73, we achieve a
reasonahle agreement bebween theoretical and experimental spectrum.

A conceivable way to justify theoretically the ensuing reduction of r would be to account, in some
effective way, for the role of the degrees of freedom, which have been ignored in the course of the
enforcement of QCA (Cf. egs. (2.12)-(2.13)). These were, at first place, the noncollective quadrupole
degrees of freedom ("scattering terms” with h =2, ¢ > 2) and the degrees of freedom other than the
quadrupole one (scattering terms” with A > 3and i > 1). Toillustrate the procedure, it suffices to
confine ourselves to the noncollective quadrupole degrees of freedom. To avoid needless complications

we consider Tamm-Dankoff quadrupole phonon operators:

1 o
Ti = 3 Y. gbjj.(;rm]mup)ajma;:m, 4.1)
jmi' '
1 s
Tos =3 b 1:"’?;;'(-7"‘3'7"' [2p) p @im (4.2)
g m!

Utilizing for @ a* and oo exact bosons realizations in terms of antisymmetric ideal bosons ;'
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E 3
1 E.. MeV —
03
¥
53
'E
2

Figure 3. Dependence of the energies of the low-lying 0F, 2+, 4+ states in ®Zn on the one-phonon
state normalization Zy = r

and b . ,*"4! we derive the fallowing representation for T, and Ty,.: in terms of collective (df,,)

and noncollective (df,;,¢ > 1) quadrupole bosons:

1 :
Tom = 3 |22 f;] Qi = 2 Y Chunuistunistasis Fcis Faiy D2usis (4.3)
i 1 papy 1 iy
i : _ rr
T,m- = 5 [Z;qbfj::l dz,‘,' = ?dzp:‘ . (4'4)
2
Here: df; = Yjpir ¥ip{gmi'm’ | 2p)b} . o by definition and the quantity O 520200 hos
been computed to be given by:
r ' 4 r L]
Covituintmiztusis = 2 Chingiis & (20200 | Kk} (2p32p1 | K k) (4.5)
k=0 Kok
with:
25 Jods 2
Ol = 3 L (CIP*8 5o do 2} lavinwinei, (46)
nanM 3 2 k

I we set i = iy = iy = i3 = 1, from eq. (4.6) we go back to the familiar "collective” quantity CF,
defined by eq. (2.19) in which all ¢ = 0.



Let us introduce now the following quantity:

Inv = 2 )_:_;z(u| [ Topi [ Lo Tl | [Tbir [T Ti]] 1 0) - {4.7)

With the aid of eqs. (4.3) and {4.4) we readily obtain:
— pp\dinee 2 .
Inv = -4 (?) > 3 (Chouund) . {4.8)
sl p=—3
If we keep only the collective degree of freedom, we have to calculate the double commutators
in eq. (4.7) according to the QCA commutation relations {2.20)-(2.22). Using them we get an
approximate value for Inv:
Inv = —2007, (49)

Comparing egs. (4.8) and (4.9) we find that a possibility presents itself to effectively take into account
the neglecting of the noncollective degrees of freedom. Indeed, we can preserve the approximately
computed quantity Inv, requiring that Ine = Inw. This conservation of In will be compensated
by a replying renormalization of ry which, in virtue of eqs. (4.8) and (4.9) is given by:
i 2 14
rr =2 [5C /(507 + 3 3 (Cluzuzuiau) ) (4.10)
i=2 u=-2 )
In the same fashion we can incorporate the other neglected degrees of freedom (A > 2, i > 1). These
results can be generalized to the case of RPA phonon operators. The generalization reduces merely to
replacement of O i1 dariademsis DY theit RPA-extensions (Of. eq. (2.18)). We have thus illustrated
that the reduction of r7 which we have used heuristically to obtain better agreement between the
experimental and theoretical spectra, can be interpreted as an effective way to include within SU(6)-
B-ERPA, in an algebraic manner again, the noncollective quadrupole degrees of freedom.

From eq. (4.10) it follows that taking into account the noncollective degrees of freedom, e.g. by
including the quantities C.f;,—, ri2pitpd
of rp, as desired. As evident from Fig. 3, for all values of r we obtained a picture of a moderate
anharmonic vibrator. The scale is determined by #’. The order of the levels in the split multiplets
depends on the relationship between the rest of the microscopically calculated parameters of IBM-1.

One sees that the order of the levels is maintained with the decrease of 1.

with 2 < £ < 4,z in the calculation, indeed amounts to reduction

We note that the compression of microscopically calculated specira due to renormalization effects,
is a general trend established previously by other anthors employing different techniques®™42-%5,

In Table IV we present the perameters of the IBM-1 Hamiltonian for ®~™Zn, calculated within
SU(6)-BN-ERPA, what is one of the goals of present article. The values of x and r have been chosen
empirically so as to reach most reasonable agreement between the theoretical and the phenomenolog-

ical sets of patsmeters. It is seen that the optimal values of = and r are quite stable along the chain
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Table I'V: Phenomenclogically and microscopica.]ly caleulated p&ametets of IBM-1 Hamilionian for
04107

Nucl. | Approach Iy F G c {o c,
#Zn | IBM-1 | 0.8940.0 | 0.11240.03 |-0.18540.02 | 0.1040.40 | -0.3440,03 | 0.3240.04
N=4 o ' .
BN-ERFA | 0.39 © 0008 -  -dose 0.10 0.10 0.10
N=4 : 1 :
r=0.6 )
%Zn | IBM-1 1.04+0.0 ! 0.061:40.057 | .0.13840.03 | 0.69+0.47 | -0.3640.03 | 0.234+0.05
N=5 - o ‘
BN-ERPA 1.04 0022 -1 w0075 | 013 0.13 0.13
N=5 o '
r=0.73 : '
®%Zn | IBM-1 | 1.17-£0.04 | 0.08420.0 |-0.085+0.38 | -0.6310.07 | -0.40--0.06 | 0,1140.04
N=6
BN-ERPA 1.10 © 0.030 -0.054 0.08 0.10 0.10
N=6
=0.71
MZn | IBM-1 1.08+0.0 | 0.10610.02 | -0.04740.02 | -0.44+0.0 | -0.35+0.05 | 0.1740.06
N=10
BN-ERPA 1.08 0.049 -0.069 0.10 0.13 0.11
N=10 i
r=0.7

of isotopes {CL. column II of Table IV). It is worth to mention that a relatively strong reduction of
T (from r = 2 to r = 0.7) is required for the whole chain *~™Zn, which implies a rather massive
renormalization effects. Such a renormalization leads to fairly good theoretical values of . The
theory reproduces correctly the signs and the order of magnitude of F,G,C\-parameiers.
Summarizing the results given in Table IV, one is led to the conclusion that as a rtule, the
SU(6)-B-ERPA produces quite reasonable values of IBM-1 parameters. Of course, the comparison
of phenomenological and microscopic parameters does not give complete idea about the goodness of
the theoretically calculated parameters. Therefore, the latter have been used as input in program
PHINT® to produce the corresponding energy spectra of I™ = 0+, 2+, 4+, 6+.states in -7 2n, The_
resulls are summatized in Table V together with ile experimental and phenomenological IBM-1
spectra. Table V reveals the following tendencies: . .

(i) Ensuring excellent reproduction of the first I™ = 2+ states energies (by a proper choice of r)
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Table V: Experimental and calculated enetgies in Zn-isotopes

Ir(band) Nucleus
gy | 8Zn | Zn | ™Zn
of(A) | Exp. | 1.9103 | 2.3726 | 1.6559 | 1.0507

IBM-1 1.9241 | 2.2201 { 1.6124 ; 1.0773
BN-ERPA | 1.9500 | 2.3363 | 2.3601 | 2.4081

03 (Ba) Exp. 2.6092 | 3.1055 2.1390
IBM-1 | 2.5851 | 3.1413 1.9627
BN-ERPA | 3.0137 | 3.5952 3.7578

2H{g) Exp. 0.9915 | 1.0394 | 1.0774 | 0.8848

IBM-1 | 0.9886 | 1.0909 | 1.1042 | 0.8669
BN-ERPA | 0.9059 | 1.0635 | 1.1086 | 1.0638
27 () Exp. 1.7994 | 1.8730 | 1.8832 | L.7539
IBM-1 | 1.7482 | 1.8733 | 1.9294 | 1.6054
BN-ERPA | 1.9127 | 2.2657 | 2.3207 | 2.3268
25 (31) Exp. 9.7937 | 2.7804 | 2.3384 | 1.9574
IBM-1 | 2.7263 | 3.0058 | 2.4868 | 1.9597
BN-ERPA | 3.0413 | 3.6543 | 3.6754 | 3.7774
4} (g} Exp. 2.3070 { 2.4490 | 2.4174 | 1.7865
iBM-1 | 2.3172 | 2.4262 | 2.3207 | 1.8309
BN-ERPA | 1.9126 | 2.2636 | 2.3247 | 2.2696
44 Exp. 2.7367 | 3.0800 | 2.9594
IBM-1 | 3.0116 | 3.1106 | 3.0613
BN-ERPA | 3.0137 | 3.5931 | 3.6492
67 () Exp. 3.9937 | 4.1820 | 3.6876
IBM-1 | 3.9495 | 3.9864 | 3.7042
BN-ERPA | 3.0136 | 3.5900 | 3.6432

we attain satisfactory deseription of the behavior of the second I7 = 2+ state energies. In ™Zn,
which exhibits the largest discrepancy, the calculated energies differ by 0.5 MeV. As to third = =2+
states, we see that the energies are poorly desceibed. The same can be said about description of the
second I® = 0*-state energies. .

(ii) For the low-spin states I* = 0*,2% the agreement between experimental and theoretical
energies is hetter for the lighter isotopes *4% Zn, while for the states with I™ = 4t 6% the agreement

is better for the heavier isotopes %~ "Zn,
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It should be kept in mind that the SU(6)-B-ERPA has a restricted range of validity. Strictly
speaking, within this microscopic model one can treat only the quadrupole collective states. We
emphasize, that while IBM-1 has 6 free parameters, we have at our disposal only 2 parameters, for
the moment; cne of them (r) will be calculated in future with the aid of eq. (4.10).

5. SUMMARY AND CONCLUSIONS

We have presented full account of an approach to the microscopic foundation of IBM-1, alternative to
the traditionally employed approaches which are based on mapping procedures™ %, This approach is
a further development of the approximate bifermion SU{6) algebra method®* used in the derivation
of the SU(6} boson Hamiltonian of TQM. The main novelty of our SU(6)-B-ERPA consists in the
treatment, on equal looting, both the dynamics governed by the 5U(6)-B-ERPA Hamiltonian (CL.
eqs. (2.36)-(2.37)) and the SU{6)-EC (Cf. eqs. {2.38).(2.40)). Since the latter reflect the importart
fact that the QCA=SU(6) has been enforced, they have to be reckoned with in any kinds of approaches
that claim to provide sound microscopic substantiation of IBM-1. Another merit of SU(6)-B-ERPA
is that the total number of bosons is inferable from the basic framework of the approach (Cf. egs.
(2.26)). The computed values of N are, as a rule, close to the values given by the "IBM-counting
Tule”.

We note that SU(8)-B-ERPA can be exiended, so as to be adequate for providing microacopic
founda:tion of the other versions of IBM, such as IBM-2, IBFM-1 and IBFM-2.

For the first time we have proved the existence of numerical solutions of the Lagrange minimization
problem with constraints (Of. eqs. (3.1)-(3.5)). This implies in particular that the SU(8)-EC are
compatible with the SU(6)-B-ERPA dynamics.

The SU(6)-EC which are inalienable part of SU(6)-B-ERPA, have been totally neglected up to
now. The illustrative numerical calculations carried out in Zn isotopes have confirmed the impor-
tant role played by the SU(6)-EC: their neglecting deteriorates the overall agreement betwesn the
computed and fitted sets of IBM-1 parameters (Teble IIT). The mumerical calculations performed
in Zn isotopes have indicated that in order to achieve reasonable values of the computed IBM-1
parameters, we have to reduce essentially the value of the normalization conetant r, which indicates
that the role of the neglected degrees of freedom is important. The renormalization of r enables
quantitative description of the energies of the first and second J* = 27 states in the entire chain of
Zn isotopes. As to the rest of the states J™ = 0+, 2+ 4+ 6+, which are not legitimate object of study
of the SU(6)-B-ERPA, their description could be classified for the most part as quantitative.

The 5U(6) Boson Extended Random Phase Approximation approach contributes additionally to
the repute of the "new S3U(6) phenomenclogy” by providing microscopic foundation of IBM-1, which
is mathematically rigorous, computationally sound and leads to reasonable values of the renormalized

calculated parameters.
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Kapaamwoe 4. 1 Ap. E4-90-98
0 HOBOM MOAXCAE K MUKROCHKOMMY2CKOMY ODOCHOBAHWKW MOALNW
szauModefcTeyowmMy Bosores. 1. Murpocronnqeckee onpedengdue

napameTpos MBE 1 nNpUnomMeHme K YeTHO-HeTHBIM M3GTOMNaM LAHKA

MNpeanokeH anrefpandeckud NOAXOA K MUKPOCKOMAYRCKOMY oBOCHOBAHMO MOARAN
paanMogeRcTRYluax Bodonos (MBB). Mpw 5ToM ydTore. yCroBWA, HAKMAAbBASMbIE
SU(6)-annamakoli. Beegerna KONAEKTWBHOFG MPOCTRAHCTEA, KaK npacTpancrsa, hopo
MUDYEMOrO HUMAHLAMIA KBAAPYMOMEHEIMA OOHOHAMY NpwBnukeRhd cnyYaiHb Gas.

W Tpefosadve swnonHerua SU(6)-civveTpyw NOIBONART: 1) naeHTudyuypoBaTe KoM=
MEKTUBHOE MOAMPOCTRAHCTRO KAk Hecyuee NPOCTPAHCTBO NOMHOCTEK CUMMETPUYHOrO
HEMPUBOAMMETO TPEACTABMNEHAR TPy SU(G); 2) BoiBBCTW M3 MAKPOCKONKYECKATo
FaMUABETOHUAHA KBEIWHACTUHHO-BOHOHADH #odeny ramupToHNaH MBE. (poBeAeHb pac
JaTel NapaMeTpoB raMunsTodwaHa BB 4ne u3oTonos b4 7870, MokazaHo, 4T0 ANA
OPVCAHWR 3KCMEPUMEHTANbHEX CMEKTPOE HeaBXoANMO NPOROAWTE MEPEHOPMUPOBKY tbo-
HOHHBlX AMANATYA. DTA NEPEHODMIPUBRKA CBA3aMa C NpeHelpeseduem Apyramn cTene-
HAMK CBODOAD,

Pabota gwnonHeHa 8 JlaBopaTopui TeopeThvsckol dmawku OWRU.

Coobiesne O6seRMHERHOID MHCTATYTA AAEPHEIX HecTleqoBannit. [yora 1920

Karadjov 0. et al. E4-90-93
On a New Approach to the Microscopic Substantiation

sf the Interacting Boson Modei-1. 1. Microscopic

Determination of IBM-1 HamiTtonian Parameters

and Application to Even-Even Zn Isotopes

An overtly Lie algebraic approach to the microscopic foundation of IBM-1
i itemized, treating on an egual foeoting the SU(6) governed dynamics and
the accompanying SU(6) constraints. The introduction of the collective ran-
dom phase apporaoximation phonon operators as "preferred pairs" with subse=
quent enforcement of the reievant SU(G) algabra has enabled: (1) to identi-
fy the "decoupled" phonon subspace as carrier space of the totally symmet-
ric irreducible representation of SU(6): (i1} to single out from a micros-
copic reference Hamiltonian the fragment with the ensuing [BM-1 sd-boson
form. Using this approach, the IBM-1 parameters have heen calculated for
the sequence of 5% 70Zn isotopes, as an sxample and it was shown that the
required rencrmalization of the phonon amplitudes can be interpreted as
arising due to neglected degrees of freedom.

The investigation has besn performed at the Laboratory af Theoretical
Physics JIMR.
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