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1. INTRODUCTION 

The Interacting Boson Model (I BM)1
, under the influence of which the area of low energy excitations 

of nuclei has blossomed into an active and exciting field2- \ was advanced by lachello and Arima at 

first as purely phCllomenological theory. Much of the appeal of the original version of the modd, 

referred to as IBM-1 (IBM stands for IBM-1 and all its derivatives), stems from its overtly algebraic 

structure, which enables classification (according to the !Reps of SU(6) group) of the boson basic 

states, to be exploited in conjunction with dynamical symmetries of the SU(6) boson Hamiltonian1•3•4 . 

The impressive impact of the "new phenomenology" on the studies in nuclear structure and 

spectroscopy3 has naturally raised the question about the link of IBM to the admittedly more fun­

damental nuclear Shell Modd (SM). In particular, the microscopic substantiation of IBM in context 

of spherical SM, has indeed been put on the agenda and, despite the formidable work done in this 

direction5 has not been removed eversince2 •4•6 . This problem has been investigated by several authors 

utilizing a variety of methods (Cf., e.g.: Table I in Ref. 6; Ch. 15 of Ref. 4 and vol. 2, part III, Sec. 

VIII of Ref. 2). A few problems encountered in the implementation of these microscopic approaches 

have al so been remarked2
•
6

•
7

: 

(i) The mapping of the "giant" SM fermionic space into the small IBM boson subspace is , under­

standably, in no way unique. 

(ii) The mapping procedure can be carried out explicitly in schematic cases only. In realistic cases 

the mapping procedures yield very complicated expressions. This is the crux of the matter, since the 

mapping lies in the heart of any attempt to derive IBM-like Hamiltonian starting from the SM. 

(iii) The construction of the boson images of the IBM Hamiltonian and physical operators (which 

is based on equating matrix elements of the appropriate operators in the fermion space with those 

in the boson space for lowest generalized seniority states) can be effected in a closed form again only 

in particular cases. 

(iv) Attempts to provide microscopic foundation of IBM-1 assume that the total number of s­

and d-bosons, N, equals to the number of valence pairs ("IBM counting rule") . Such being the case, 

this is a phenomenological step, which can be avoided if one makes the best use of the underlying 

SU(6) symmetry. Moreover, fuller enlisting of symmetry considerations helps to resolve some of the 

problems mentioned above (Cf. Sec. 2). 

This is by far not a complete list of predicaments of present-day IBM microscopy. They are only 

being mentioned as a rationale for the claim that additional efforts be directed to synthesizing of a 

theoretical framework which, exploiting maximally the inherent algebraic properties, accommodates 

sound microscopic support for the IBM-1. 

In this connection we note that an alternative approach to arrive from the SM to collective SU(6)­

model (referred to as Truncated Quadrupole Phonon Model (TQM)8
) has been chosen by Janssen, 



Joles and DOnau as early as in Refs. 9-11. The TQM Hamiltonian has been constructed as the first set 

out on the basis of a sufficiently generic microscopic Hamiltonian9 - 11 . With their seminal work9 the 

authors of TQM have set the method for microscopic treatment of the collective quadrupole degree 

of freedom to enroll approximate bifermion SU(6) algebra, referred to as Quadrupole Collective 

Algebra (QCA)12 . Since exact boson realization of QCA are available (Cf., e.g. Ref. 12), the 

passage to bosons is straightforward what made it possible to obtain the TQM Hamiltonian and 

physical operators directly, without having to resort to mapping of matrix elements. However, this 

approach encounters problems too. In particular, since the SU(6) symmetry has been enforced9 - 11 , 

this necessarily lays down conditions on the amplitudes of the collective pairs, composing QCA. The 

authors of TQM have pointed out that the relevant constraints, to be referred to as SU(6)-en!orcing 

conditions (SU(6)-EC), can be inferred from the Jacobi identities what is, as a matler of fad, an 

intricate problem to solve. This fact might have been the reason that the further development of the 

approach, based on enforced symmetries, remained dormant for some time. 

Due to recent publications13
-

16
, the enforced symmetry approach has been increasing brought 

to bear on the problem of microscopic foundation of IBM-1. Rigorous derivation of the ensuing 

SU(6)-EC and explicit microscopic contribution of Dyson, Holstein-Primakoff and Schwinger (SR) 

realization of QCA (each of them interrelated with the SU(6)-EC) have been itemized in Ref. 13. 

The developments presented in Refs. 13-16 have enabled us to advance a new approach to the 

microscopic substantiation of IBM-1, to be referred to as SU(6)-Boson Extended Random Phase 

Approximation (SU(6)-B-ERPA). While we shall return to this point in Sec. 2, it suffices for the 

moment to characterize SU(6)-B-ERPA as follows. The key role in lhis approach is played by 

the collective RPA quadrupole phonon operators subjected to SU(6)-EC. Substituting the SR of 

the constrained RPA quadrupole phonon operators and their commutators into the Quasiparticle 

Phonon Model17 (QPM) Hamiltonian (an established microscopic model) we derive a genuine IBM-1 

Hamiltonian with coefficients, dependin~ on known microscopic quantities and on the amplitudes 

of t}.te constrained phonons. This micwscopically deduced IBM-1 Hamiltonian will be referred to 

as SU(6)-B-ERPA Hamiltonian. The unknown phonon amplitudes have been determined from a 

variational principle with constraints that ensures minimum of the SU(6)-B-ERPA Hamiltonian in 

the collective subspace in conjunction with fulfillment of the SU(6)-EC (Of. Sec. 2). 

The consistent treatment of the symmetry governed dynamics and of the SU(6)-EC, that go with 

it, constitutes the major innovation of the SU(6)-B-ERPA, being a part and parcel of the entire 

theoretical edifice. 

The purpose of the present paper is twofold: 

(i) to present an outline of the SU(6)-B-ERPA a.pproa.ch to the micror.copic justification of IBM-1 

(Sec. 2) and its computational realization (Sec. 3); 

(ii) to apply SU(6)-B-ERPA in an illustrative microscopic calculation of IBM-1 Hamiltonian 
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parameters for the 64
-

70Zn isotopes (Sec. 4). Experimental data, pertaining to the energies of 
low+lying collective states in these isotopes are ava.ilable18 . The parameters of IBM-I Hamiltonian 
have been previously fitted to this chain of isotopes19 • To the best of our knowledge, microscopic 
calculations of IBM-1 parameters for Zn isotopes have not been reported. These are the reasons 
behind our choice of these nuclei as object of our illustrative numerical investigations. Microscopic 
calculation of IBM-1 parameters in Pt isotopes are now in progress and will be reported elsewhere. 
In addition we plan to perform calculations within the·SU(6)-B-ERPA for nuclei in the region of Sm 
isotopes. 

In keeping with all, that has been discussed thus far, the subsequent treatment will provide the 
outline of SU(6)-B-ERPA as one possible way towards meeting the demands for a sound microscopic 
theory of IBM-1. 

2. AN OUTLINE OF THE PRESENT APPROACH 

As was stated in the Introduction, partial contributions to the development of the SU(6)-B-ERPA 
are contained in a series of papers13

- 16
. In this section, for the first time, we present the full account 

of the theoretical underpinning of SU(6)-B-ERPA. A detailed expose is_ presented with purpose to 
publicize more widely the basic ideas and the mathematical apparatus of this alternative approach 
to the microscopic foundation of IBM-1. 

Prior to setting up the SU(6)-B-ERPA, we recall a few items pertaining to the IBM-1 Hamiltonian 
(whose microscopic derivation is the ultimate end of the SU(6)-B-ERPA). The standard form of the 
latter reads1 •-4.: 

HrBM h ~)d4""d2~<) + c~.1 (!a+_.+,gs) + ch,(Edt"d2p.!l+a) 
• 2 • 

+ I; CL(~v'2L + l[[dj" 0 dl](L)0]d, 0 J,icL)](oo) 
L=0,2,4. 

+ F[[dj" 0 di](,)0]d, 0 •](,l(oo) + h.c. 

+ G[[dj" 0 dj"](o)0]• 0 •](o)](oo) + h.c. (2.1) 

Performing the needed recoupling in the tensor products featuring in (2.1), one can represent 
the IBM-1 Hamiltonian as an 80(3)-scalar, built from the generators (dtl's,a+d:!,..,dt"d2,_., p,,v = 
0, ±1, ±2) of the ca.nonical SU(6) algebra in Schwinger realization (Cf., e.g. Ref. 12). The Hamilto­
nian (2.1) conserves the total number of s- and d-bosons, N, which, for a given nucleus, is postulated 
to be equal to the number of pairs of valence nucleons ("IBM-counting rule"). This is in essence a 
free parameter. The parameters in IBM-1 Hamiltonian are usually determined by the least square 
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fit to'observed nuclear :Properties1- 4 . The variation of these paramkters with masS number is smooth 

and fits are rem~kable.' 

The nlain 'aim of any nricroscopic approach to the "SU(6) phenomenology" is to relate the free 

parameters of HrBM-t, featuring in (2.1),to the microscopic quantities ·of a.n established·fetmionic 

Hamiltonian. Developing the SU(6)-B-ERPA, we have utilized as reference tlie Quasiparticle-Phonon 

Model HamiltOnian for spherical nuclei. Detailed presentation of QPM and its applications can be 

found in Ref. 17. (The QPM has been sUccesSfully used for description of the fragmentation of 

quasiparticle and collective (phonon) states in wi~e excitation energy interval). Within the QPM 

Bogolubov's q_uasiparticles and phonons are being used as simple modes of excitations\ instead of 

the nucleon degrees Of freedom (hence the name QPM has cOme into being). Moie specifically, 

we employ a particular QPM Hamiltonian including an average nuclear field as the SaXOn-WoOds 

potential, superconducting pairing interactions and isoscalar quadrupole-quadrupole forces (Cf. eq. 

(1) of Ref. 17)o 

Hmi- ~ ~{~"(E,- ~,)aj;.a;..- 0 "(P,+-P,)'- "-o(Mi·M,)'o} (2.2) 
T jm 4 2 . 

The notation { r = ( n, p)} is used; the summation n:::'T"} for { r = n} is over the neutron and for 

{r = p} over proton states .. The single-particle states are specified (if there is not ambiguity) by the 

quantum numbers jm; Ej are the single-particle energies; .:\ is the chemical potential;G and K. ilore 

the .respective strengths of the monopole pairing and quadrupole-quadrupole interactions. The pair 

creation and quadrupole operators entering in the scalar products in (2.2) are defined in a standard 

fashion: 

(2.3) 

(2.4) 

Where f;;• siand for the reduced single particle matrix elements of the operato.r (ir)2 Y2,.(0)1 '~'. 

In reality Hmicr given by (2.2) is nothing else, but the schematic spherical single particle pairing­

plus-quadrupole Ha.miltonian, which constitutes the main part of the QPM Hamiltonian (Cf. eq. (1) 

of Ref. 17). 

By performing the cano:Qical Bogolubov tranSformation 

(2.5) 

and introducing subsequently multipole phonon operators17 
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I }:;[·'·'; , ·" ' + + ( )'-""'; , ·' ' ' ) - 'f'"'(JmJ m ! AJJ}CI:'·mO'., , - -1 'f··•(JmJ m I"'- JJ)DI,·•,..•Oijm 2_,JJ 1Jm JJ 

" 
I ~[·'·'; , ·' ' ' ( )'-""" , ·' ' ' + + ) QJo.pi = 2 L, '~",;•(JmJ m I A}J)ct;'m'O!j~- -1 '+';;•(JmJ m I"'- JJ)O!;mo:j'm' 

jj' 

we cast Hm•e~ into the usual quasiparticle-phonon representation: 

2 i.,.u 

+ h.o.)- ;O I;(}:; Z,.[(-!)"Q;',;+Q,_,;)}:;J,,.vj~).B(j,j,;2- ") + h.o.) 
1•=-'l •=1 Jl)ll 

' ;O E (-1)" E /;,hv}~!hlitvj;j!B(jiJ2i2JJ)B(]3jf;2- ,t.~), 
p;-'J ]JJUHI 

(2.6) 

(2.7) 

where: in the definition of Q!,.; the index ..\ denotes multipola.rity, p denotes z-projection in the 
laboratory system, and i is the label of the solution of the RPA dynamical equation; 

B(jj';Ap);;;; }:(-I).i'+m'{jmj'm' I AJJ)Oijmo:j'-m' (2.8) 
mm' 

zli = ~f,;·u~?(?/;:> + q):;.> (2.9) 

" 
u~? = u;V;• + Uj•v;, v!t) = u;uj'- VjV;•· £; = [(E;- .t,.)2 + a;]t' Ll.,. =a .. L UjVj (2.10) 

' 11:'he chemical potential )..,. and correlation function a.,. axe calculated according to the known 
equations20

• We note that the fragment of the monopole pairing interaction that does not contribute 
to the formation of e:i (Cf. eq. (2.10)), feattuing in Hm;~, has been cast aside. Short of the first 
term in eq. (2.6), the rest originates from the quadrupole-quadrupole force, involving the normal 
product of :(Mi. M2 ):. As to the quadrupole operator, its explicit form in the quasiparticle-phonon 
representation reads: 

(2.!1) 

Note that the first term includes summation over collective (i=l) a.nd noncollective phonons (i = 
2, ... , i"''"'). 

It is evident from eqs. (2.1) a.nd (2.7) that phenomenologics.l. and reference Hamiltonian are in 
different representations, which makes it difficult to compare them. Since direct construction of 
the boson image of H~. (employing sta.nda.rd boson expansion techniques) does not automatically 
yield HIBM-1 one has to elaborate a special procedure which allows to single out £rom n;..>a the 
fragment with a b011on structure, identical to that of the HIBM-J defined by (2.1). The eR:Jence of this 
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procedure, which was formulated in principle and used by the creators of TQM9 - 11 , can be stated 

as follows. It has been assumed9 - 11 , that there exists a subspace of quadrupole collective states, 

which are weakly connected with the rest of states. Such being the case, the set of operators, which 

generate this class of states, are bound to constitute, at least approximately, a closed algebra (which 

has turned out to be isomorphic to SU(6) 9
•
10

). The possibility to use known boson realizations (Dyson, 

Holstein·Primakoff and Schwinger, see Ref. 12} of the latter greatly facilitates the bosonization of 

the reference Hamiltonian a.nd produces a genuine SU(6) boson Hamiltonian if SR of QCA is used. 

We now turn to the choice of the collective subspace in SU(6)~B-ERPA. From eqs. (2.7) and 

(2.11), il is apparent that the Ha.miltonian H;,;cr and the quadrupole operator Mi;. are built out of 

the set of operators Q2p.;, Qt,.., B(ij'; 21L), IL = 0, ±1, ±2; i = 1, 2, ... , i..,..,. The latter set of operators 

constitutes the building blocks of the reference Hamiltonian. In addition, by acting with the Qt,.,1 

operators on the phonon vacuum one generates quadrupole collective (i=1) and noncollective (i = 

2, ... , i.,..,.,) phonon states. It is thus natural to choose as collective subspace the set of states, generated 

by the Qt,.,roperators acting on the vacuum. Such a choice is further supported by observation 

(established in Ref. 13) that if we assume, according to Janssen, Jolos and DOna.u9 -
11 , that this 

collective subspace is weakly coupled with the states of another nature, then the set of operators 

Q2,.,1> Qt,.,1 , [Q 2,.,1>Qt,.,1J approximately closes the ensuing SU(6) algebra QCA. Indeed it has been 

shown 13 that: 

' [Qf,.,t, [Q:M, Qj.,.l]] = 2 E (QtplC~-'""P + Q2ptDwup) 
P='-Z 

plus sums involving[(..\= 2, i ~ 2)] "scattering" terms, 

' [Qz,.,I, [Q2vl• Qjutll = -2 E (QzplC,.,.,.,.P + QjptDp.vup) 
p~-2 

plus sums involving[(..\= 2, i ~ 2}] "scattering" terms. 

(2.12) 

• 

(2.13) 

The explicit form of C,.,..-rp and D,.,..-rp is given in Ref. 13 (Cf. eqs.(22) and {23}) and will be of no 

use further. We stress that, if the "scattering" terms in commutation relations (2.12) and {2.13) are 

cast aside, the set of operators 

(2.14) 

will compose a closed algebra, but not necessarily the Lie algebra. It has been proved13
, that the 

necessary and sufficient conditions that the above set of operators form a. Lie algebra, are given by: 

(2.15) 
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for k=0,1,2,3,4, and a.ny itiz, 

{ 

j, 
25 - -

D, = "2 _ ~- (-1)"-A j, 
.n.1uu.. 

2 

for k=0,1,2,3,4, 

and 

C1=Cs=O 

Co= Cz=04 = C 

Constraints (2.15}-(2.19) constitute the so called SU(6)·EC. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

In virtue of eq. (2.15), the commutators (Q,.t, Q2ul] and [Qt,.1, Qt.,1] vanish identically (Cf. eq. 
(34) in Ref. 13), thus ensuring the elimination of redundant operators in the set (2.14). While it is 
by no mea.DB a trivial matter to infer coOBtrainiB (2.15}-(2.19) from the condition that the operators 
set (2.14) forms a Lie algebra (sufficiency), it is easy to show tha.t, if eqs. (2.15).(2.19) are satisfied, 
then the set of operators { Q2p1, Qt,1 , [Qz,.1 , Qt1J} composes a Lie algebra (necessity). The exploit 
fonn of the Lie algebra under consideration, the so called QCA reads (Cf. eqs. (36H38) in Re£.13): 

[Q,.,, [Q..,,Qt,,]) = -C5~Q,- C5~Q,., (2.21) 

[[Q,.., Qt.,]. [Q,.,, Qt,,]) = c5 .. [Q,., QJ",,]- c5.,[Q,., Qt.,] . (2.22) 

QCA is isomorphic to the Carta.n-Weyl SU(6) algebra (Cf. Sec. Vll of Ref. 13). The explicit iso­
morphism QCA#SU(6) in conjunction with the SU(6)-EC have permitted to construct microscopic 
Schwinger boson realization of QCA, which is directly as~ciated12 with the IBM-1. The SR under 
consideration can be written as (Ci eqs. (51)-(53) in Ref. 13): 

Q!R = N-tlza+ dzp 

[Q.,Qt] 81
' = N""'(5 .. ,+,- 4A.) 

N=Int[~] 

7 

(2.23) 

(2.24) 

(2.25) 

(2.26) 



where the quantity Cis defined by eqs. (2.18) and (2.19). 

This quantity has been shown12 to measure the deviatiOn of the two-phonon norm from unity. 

It tefleds the :Ca.ct that the constraint operators,{QtsR,Q!R}, which are an SU(6)-approximation 

image of the two-quasiparticle RPA phonon operators (2.6), account for Pauli principle in average," 

since in virtue of eqs. (2.18) the quantities a~. should not depend on the angular momentum of ~he ' 

phonon state. We intend to undertake in the future in-deep investigation of the nagging question of 

spurious states associated with violation of antisymmetry21 - 25 as it stands in the SU(6)-B-ERPA. 

We see from eq. (2.26) within the SU(6)-B-ERPA the total number of bosons can be associated 

with the integer number, nearest to o-1 . 

To emphasize the :Ca.ct that eqs. (2.23)-(2.25) represent the SR of the enforced QCA, the notation 

Q~R, QtsR has been used for the constraint RPA phonon operators. Exact boson representations 

for the operators B(jj'; LM), needed to bosonize thro! ·;eference Hamiltonian H;,.;.,., have been also 

constructed in Ref. 13 (Cf. eqs. (67) and (69)): 

, 
(2j+ 1)'1' B(jj; 00) ~ D<.Pj})' + (¢)} }'] ~ di.J;. (2.27) 

j' jj=-2 

B( . . · LM)- 5 "(-1)''+;, { 2 2 
L } (·'·" :,., . -'" -'" )[d+ ~ d-] Jl)2, .- L_, . . . 'f"j,.Jl'f"hh.+ V'Jii-JV';bja 2 'lY 2 (LM)> 

j, }l ]2 )3 

L ~ 2,4. (2.28) 

We are ready now to deduce from H;,.;"" the fragment with the IBM-1 boson structure. To this end 

we first separate the ~ollective part of n;,.;.,., i.e. the part including the collective operators Q2p.1 , Qtp.t· 
~. ' ' ' 

This in fact amounts to restricting the summations in rhs of eq. (2. 7} to im..., = 1. Upon replacement 

of the operators {B(jj; 00), B(jj'; 2p;), Q2p.1 , Qtp.1}, featuring in .the collective part of H;.,ter-• by their 

boson equivaJents (given by (2.27),(2.23),(2.24) and (2.28), respectively), the collective part of n;,.iao 
acqUires precisely the form of the IBM-1 Hamiltonian (2.1). 

The term by term comparison of microscopically derived and the.phenomenQlogical IBM-1 Hamil­

tonian (2.1) leads to following microscopic expressions for the.IBM-1 Hamiltonian parameters: 

• , I ch = ch1 = c~ = - 10Z11 N 

(JL=-25x;Zi1 { 
2 2 2

} (£=0,2,4) 
2 2 L 

F = -~(5/NYI2ZuZn 

• 'I G = - BJ5Z11 N , 
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(2.29) 

(2.30) . 

(2.31) 

(2.32) 

(2.33) 



where: 

(2.34) 

Z41 = ~) ci1 + c;,)[(¥>j11;,)2 + (tP].t;, )2] (2.35) 
ili2 

the quantity Z11 has been defined before (Cf. eq. (2.9). With the aid of transformation fi' = 
h + (N- l)(Ch, - c,.3). 6~ = CL +(Cr.. - 20~). the most general IBM-1 Hamiltonian (2.1) can 
be transcribed to a six-parameter form. In the sequel we shall deal with the set of six parameters 
{ii',F,a,ca. 

From eqs. (2.29)-(2.33) it is evident that aU the pa.rameters except 0 2 have correct signs 
(Z11 , Z41 > 0; Z21 < 0). However, we are not able to obtain a negative-valued C; in the present 
approach. The inclusion of the isovedor part of the quadrupole-quadrup.ole force could hopefully 
resolve this "sign" problem14

• 

We have seen that the physical assumption of the co1lective quadrupole degree of freedom being 
weakly connected to the other degrees of freedom amounts to a. truncation of the shell-model space 
to the collective subspace generated by the constraint quadrupole phonon operators{Q!5.R}, given 
by eqs. (2.23) in conjunction with the SU(6)-EC. Decoupled colledive subspace under considera­
tion is, in fact, the totally symmetric IR [N,0'1) of the SU(6) group. Acting repeatedly with the 
operator Q!SR on the highest weight state! hw3 >= ':;l; ! 0) of [N,04 J, one constructs the entire 
(N+5)!/(N!5!)-dimensional subspace, spanned by the monomials 

{ (••)•· ' } 
. (n,!)'i' ,!!,(d;!")"• I 0) ' 

where n,. + ~p:-ZnJ< = N (Cf. Ref. 12). 
It is this decoupled subspace [N,04J which has enge~dered Ha-ERPA., the IBM-I Hamiltonian 

with microscopic expressions for the parameters given by eqs. (2.29)-(2.33). Once the closure of 
QCA has been enforced, the problem of the fermions to bosons mapping has a well defined solution, 
since a full scope exact boson realizations of QCA=SU(6) are known and can be directly used12. 

We emphasize that since the SU(6) based Hs-ERPA is an approximation to the QPM Ham.iltonian, 
we do not impose the requirement on the Hs-ERPA spectrum to coincide exactly with the spectrum 
of the QPM Hamiltonian. This procedure differs from the ones in Refs. 26,27. 

We have succeeded to derive microscopically a Hamiltonian which possesses the ensuing SU(6) 
sd-boson form (2.1). This is a crucial step, but a.s seen from expressions (2.29)-(2.35), the coefficients 
of our microscopic IBM-I Hamiltonian depend on(¥>, 4>)-amplitudes, which are not defined as yet. In 
order to determine the coefficients o:C the derived Hamiltonian {so that it can be used in microscopic 
calculations), we need a procedure to dete;mine the unknown phonon amplitudes. 
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However, no consensus seems to exist as to how to proceed in general case. Klein and Vallieres 

have l?roposed28 that the collective pairs be determined by a variational condition on the trace of the 

Hamiltonian. On one hand, in the case under consideration it is natural to determine ( 1/J, ¢) from 

variational principle which ensures that the collective isoscalar quadrupole phonon states lie lowest 

in the energy spectrum, and thus are maximally separated from the rest of the states (Cf. Ref. 29). 

On the other hand the SR of QCA and hence the resulting microscopic IBM-1 Hamiltonian are to 

be considered in interconnection with the SU(6)-EC, since {Q2ut. Qt,_.1, [Q2,..1, Qj,..1]} close the QCA 

if and only if the constraints (2.15)-(2.18) are fulfilled. 

Therefore we should formulate the variational principle in question in such a way that it ensures 

simultaneously: a minimum of the obtained miCroscopic Hamiltonian HB-ERPA in the collective one 

-phonon states space and fulfillment of the SU(6)-EC. 

Trans}ating this conditton in mathematical terms we can write15
: 

S{(hw_, I Q!RHB-ERPAQ!5R I huM)- ~wZ31- L: ">.~oD" 
1<==0,2,-4 

- L A.,( C, - G,) - A,N( C, - 1/ N,m)} ~ 0 
1<:0,2 

Z31 = L:[('!fJ~!·) 2 - (¢~})2 ] = r 
jJ 

D,=O k=0,2,4 

C:.,. - C, = 0 k = O, 2 

02 - 1/ Nph = 0 . 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

In eq. (2.36) symbol 8{ .. } implies differentiation upon the independent variables 1/J and ¢. In the 

varia~ional problem (2.36)-(2.40) the phonon amplitudes 1/J and ¢ are normalized to an arbitrary 

constant r (r = 2 in the case of RPA). The necessity of a generalized normalization and its effect on 

the B-ERPA solutions will be discussed in more detail in Sect. IV. 

We note that SU(6)-boson image of the third term in H',.,~ gives no contribution to the expeC­

tation value (hws I Q!RHB-ERPAQ!1H I hws), because it changes phonon number (see eqs. (2.7), 

(2.23) and (2.28)). 

As already stated in Refs.15,16, a part of the SU(6)-EC: D1 = D3 = C1 = C3 = 0 are trivially 

satisfied and for this reason they do not appear in the variational problem.with constraints expressed 

by eq•. (2.36)-(2.40). 

If SU(6)-symmetry governed dynamical problem (2.36)-(2.40) is solved, the quantity C (and 

hence N = Jnt[C- 1]) defined by eqs. (2.18) and (2.19), is determined~ However, it might be useful 

to introduce an additional requirement C = Np-h1, where, in particular, Nph can be the total number 

of bosons prescribed by the "IBM counting rule". The constraint (2.40) reflects just this additional 

requirement. 
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The unknown amplitudes {t/J,¢} needed to specify completely the microscopic SU(6)·sd booon 

Hamiltonian Hs-ERPA can be determined by solving numerically the above mentioned problem. 

Carrying out the requisite differentiations upon t/J;;' and ¢;;' we cast eq. (2.36) into a more 

explicit form: 

I:'" 8(G,- a,) 

•~•.• 8 ( " ) 
rjJ jdo 

Zsl = L hi> vt~ w}l2), 
jlfl 

Omitting all the terms which are nonlinear in t/J or tjJ, we obtain: 

This system can easily be solved analytically: 

fci Zu /;1~ u~;k 
fo Zn hn uC:l 

Substituting these expressions into the definition Z11 , given by eq. (2.9) we get: 

• ~ (! (+) )' ( ' ')-' - 1 5 ~ Mo ujd, e;j1h - w - · 
2>n 

0 ' (2.41) 

(2.42) 

(2.43) 

Equation (2.43) is nothing else but the RPA secular equation (Cf., e.g. Ref. 17), while eqs. (2.42) 

give the standard RPA solutions for ('1/J, tjJ) amplitudes for a separable foice. 

The fuU problem (2.36)-(2.40) is an extension of RPA (ERPA) in boson representation with SU(6)­

constraints. (That is why the abbreviation SU(6)-B·ERPA has been introduced.). An inherent 

feature of the SU(6)-B·ERPA is the consideration of the SU(6) symmetry governed dynamics in 

interconnection with the constraints dictated by the enforcement of SU(6) symmetry. As a matter 

of fact this pattern is not unfamiliar in other selfconsistent schemes. As painted out in Ref. 30, in 

the framework of SU(6)-B-ERPA the SU(6)-EC play a role similar to that of the optimized RPA 

boundary condition, introduced in Ref. 31; the purpose was to extend the SeHconsistent Collective 

Coordinate Method32 in such a way that it becomes applicable in the vicinity of RPA critical paint 

too. 
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3. COMPUTATIONAL ASPECTS OF THE PROBLEM 

The symmetry governed dynamical problem, form~ated in the previous section, is essentially a non­

linea~ problem with respect to ":he unknown amplitudes t/J a.nd ¢' and ca.n in principle be stated in 

different forms: as an overdetermined system of equations; as a Lagrange problem with constraints 

and so on. In Ref. 30 a f9rmally equivalent mathematical problem ha.s been treated approximately 

by simple scaling of phonon amplitudes, but with no guarantee that the SU(6)-EC are fulfilled. 

Proceeding as in Ref. 15 we choose the way of direct generalization of the RPA problem regarding 

it as a minimization problem with constraints in form of equalities in the sense of classical non-linear 

programming (see e.g. Ref. 33, ch. 1). Thus the dynamical problem results explicitly in a system 

of non-lin~ar equations which expresses the necessary condition· for optimization of the Lagrange 

function (2.41), formed by the energy expectation value in one-phonon states, the normalization 

condit;on (2.37) and the SU(6)-EC (2.3B)-(2.40)o 

4 I; >. [sl•> ( V>) -sl'! ( V> )] 
I=0,

2
,4. 4.k 11T.l 1> JIT.l ,p 

(3.1) 

(3.2) 

(3.3) 

0; k=0,2,4 (3.4) 

(3.5) 

The quantities P ,S and G featuring in eqs. (3.1) are defined as: 

( " ) = c -tJM" L: { 
2 2 

2} [( "!,';,) Inn v~;h H ( V>1';, )] pjd3 
1> 13 Jl j, j2 ¢~?i3 

+ hd3 v Jd3 .pn. 
"" 

si•>(")~~L; { J< 
J• n ( "~:~· ) ( "~(~· ) ( V>~;, ) ]' J• 1113 1> - 2 :i:Jjt 

2 2 1>ms 4>133• 1>,._.,. 
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d'! ( ~ ) - s!'! ( f ) + ~ 2.: { j, 
j, 2 

}r ( ~li:: )( J/.1:.
1
it ) ( f¥!') {;!'! ( ~ ) j, 2 313> rP Jt.n ¢ 311:1 1/J 2 .. }2 ¢],\. ]3)4 2 2 k 1/Jm• 

+ ( ¢j~,, ) ( ~~;;. ) ( ~~:" ) l 1/J],lj. ¢,,J• ¢:rn• 

They stem from the derivatives of quantities Zn, Zn, Ck and .D,. in ( 1f~;;, ) , what can easily be 
¢];;, 

checked with the aid of eqs. (2.16) and (2.19), written in a modified form: 

c, = 2.: [sj;),(~)~;.;, - sj;),(f)¢;,n] 
j,j~ 

n~. = ~ [c}~~(tP)tPMl- c}:J.(¢)¢;,;,.] 
i•il 

In the numerical method we employ the vector of unknowns contains on an equal footing the 
vector of Lagrange multipliers (w, ..\). We solve numerically the problem iterating simultaneously, all 
the components (1/;, ¢,w, A). In principle, the condition for local convexity of the Lagrange function 
in the optimization point should be checked, but thls requirement can not be met directly in practice. 

As we mentioned in Sect. 2 the first two terms in the l.h.s. of eqs. (3.1) together with eq. (3.2) 
form just the usual RPA problem. The inclusion of third term in eqs. (3.1) leads to a non-linear 
generalization of the RPA referred to as ERPA. The latter takes into account the BB-terms of the 
Hamiltonian H;,.,cr (2. 7). In solving the general problem of SU(6)-B-ERPA we use two options: (i) the 
B-ERPA-option, where the total number of bosons is not fixed (it includes all the terms in eq. (3.1) 
but not the last one and all constraint conditions excluding eq. (3.5)), and (ii) the BN-ERPA-option 
in which the total system of equations (3.1)-(3.5) is treated. 

The BN-ERPA non-linear system of equations is solved numerically by means of an auto-­
regularized Gauss-Newton iteration process34

•
35

, executed by the program-package REGN36
. Because 

the gradients of the constraint conditions go to zero in the vicinity of the solution so that problems 
becomes strongly ill-conditioned, we have used a new (unpublished) version of the program REGN, 
which realizes an iteration process scaled according to Marquardt37 and then auto-regularized (see 
Ref. 35, eq. (18)). We employ as initial approximations the RPA-va.lues of (,P,¢,w) given by eqs. 
(2.42) and (2.43) and zero values for the Lagrange multipliers(>.). 
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F1gure 1: Com parisian of the leading components of the phonon amplitudes (,P, ¢) calculated in RPA 
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The dimension of the system (3.1)-(3.5) is [2 X (the number of fjti; m.e.) + 7] in the general (BN­
ERPA) case. Practically it includes 70-150 unknowns/equations when all the !;13~ matrix elements 
in one sub-shell around the Fermi-surface a.re taken into account. Solutions are constructed with 
high accuracy: the maximal defect in satisfying every single equation is not greater than 10-10. 

Solutions of the system {3.1)-(3.5), which realizes the "bosonized collective phonons", keep gen­
erally some common features (the number a.nd position oi the leading components) with the usual 
RPA solutions, but at the same time some distinguishable differences can be observed (see fore more 
details Fig. 1). In pa:rticular·, it is evident that the BN-ERPA solutions are not result of a. simple op­
eration (like scaling) on t.he RPA ones. The picture shown on Fig.l changes from isotope to isotope. 
As to the question about the total number of BN-ERPA solutions in the collective sub-space (for 
RPA there is only one solution), we are unable to give a definite answer. From the general point of 
view the number of solutions of a non-linear problem (ERPA, B-ERPA, BN-ERPA) should be more 
than one what is demonstrated (for the case of ERPA) on Fig. 2. In this case we have found a second 
branch of solutions which approaches the fust (RPA-like) branch in a point, where ERPA solution 
become complex. The same can be observed for the B-ERPA solutions (on Fig. 2): they also become 
complex for a definite value of the quadrupole strength K. In the B-ERPA and BN-ERPA cases we 
have not found a second solution of the system (3.1)-(3.5), but the only one which originates from 
the usual RPA solution. 

2.5 w, MeV 

2.0 66zn 

'·5 

LO 

BN-ERPA 
TDA 

0.5 

0.012 0.014 0.016 0.011!1 0.020 

Figure 2: Dependence of the energy of 2t state on the strength oi quadrupole-quadrupole interaction 
within TDA, RPA, ERPA and BN-ERPA. 
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4. DISCUSSION OF NUMERICAL RESULTS FOR Zn 

ISOTOPES 

To carry out the microscopic calculations of the IBM-1 Hamiltonian parameters (Cf. eqs. (2.29-

(2.33)) we have employed the values of Woods-Saxon potential parameters published in Ref. 38. 

These prameters have been chosen in such a way that the resulting level scheme and wave functions 

give reasonable description of the properties of low-lying states and mean square radii in the region 

of Zn isotopes. The values of monopole pairing interaction strengths G., = 0.260MeV and Gp = 

0.264MeV are fixed so as to reproduce the even~odd mass differences. In Table I we present the 

single particle levels, used in our calculations. The total number of quadrupole matrix elements/;.;, 

(Cf. eq. {2.4)) between the s.p. states (Table I) amounts to 98. Among these 49 are neutron and 

49 are proton matrix elements. Methodical calculations have indicated that in fact only 28 matrix 

elements (14 proton and 14 neutron m.e.) for s.p. levels around the Fermi surface play a significant 

role. Therefore only these have been used in our calculations. 

Table I: Single particle energies for Zn isotopes 

nlj neutron energies, MeV proton energies, MeV 

1-'1/2 -37.39918 -38.12718 

1pa/2 -29.95807 -30.54278 

1Pt/2 -28.67243 -28.79809 

1d6/2 -21.66252 -21.97828 

1d3/2 -18.79695 -18.12351 

2-'1/2 ·18.28062 -17.65574 

lfr/2 -12.76614 -12.70211 

2psf2 -8.83229 -7.46996 

1/5/2 -7.96067 -6.20901 

2pl/2 -7.19289 -5.17669 

1g9/2 -3.50583 -2.91440 

2d~/2 ·0.58232 1.91519 

3sl/2 -0.38138 3.13661 

2daf2 1.09788 4.9414'1' 

1g7/2 3.00672 6.25283 

lhn;2 5.66360 7.13096 
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The values of the constant of the isosca.lax quadrupole-quadrupole interaction satisfying the con­
dillon wRPA = E~:pt, or "'TDA = E~:pt are denoted ~R. or rtT, respectively. 21 21 

In the first place we have verified to what extend the SU(6)-EC given by eqs. (2.15)-(2.18) 
are satisfied within the conventional RPA and TDA. From the results presented in Table II, it can 
be seen, that strictly speaking, neither the "equality" part, (Cf. eqs. (2.18)) nor the "vanishing" 
part (Cf eqs. (2.15} and (2.16) in the case of RPA) of SU(6)-EC are automatically fulfilled. It 
is also seen, that jf we define N :::: lnt{ c-l }, where {J = H Co + 02 + 04), the values of N agree 
quite well with the "IBM-counting rule". In general outline it seems reasonable to utilize RPA as a 
starting approximation in solving the SU(6} symmetry governed dynamical problem defined by eqs. 
(3.1)-(3.5). 

Table II: Degree of fulfilment of the "SU(6)~EC" within RPA and TDA 

Nucleus Approach NrBM N c, c, c. n, n, n, wJ,~o2., 
s4zn RPA 4 3 0.43 0.19 0.40 0.19 0.08 0.16 0.08 

TDA 4 0.22 0.09 0.20 0.00 0.00 0.00 0.00 
sszn RPA 5 3 0.42 0.21 0.39 0.18 0.08 0.16 0.08 

TDA 4 0.22 0.11 0.20 0.00 0 . .00 0.00 0.00 
sszn RPA 6 3 0.27 0.25 0.41 0.13 0.10 0.16 0.098 

TDA 6 0.15 0.13 0.21 0.00 0.00 0.00 0.00 
7ozn RPA 6 3 0.!0 0.45 0 67 0.07 0.19 0.28 0.098 

TDA 7 0.07 0.18 0.27 0.00 0.00 0.00 0.00 

In Table III we present the values of the IBM-1 Hamiltonian parameters evaluated microscopi­
cally by using expressions (2.29)-(2.33), alongside with the fitted18 IBM-1 parameters in sszn. The 
amplitudes ( '1/J, ¢)featuring in these microscopic expressions have been computed without taking into 
account the SU(6)-EC (RPA and ERPA cases, Cf. Sec. 3), and with the SU(6)-EC "switched on" 
(B-ERPA and BN-ERPA cases, Cf. Sec. 3). In the latter case where these conditions are satisfied 
by construction, the maximal value of W~~) decreases considerably, a.s required by eqs. (2.15). From " Table III it follows that the neglecting of the SU(6)-EC destroys the overall agreement between the 
calculated and fitted parameters: the values of (F, G, C~), calculated in B-ERPA, or BN-ERPA are 
closer to the phenomenological ones, than the values of (F, G, C~) computed in RPA or ERPA. As 
to the d-boson energy h:, the bosonized theories B-ERPA, or BN-ERPA yield larger values than 
RPA, or ERPA (for the same values of the quadrupole-quadrupole strength It= ~tR)· The value of 
N, calculated according to eq. (2.26) in conjunction with SU(6)-EC, i.e. in B-ERPA, is quite close 
to the value, prescribed by th.e "IBM-1 couii.ting rule". 
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Table III: Values ofiBM-1 Hamiltonian parameters in different microscopical approaches in 68Zn for 

K=K~andr=2 

N h' F G c' 0 0' 
' 

a· • WJ,k], 

IBM-I 6 1.17±0.04 0.084 -0.085±0.038 ·0.63±0.07 -0.40±0.06 0.11±0.04 

RPA 3 1.04 0.829 -1.85 3.20 3.30 3.30 0.098 

ERPA 4 1.06 0.892 -1.65 2.94 2.94 2.94 0.088 

B-ERPA 5 2.07 0.471 -0.472 0.70 0.80 0.80 0.011 

BN-ERPA 6 2.13 0.350 -0.394 0.60 0.69 0.68 0.008 

As we have already mentioned (Cf. Sec. 2, eqs. (2.29)-(2.35)) since we use only the isoscala.r 

quadrupole-quadrupole force, we fail to reproduce the signs of 0~. 

All conclusions, stemming from Table III, hold for the other isotopes as well. Using the calculated 

values ofiBM-1 parameters as input in program PHINT39 we have obtained spectra of low-lying states 

in 64
-

70 Zn, which are too stretched compared to the experimental ones. This is not surprising at all, 

because, as stated in Sec. 2, in the course of derivation of the IBM-1 parameters we have related 

only the collective quadrupole phonon subspace (A = 2, i = 1) (Of. eqs (2.12)-(2.13)). Clearly, 

whenever the space has been truncated, one naturally expects the occurrence of renormalization 

effects, which will affect the values of the computed parameters. We have found out (at first time 

heuristically) a mechanism that leads to compression of the theoretical spectra. This mechanism 

consists in reduction of the normalization constant r, featuring in eq. (2.37). A case in point is 

shown on Fig. 3. One sees that by renormalizing the value of r from r = 2 tor= 0.73, we achieve a 

reasonable agreement between theoretical and experimental spectrum. 

A conceivable way to justify theoretically the ensuing reduction of r would be to account, in some 

effective way, for the role of the degrees of freedom, which have been ignored in the course of the 

enforcement of QCA (Cf. eqs. (2.12)-(2.13)). These were, at first place, th_e noncollective quadrupole 

degrees of freedom ("scatter1ng terms" with ..\ = 2, i 2:: 2) and the degrees of freedom other than the 

quadrupole one ("scattering terms" with..\ 2:: 3 and i 2_ 1). To illustrate the procedure, it suffices to 

confine ourselves to the noncollective quadrupole degrees of freedom. To avoid needless complications 

we consider Tamm-Dankoff quadrupole phonon operators: 

(4.1) 

( 4.2) 

Utilizing for a+ a+ and aa exact bosons realizations i.n terms of antisymmetric ideal bosons bjm;'m' 
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--' 
0', 

Expt. r=2 r=.7 IBM-l 

Figure 3. Dependence of the energies of the loW-lyirtg o+, 2+, 4+ states in 66Zn on the one-phonon 

state normalization Z31 = r 

and bj=i'=' 40
•
41 we derive the following representation for T2"t. and T2,u in terms of collective (dt111 ) 

and noncollective ( dt,..; , i > 1) quadrupole bosons: 

Ti,., ~ ~ [F~;;.]4,; (4.3) 

(4A) 

Here: dt,..; = Eim;'m' .y,;;.(jmj'm' I 2p)bjm/m' by definition and the quantity cr~21'tit21'~~21'3.3 has 

been computed to be given by: 

with: 

• 
cftn21'ti12JJ-J~2,.ai3 = E C~;ii:li3 

lo=O 

• L (2~2~, I Kk)(2~,2~, I Kk) (U) 
K=-k 

(4.6) 

If we set i =it= i, = i3 = 1, from eq. (4.6) we go back to the familiar "colledive" quantity c'[, 
defined by eq. (2.19) in which all t/J;j' = 0. 
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Let us introduce now the following quantity: 

(4.7) 

With the aid of eqs. (4.3) and (4.4) we readily obtain: 

(4.8) 

If we keep only the colledive degree of freedom, we have to calcu1ate the double commutators 

in eq. (4.7) according to the QCA commutation relations (2.20)-(2.22). Using them we get an 

approximate value for Inv: 

fuv = -2002
• (4.9) 

Comparing eqs. ( 4.8) and ( 4.9) we find tha.t a possibility presents itself to effectively take into account 

the neglecting of the noncollective degrees of freedom. Indeed, we can preserve the approximately 

computed quantity Inv, requiring that Inv = Inv. This conservation of hv will be compensated 

by a replying renormaliza.tion of rT which, in virtue of eqs. ( 4.8) and (4.9) is given by: 

( 4.10) 

In the same fashion we can incorporate the other neglected degrees of freedom ( l > 2, i ;;?:. 1). These 

results can be generalized to the case of RP A phonon operators. The generalization reduces merely to 

replacement of CL.;~,,,.,;:,A,~o~,o,~ 113;:3 by their RPA-extensions (Cf. eq. (2.19)). We have thus illustrated 

that the reduction of rT which we have used heuristically to obtain better agreement between the 

experimental and theoretical spectra, can be interpreted as a.n effective way to include within SU(6} 

B-ERPA, in an algebraic manner again, the noncollective quadrupole degrees of :freedom. 

From eq. ( 4.10) it follows that taking into account the noncollective degrees of freedom, e.g. by 

including the quantities c[J1i2J<i2,.02Jji with 2 ~ i $ i.,...,. in the calculation, indeed amounts to reduction 

of rT, as desired. As evident from Fig. 3, for all values .of r we obtained a picture of a moderate 

anharmonic vibrator. The scale is determined by h'. The order of the levels in the split multiplets 

depends on the relationship between the rest of the microscopically calculated parameters of ffiM-L 

One sees that the order of the levels is maintained with the decrease of r. 

We note that the compression of microscopically calculated spectra due to renormaliza.tion effects, 

is a general trend established previously by other authors employing different techniques29•42- 45• 

In Table IV we present the parameters of the IBM-1 Hamiltonian for M-rozn, calculated within 

SU(6)-BN-ERPA, what is one of the goals of present article. The values of x. and r have been chosen 

empirically so as to reach most reasonable agreement between the theoretical and the phenomenolog­

ical sets of parameters. It is seen that the optimal values of " and r are quite stable a.lonA the chain 
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Table IV: Phenomenologically and microscopically calculated parameters of IBM-1 Hamiltonian for 
-64. 7oz 

Nucl. Approach h' F G 6~ ·G; 6~ 
64Zn IBM-I 0.89±0.0 o.i\2±0.03 -0.185±0.02 0.10±0.40 -0.34±0.03 0.32±0.04 

N~4 

BN-ERPA 0.89 . 0.005 -d.059 o.io 0.10 O.IO 
N~4 

r=0.6 

sezn IBM-1 l.04±o:o 0.061±0.057 -0.138±0.03 0.69±0.47 -0.36±0.03 0.23±0.05 
N~s 

BN-ERPA 1.04 0.022 -0.075 "0.13 0.13 0.13 
N=5 

r=0.73 
Bszn IBM-1 1.17±0.04 0.084±0.0 -0_.085±0.38 -0.63?:0.07 -0.40±0.06 0.11±0.04 

N=6 

BN-ERPA !.10 0.030 -0.054 0.09 0.10 0.10 
N~6 

r=0.71 
7ozn IBM-1 1.08±0.0 0.106±0.02 -0.047±0.02 -0.44±0.0 -0.35±0.05 0.17±0.06 

N=10 

BN-ERPA 1.08 0.049 -0.069 0.10 0.13 0.11 
N=10 

r=0.7 

of isotopes (Cf. column II of Table IV). It is worth to mention that a relatively strong reduction of 
r (from r = 2 to r = 0.7) is required for the whole chain 64-

70Zn, which implies a rather massive 
renormalization effects. Such a renormalization leads to fairly good theoretical values of ii'. The 
theory reproduces correctly the signs and the order of magnitude ofF ,G,C',.-parameters. 

Summarizing the results given in Table IV, one is led to the conclusion that as a rule, the 
SU(6)-B-ERPA produces quite reasonable values of IBM-1 parameters. Of course, the comparison 
of phenomenological and microscopic parameters does not give complete idea about the goodness of_ 
the theoretically calculated parameters. Therefore, the latter have been used as input in program 
PHINT39 to produce the corresponding energy spectra of!"" = o+, 2+, 4+, 6+ -states in 64- 79 Zn. The_ 
results are summarized in Table V together with the experimental and phenomenological IBM-1 
spectra. Table V reveals the following tendencies: 

(i) Ensuring excellent reproduction of -the first r = 2+ states energies (by a proper choice of r) 
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Ta.ble V: Experimental and calculated energies in Zn-isotopes 

!J(ban<f) Nucleus 

"Zn ,.Zn 08Zn '"Zn 

Oi(IJ,) Exp. 1.9103 2.3726 1.65S9 1.0.507 

IBM-1 1.9241 2.2201 1.6124 1.0773 

BN-ERPA 1.9500 2.3363 2.3601 2.4081 

oi(IJ,) Exp. 2.6092 3.1055 2.1390 

IBM-1 2.5851 3.1413 1.9627 

BN-ERPA 3.0137 3.5952 3.7578 

2t(g) Exp. 0.9915 1.0394 1.0774 0.8848 

IBM-1 0.9886 1.0909 1.1042 0.8669 

BN-ERPA 0.9059 1.0635 1.1086 1.0638 

2ibl Exp. 1.7994 1.8730 1.8832 1.7539 

IBM-I 1.7482 1.8733 1.9294 1.6054 

BN-ERPA 1.9127 2.2657 2.3297 2.3268 

2J(,iJ,) Exp. 2.7937 2.7804 2.3384 1.9574 

IBM-I 2.7263 3:0058 2.4868 1.9597 

BN-ERPA 3.0413 3.6543 3.6754 3.7774 

4t(g) Exp. 2.3070 2.4490 2.4174 1.7865 

IBM-I 2.3172 2.4262 2.3297 1.8309 

BN-ERPA 1.9126 2.2636 2.3247 2.2696 

4ibl Exp. 2.7367 3.0800 2.9594 

IBM-I 3.0116 3.1106 3.0613 

BN-ERPA 3.0137 3.5931 3.6492 

6t(g) Exp. 3.9937 4.1820 3.6876 

IBM-I 3.9495 3.9864 3.7042 

BN-ERPA 3.0136 3.5909 3.6432 

we attain satisfactory description of the behavior of the second r = 2+ state energies. In 10Zn, 

which exhibits the largest discrepancy, the calculated energies difFer by 0.5 MeV. As to third J• = 2+ 

states, we see that the energies are poorly described. The same can be said about description of the 

second r = o+ -state energies. 

(ii) For the low-spin states I"' = o+, 2+ the agreement between experimental and theoretical 

energies is better for the lighter isotopes ' 4•66Zn, while fur the states with r = 4+, s+ the agreement 

is better for the heavier isotopes 18- 70Zn. 
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It should be kept in mind that the SU(6)-B-ERPA has a restrided range of validity. Strictly 

speaking, within this microscopic model one can treat only the quadrupole collective states. We 

emphasize, that while IBM-1 has 6 fret- parameters, we have at oux disposal only 2 parameters, for 

the moment; one of them (r) will be c~culated in future with the aid of eq. ( 4.10). 

5. SUMMARY AND CONCLUSIONS 

We have presented full account of an approach to the microscopic foundatiOn of IBM-1, alternative to 

the traditionally employed approaches which are based on mapping procedures2•4 -
6

• This approach is 

a further development of the approximate bifermion SU(6) algebra method9
-

11 used in the derivation 

of the SU{6) boson Hamiltonian of TQM. The main novelty of our SU(6}-B-ERPA consists in the 

treatment, on equal footing, both the dynamics govern~d by the SU(6)-B-ERPA Hamiltonian (C!. 

eqs. (2.36)-(2.37)) and the SU(6}-EC {Cf. eqs. (2.38)-(2.40)). Since the latter re:flect the importal!t 

fact that the QCA=SU(6) has beep. enforced, they have to be reckoned within any kinds of approaches 

that claim to provide sound microscopic substantiation of IBM-1. Another merit of SU(6)-B-ERPA 

is that the total number of bosons is inferable from the basic framework of the approach ( Cf. eqs. 

(2.26)}. The computed values of N are, as a rule, close to the values given by th~ "IBM-counting 
rule". 

We_ note that SU(6)-B-ERPA can be extended, so as to be adequate for providing microscopic 

foundation of the other versions of IBM, such as IBM-2, IBFM-1 and IBFM-2. 

For the first time we have proved the existence of numerical solutions of the Lagrange minimization 

problem with constraints (Cf. eqs. {3.1)-(3.5)). This implies in particular that the SU(6)-EC are 

compatible with the SU(6)-B-ERPA dynamics. 

The SU(6)-EC which are inalienable part of SU(6)-B-ERPA, have been totally neglected up to 

now. The illustrative numerical calculations carried out in Zn isotopes have confirmed the impor­

tant role played by the SU(6)-EC: their neglecting deteriorates the overall agreement between the 

computed a.nd fitted sets of IBM-1 parameters (Table III). The mnnerical calculations performed 

in Zn isotopes have indicated that in order to achieve reasonable values of the computed IBM-1 

parameters, we have to reduce essentially the value of the normalization constant r, which indicates 

that the role of the neglected degrees of freedom is importa.nt. The renormalization of r enables 

quantitative description of the energies of the first and second !"' = 2+ states in the entire chain of 

Zn isotopes. As to the Test of the states r = o+' 2+' 4+' 6+' which are not legitimate object of study 

of the SU(6)-B-ERPA, their description could be classified for the most part as quantitative. 

The SU(6) Boson Extended Ra.ndom Phase Approximation approach contributes additionally to 

the repute of the "new SU(6) phenomenology"' by providing microscopic foundation of IBM-1, which 

is mathematically rigorous, computationally sound and leads to reasonable values of the tenorma.lized 

calculated parameters. 
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KapaA~HOB !J.. V1 AP. 
Q HOBOM nOAXOIJ,e K MVlKPOCKOnW+?CKOMY OEiOCHOBaHI>\KJ MOAeJlV\ 

B3aV!MOIJ,eli\CTBYKIIJ.11tlX Ei030HOB. 1. f~L1KPOCK0JlV1YeCKOe onpel],eneHV\e 

napai-1€TPOB ~186 V1 llPL1J10)1(eHV1€ K YeTHo~YeTHbiM V130TOJlaM L\VIHKa 

E4-90-98 

npell,JlOH\eH anreQpa\IIYeCKI>Il>i JlOAXOIJ, K M\i1Kp0CKOJl\IIYeCKOMy 050CHOBaHL1KJ MOAenVl 

B3aV!MOABViCTBY~li1X Eio30H08 (MB6}. npVI :HOM yYT~rlo. ycnOBVl>l, HaKJ1all,biBaeMbl€ 

SU(6)~AV1HaMV!KoVi. BeeAeHV!e KonneKTVlBHoro npocrpaHcrea, KaK npocrpaHcrea, ¢op 

MVlpyeMorO HV!)I(ai/iWV\MVl KBaAPYllOJlbHbiMV1 ~-:JHOHaMV1 JlpV15Jl!I1)1(€HV1S< cnyyaViHbiX cjJa3. 

V1 rpe!S·:·eaHVle BblllOnHeHVlA SU(6)·~o1MMerpL1L1 noJeonS<er: 1} L1AeHTVI¢V1liV1POBaTb Ko.n~ 

neKTVIBHOe JlOIJ,llpOCTpaHCTBO KaK HeCYIJ.1ee npOCTpaHCTBO JlOJlHOCTbKJ CV1MMeTpli1YHOro 

HellpliiBOAVIMOro npeACTaBJl€HV15'1 rpynnbl SU(6); 2) BbiBeCTVl 1113 MVIKpOCKOJlVIYeCKOrO 

raMVInbTOHV1aHa KBa3\i1'"1aCTVIYHo-¢oHOH'ioVi MOA€ll\i1 raM\i1JlbTOHVIaH MB6. npoBeAeHbl pac 

YBTbl napaMerpOB raMV1J1bTOHt.1aHa MB6 An>~ \i130Tonoe b4 70 Zn. noKa3aHO, YTO Alll'l 

OJlVlCaHVI>l 3Kcnep111M€HTaJlbHbiX CJlBKTpOB HeOEiXOAVlMO npOBOAVITb nepeHOpMVIpOBKY cjJo­

HOHHbiX aMJlllVITYJl. 3ra nepeHOpMVlpOBKa CBi13aHa C npeHe5pe~HeHV1€M IJ,pyrVlM\11 CTene~ 

H>lr'~V1 CBOEiOAbl. 

Pa5ora BbiJlOJlHeHa B na5oparopVI\i1 TeopeTV!YeCKOVi ¢li13\i1Kl<1 Ol!IRV1. 

Coo6IUeHH€ 06'b€L\}'IHBID!Or0 mtcnnyra fi.QBpHb!X HCCII€.QOBaHHi1. ,Uy6Ha 1990 

----------- ----

Karadjov 0. et al. E4-90-98 

On a ~jew Approach to the r~icroscopic Substant1ation 

of the Interacting Boso11 f'o'lode1~1. 1. f~1croscopic 

Determination of IBM-1 Hamiltonial" Parameter<> 

and Application to Even-Even Zn Isotopes 

An overtly Lie algebraic approach to the microscopic foundation of IBM-1 

is itemized, treating on an equal foot1ng the SU(6) governed dynamics and 

tne accompanying SU(6) constn.ints. The introduction of the collective ran­

dom phase apporoximation phonon operators as "preferred pairs" with subse­

quent enforcement of the relevant SU(6) algebra has enabled: \i) to identi­

fy the "decoupled" phonon subspace as carrier space of the totally symmet­

ric irreducible representation of SU(6}~ (11) to single o~t from a micros­

copic reference Hamilton1an the fragment with the ensuing IBM~1 sd~boson 

form. Using this approach, the IBM-1 parameters have been calculated for 

tne sequence of 6 " 71'Zn isotopes, as an example and it was shown that the 

required renormal ization of the phonon amplitudes can be interpreted as 

arising due to neglected degrees of freedom. 

The investigation has been performed at the Laboratory of Theoretical 

Physics JHJR. 
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