





1. INTRODUCTION

Large interest has been attached to the
study of the a-decay fine structure with
the development of the microscopic nuclear
models. Good agreement between the experi-
ment and the theory of the relative a-decay
intensities has been obtained using the
simplified R-matrix theory/!/ We go into
much trouble when calculating the absolute
decay widths for composite emitted partic-
les especially when the decay phenomenon
is caused by strong nuclear forces. The
microscopic calculations based on the fre-
quently used theory of ref.’! contain two
hard obviating shortcomings. Firstly, a kind
of a surface delta interaction that intro-
duces a fiction channel radius parameter is
used in the theories. Secondly, the micro-
scopic model wave functions used for the
parent (daughter) nucleus do not satisfy
the boundary conditions which normally must
be imposed upon a compound’ state.

It is our goal in this paper to give
a more precise mathematical derivation of
the expression of the decay width, expres-
sion than one can use the actual microsco-
pic model wave functions. This theory leads
to the necessity of introducing of: a) more
sophisticated interactions responsible for
the decay phenomenon, others than the phe-
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nomenological surface delta interactions
used in the paper /l/ and b) new interac-
tions responsible for possible virtual tran-
sitions among different final channels
after the preformation of the emitted par-
ticle and before its escape.

2. DECAY WIDTH

Following the time-dependent theory of
the decay /3-5/we introduce, as in ref./45/,
as an observable determining the decay law,
the ratio P(t) of the number of decayed
nuclear systems at the time t> 0 to the un-
decayed ones at the time t=0

trace {pW(t)}
P(t) = . (1)
trace {p W(0)}
This definition is discussed very well in
refs/%'%, and we shall not dwell on it
more. Here the density matrix

p =3 N> e <Al (2)

is defined in terms of incoherent, norma-
lized to unity, states |A,> describing the
nondecayed nuclei in our instable nuclear
system that is going to decay. The operator

R . .
W(t) = [dx e Bt [x><x | iH! (3)

projects onto the nuclear spatial domain
(the statistical operator (2) describes

a particles in the nondecayed nucleus, i.e.,
the spatial coordinates |x| < nuclear radius
R ). Assuming a pure state in the statis-
tical ansamble (2) (w(k) =8, 4) the ex-
pression (1) becomes

R 2
P(t) =N [ dx |y (x,t) ], (4)

where

-1 R 2

N = [ dx|¢¥(x,0)], (5)
and

Yix,t) = <x|eMags . (6)

Defining now the asymptotic interaction
"free" hermitean hamiltonian Hy by H=H,+H’,
in which three motions are studied adiabati-
cally (the internal motions in the q-par-
ticle, in the daughter nucleus and the re-
lative motion described by a central poten-
tial) we can obtain a kind of a spectrum as
shown in fig. 1,

Following the procedure of refs./6-10/
we introduce four projectors onto subspaces
of HO—states:

P

[0><0]; Q=2 [dlgp, ><¢ . |

(7)
=2 q_;

4
(o3

P+Q+q+A =1,

The state |0> is a bound state embedded
in the continuum/6/ (BSEC) having the eigen-
energy E,(see fig. 1) in the nearest vici-
nity of the decay energy (¢) , Q projects
onto the "active" open channels (the matrix
elements of H’ between these channel states
|¢..> and |0> we consider of the first order,
they describe the most intensive qtransi-
tions), ¢ projects onto the "passive" open
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channels (the corresponding H’-matrix ele-
' ments are of the second order of magnitude),
and A-projects onto the rest of (closed)

channels. Expanding the|A0> state in terms
of H,-states

[Apg> =(P+Q+q+A)|[Ag>=8,/0>+ 2 B In>(8)

‘we shall consider the case when the "sharp
resonance” condition is fulfilled, i.e.,

B,=~1 and B ,=~0.Thus eq. (6) can be approxi-

—— mated by
— smpgr—er U (x,t) = <x|e-m'[0>. (9)
i .
——— Taking into account now that the "sharp
resonance" condition allows us to neglect
“‘L_ S the contribution to the integﬁfls (4) and
| | (5) of the vector <x| (Q+q+A)e ' |0>, eq.
(9) can be approximated by
Ny =) L
CLOJED - ¥ (x,1) Z<x|Pe M 0>-<x]0>a(t) (10)
CHANNELS o L
1 with
- a(t) =<0]e " HYy 0>,
PASSIVE Q
OPEN — [0>1is a sufficiently nice vector in the
CHANNELS AcTive QOUND sense that &O0|E,|0> falls off exponentially
OPEN AND where dE), is the spectral measure associa-
g ted t
CHANNELS ::_ATCES ed to H,then
alt) =(27i) ' f 701G (2) (0>, (11)
o
Fig. 1. The energy spectrum of the asympto- when C is a contour as in fig. 2 running
tic interaction "free" Hy-Hamiltonian (sche- from ip+e to ip-w and the rezolvent
matica%ly). The vertical boxes correspond G(z) =(z-H)-! defined in the complex z
to various open and closed channels and the plane so that has no singularities lying
full lines to the bound or BSEC (doorway) above C. We can simultaneously rotate C and
states.
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replace <0|G(z)|0>with <0|U () [z-H(®]1 lU(6P) 0>

/3,11/
bIm Z . (fig. 3) to find
a(y) = e <0[G(2)]0> oo, (12)
z-—€—1
P c _—
vty where r(t) represents the contributions from

the other poles or the cuts because we are

dealing with a many-body Hamiltonian with

Qe £ ‘the spectrum of the type given in fig. 1
e Or even more complex.

To compute the residuum in eq. (12) we
apply the procedure used in our earlier
papers/7-10/ namely using the expansion

G(z) = PG+ QG + qG+ AG = A +
z — Hy ~ AH’A
q
+Q, (2) ———m——— 0, (2) +
A ol —qvg M (13)
QA(z) Qq (z) HQ %0 Qqe(i) QAE(Z) +
Fig. 2. The contour to perform the integral r r z 0
P
(ll) Q Q5 (2)Q, (2) Q, (2),
B C QA,(Z)Q‘],(Z) Ql‘(Z)z— H, _ PRP sz qu Afz
l
with the "right" and "left" ) —operators de-
C'. fined by
2, (= 1+ —A —_p0, ()-m— A1 (14)
Ar z~H_—AH’A ) z-H_ - AH’A
Z €- t—— 0 0
’ Q @W=l+ —21 - v, 0 (v—3 1 (15)
Fig. 3. The remaining contours after the q; 2 - Hy —qVq qg “Hy - qVq
rotatlon U(¢). By A and B are denotecsi the
bound poles, by C,, C,, C3;- the continuum Q. (=14 Q W Q. (o)W Q £ 1 (16)
embedded thresholds and by C,- the complex Q z- H, - QWQ Q¢ 2—H, -QWQ
thresholds of the many body hamiltonian H .



V =H’+ H’ A H”, . (17)
z—HO—AH'A
W=Vvs+Vv — 3 v (18)
z—Ho—qVq
Q ,
=Wt W —— W, (19)
A=W+ ¥ o, o

Here the resolvents corresponding to the
projected subspaces must be understood as
the solutions for example of the eq.

(z - Hy - AH’A) 2 - q. (20)
z ~Hg— AH" A

and so on.

Inserting eq. (13) into eq. (ll1l) and
taking into account the sharp resonance
condition as in ref.’®!'Y  the ratio P() |,
defined by eqgs. (1,4,10) becomes:

P(t) =expl Tt} + F(v), (21)

where I'vo 18 the imaginary part of

Rog= <0]R (e) j0>
and F(t) is a "small" term coming from the
contributions from the other poles and
cuts. In the following we neglect it. R ()
is the operator (19) taken in the pole ener-
gy

€ =FEy+ Real <O[R(e)]O> ., (22)

It is easy to show that/79:10/

. + ’
[b0=—1<0|R +Rlo>_<0[FR|0>+<0H@[0>+<0H‘|0>, (23)
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where ’
p=27R"Q5( -H,) QR, (24)
Py=27W gd(c —H ) qW, (25)
I'’=third and higher order in W terms.

Considering that all the intensities of the
@ -transitions to the 4 -subspace states

‘are small quantities of the second and

higher order* we can neglect the last two
terms in eq. (23) and write

Lop=<Olgl0> =27 X [<  [R( )] 0>} (26)

3. "RESONANCE" MANY BODY STATES OR "SHELL
MODEL" STATES FOR THE MOTHER NUCLEUS

Following the treatment of ref./“/ the
R(e) operator from eq. (26) of the e~decay
width can be written as follows

R(e) =[{1)AJ€)qu(()QQr(€) =H’F(e) . (27)
Goldberger and Watson’!' showed that the
function F(¢)|o> has a resonance boundary
condition /12-16/, The same condition impo-
sed on the wave function of the mother nuc-

*The hindrance factors corresponding to
the « -transitions to excited states increase
much with the complexity of the states, the
penetrability decreases very much with the
excitation energy. We can choose the q ~sub-
space in concordance with the magnitudes
of the a-intensities. I



leus in the a-decay width expression were
obtained by Mang/?/, In practical’'calculations
the F(e)|0> - wave function is replaced by
the bound state "shell model" wave function.
It is not possible to obtain a "rigorous"
or at least approximate many body "reso-
nance wave function at the moment because
we have to run into very hard mathematical
difficulties, much computer time and so on.
It is better to use another procedure,
namely to factorize the R(¢)operator as fol-
lows

R(e) =QQE(€) H'QA (e)qu (e) =

' (28)
—3_vo ().

r e —Hj ayp

We can neglect the second term in the right-

hand side as we have done in eq. (26) and
the ¢ -decay width becomes:

-0, VIR, () +0g (R,

Foo(e)=2ﬂ%|<¢CCIQQE(e)H'QAE(e)|0>| . (29)

Defining the new initial and final states
as follows

$,>=0,,() 0> (30)
and
-ot 31
ly_ > _QQE(e)MC( > (31)
or
fe —Hy - QW' () Qg >=0 (32)
12

we find that
Tool@ =272 |<y  [HT¢, |7, (33)
The new initial state (30) has bound

state boundary conditions at large distan-
ces. The operator 1y ) 1s equal, in the

*first approximation of the perturbation

theory, to the projector/17.18/ onto the
bound state of the exact hamiltonian H
having the eigenenergy in the nearest vici-
nity of the E, . The ¢, function can be
very well approximated by the usual "shell
model with residual interaction” wave func-
tions. The wave function (31l) is an enri-
ched a -channel wave function due to the
residual QW*Q complex interaction poten-
tial. The imaginary part of this interac-
tion §4QF¢Q cannot be very large due to the
approximations above made. The real part,
however, plays very important role. Part
of it, has been already taken into account
in the Mang theory/?/ using the Froman mat-
rix method for the case of the a-transiti-
ons to the rotational levels. This part
includes the electrostatic interaction of
the g-particle and the quadrupole moment
of the daughter nucleus. It is possible also
to include interactions involving other
degrees of freedom as, for instance, in
ref./19  or coming from the nonviolation of
the Pauli principle/®,27/,

Assuming the following expansion of the
channel function (31)

2m
oy Fc(e,r)nc(f) .(35)

x|y >=30 ,<x|¢ >=20 6 iy
ce€ ¢’ ¢c¢c ce ¢’ c’er
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and also

x|® >= 2(2"")‘/2 Vi ©)2 ), (36)
)
where ‘
) |
yo 0= @ Ve s > (3T)
2mr

is the usual amplitude of the reduced
width/2?/ the 4-decay width (33) becomes

Foole) = ﬁf 2.0 {) a2 A (D F A6 |2 (38)
where
HiAr) = [d&<n ~ () [H|n - (&) >. (39)

Here the F_(¢,r)is the regular solution of
the scattering, on a central (nuclear plus
coulomb) potential, problem. 7 () is
the channel spin function/!/ The @, repre-
sents a large part of the virtual excita-
tion occuring after the formation process of
the a-particle and before its penetration
through the barrier (fig. 4).

4. RELATIONS TO EARLIER APPROACHES

The general expression (38) of the 4 -~-de- ]
cay width contains as approximations all
earlier approaches ’

a) Mang’s R-matrix approach. Taking for
the matrix element (39) a kind of a surface
delta interaction

14

HlA) =h K £2mF (1) G oen) 17 8(e~R)S ., (40)
we obtain for the expression (33) the well-
known R-matrix formula/1 2/

0ole) = 3P L, ¥2 (R, (41)
where
P_(c,R) =2kRG " (¢, R) (42)

is the barrier penetrability and

7o (R) =E’QC,CGC(6,R)G:,1 (¢,R) y, - (R) (43)

is the "correlated" amplltude of the reduced
width. The matrix 9., G.(¢,R)G, L(e,R)

does not depend on the energy at least in
the first order/?'. In the threezdimensional
WKB-approximation Froman has obtained for
this matrix element the simple expression
given in ref /%,

b) Harada - Rausher approachmchhe matrix
element (39) of the H’ -interaction, in this
approach is taken to be of the form

H . dr) =8 ., . | 2] Vi -U (0} (44)

and Q . =8_,.Thus the «-decay width (38)
becomes

na

FOO(G) kh
Here the a—decay probability is determi-
ned by the transition matrix element bet-
ween the bound state shell model wave func-
tion and the noncorrelated alpha-channel

Elfrlf2 dry, (D IVE(DU_ (D IF_(e,0}(45)
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wave function. The perturbation which cau-
ses the alpha transition is given by the
difference between four times the nucleon
nucleus and alpha-nucleus potentials. The
formula (45) depends strongly on the opti-
cal parameters involved in the Saxon-Woods
alpha nucleus Ug,y-potential, because the
potential used in the scattering problem

is not quite good for the alpha decay prob-
lem.

c) Kadmensky et al approach. In refs/23:24/
and the others cited therein an exXpression
for the alpha decay width is used that can
be obtained from egs. (33) and (38) using
the following approximations:

o]
l * QC'C=BC’C ’

2. Fle,n) =F*°"(c 1),

o , .
3 . The interaction H’ is taken to be

of the following form
4

opt

H'Z S VRG) 2V (), (46)
i=1

where

= 4 Opt

V(1) =<¢a|i=21 Vin (r) ¢ o> (47)
is the averaged potential, %, = being the
intrinsic alpha particle wave function.
Using the approximation 1° - 2° - 30, the
alpha decay width becomes

=~ 8m? T 12 = coul,

Folt) & 22 £1/s 2 dy, OV (DF 012, (48)

This expression however, assumes for the
asymptotic interaction "free" hermitean
hamiltonian H; (see egs. (7) and above) the
following expression

. . 4 A coul

Hy =H, (n) +H, (in) +T v = jf;s Vg - (49
where H,(4)(in) labels the internal alpha
(daughter) hermitean many body hamiltonian,
T, denotes the relative motion (alpha-
daughter) kinetic energy operator and the
last term of eq. (49) represents the Cou-
lomb interaction between the decay products.
Until now we knew only two mechanisms of
generating the many body resonance (quasi-
stable) states/6/. a) the existence in the
initial (mother) state wave function a com-
ponent described by one (or even many)
bound state embedded in the continuum (BSEC)
having the eigenenergy lying in the nearest
vicinity of the decay energy or b) a single
particle resonance (SPR) in the same energy
interval. The hamiltonian (49) is not able
to produce any of these possibilities. The-
refore we believe/l19/ that no theory can
explain eq. (48), except if we neglect,
maybe, important terms /24,

d) Other approaches. The approaches from
refs./?,26/ may be related to the approa-
ches above mentioned. In ref.’/?/ the ex-
pression (41) has been calculated with such
an alpha-nucleus potential that generates
a SPR near the decay energy . The treatment
from ref./?/ assumes the following in
egs. (33) and (38)

10_ Q.7 = 1)

20. The form of the interaction H’ is the

following

, .
ccC

4 4 o
H'= % Vij + X V&)t(ri) —Ual;;(r) . (50)
i>] i=1
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One can easily see that such an interaction
never allows the formation of the alpha
particle in the ground state.

e) Possible rigorous treatments. Star-
ting from eq. (30) the alpha decay width
(33), in the framework of the short range
correlations theory/“h28‘m , can be per-
formed/2"/,

5. NUMERICAL CALCULATIONS.
ALPHA DECAY OF 210p,

To fulfil the conditions resulting from
the theory presented in this paper, we have
chosen the case of theszo—a—decay. For
both mother and daughter nuclei we have used
the shell model with the residual interac-
tions. The 1p, is in its ground state
and has N =1% and 7Z-8 shell closure
structure plus two protons in (lhg/y ) - s.p.
state. The 206p, - ground and excited
(0" or 2¥) states have been obtained by
adding to the shell model Hamiltonian the
multipole pairing interaction:

H =3H (A); A) = pr
b i.‘, p( ) Hp( ) G/\n(21\+1)EPI\# P/\#, (51)
where

+ 2 22
Py == ——1 3 (-1) " <k ||Ir*Y, ||k.>[at a+ JA {145 }-L
A e Yy Mk >Taf af 19
V2a +1 F1Ek Pk

g (52)
u 2 . . + o+ A -1
--D* s (@ <H[hAYA[h2>[aila%]_# (1847 h

i >i
1=-2

The operator ai creates a particle in an
orbital s, The label k denotes a state above
the Fermi sea while i denotes a state
below the Fermi sea. The properties of this
interaction are well discussed in ref. /37,
Particles interacting through this force
have a high degree of spatial correlation

in the lowest state of each spin A and the

parity(—D%These lowest levels display large
0s relative state of motion components as
compared to excited levels of the same

spin and parity. They are specifically exci-
ted in the a-decay and (t,p) processes. The
calculations have been performed using a

a surface delta interaction (40) and in-
serting such a QW"'Q interaction in eq. (32)
that the decay width (38,41) does not

depend on the channel radius parameter

(see egs. 40-43), at least in the nuclear
surface region. This condition is not ful-
filed in the usual Mang/?/ theory. In

figs. 5-7 we show the independence of r,

of the channel radius R in a large region
6.5 - 8.5 fm. The ¢ -decay width I, is
stable to the variation of the optical para-
meters too, if they fulfil the following eq.:

R —roAl/3

V=V, {1+ exp (53)
with V=-96 MeV and R = 7.63 fm.

The amplitude of the reduced width (43)
has been computed rigorously as in Mang's
works/?. For the channel - channel coupling
(eq. 32) we have taken only the diagonal
matrix elements that fulfil the conditions
shown in the figures 5-7.
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§’A'*‘; ; Av*4
SLPE
K ¢ AC.

<. A / 0 )

Fig. 4. The coupling terms that are neces-
sary to be introduced in the total a —decay
width. The wave line repraesents the A -nuc-
leons coming into H” -interaction, the A,
and a, lines denote the nucleons of the decay
products that go out from the interaction H’,
the (1 -wave line denotes the channel - chan-
nel interaction propagator.
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The « -decay width as a function of the channel radius.

5.

Case of the 4 transition to 0%(0 KeV) state.
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Fig. 6. The same as in fig. 5. Case of the a« transition to 2%
(803 KeV) state.
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Fig. 7. The same as in fig. 5. Case of the « transition to 0"
(1165 KeV) state.
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Table

The 4 ~decay widths for the

a ~transitions

206p}.

to some positive parity states of

(Kev) Hf;’ HF«_ Y, er) aff) T (P

Ha«g
82
8.7.10771

Gn:.

r " (KeV)

\
J

(%ey

17 E,,([,KCV) EHSVeV} r;‘i

I.18

C.57

I 107.2

I

5.68.TC7

3.3, 107<Y

0

I.18

1.317.107°  ©.8.10°5' 1.4 5.7 1II.9 Q.57

2.2.10799

803 82

o

2.8 G2.42 0.75

1165 1070

O+

I.I5

1.49.107°"

c.75 I1.I5

117

.73, 1074 - 78.7

1460 1427

o

I.15

[,
i

73 0.75

4.07.107%% - 0.0

1718

1784

110 C.75 1.1I5

-I117

1.44.107%

2149 2081

2—0

I.15

C.75

127

7.45.107%F -111

2208

2314

O‘O

6. CONCLUSIONS

One may ask what such a rather complex
theory as represented by eq. (38) is good
for. The answer is that the experiments can
yield the informations (applying this theo-
ry) concerning:

- complicated structure of the excited
muclear states,

- complicated mechanism of the a -decay
process, involving even the complicated
nucleon-nucleon interactions, responsible
for the clustering phenomenon and to the
emission of the «-particle,

- complicated virtual excitations of
other « -channels after the fragment breaking.

All the problems together can be compa-
red with the recent nuclear matter and shell
model calculations, which are also becom-
ing more and more complicated. In any case
our treatment can answer in the future the
question which forces are predominant in
the decay process, hence, the a-decay beco-
mes a tool for studying the nuclear forces.
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