OБbEAИHEHHЫЙ ИНСТИTУT
 ЯAEPHWX
 ИССАЕАОВАНИЙ

[-98

E4-9070
$4256 / 2-75$
S.P.Ivanova, A.L.Komov, G.Kyrchev,
V.G.Soloviev, Ch.Stoyanov

ON THE ANHARMONICITY
OF VIBRATIONAL STATES
WITH K $=2^{+}, 0^{-}, 1^{-}$AND 2^{-}
IN DOUBLY EVEN DEFORMED
NUCLEI 228 $\leq \mathrm{A} \leq 240$

E4-9070

S.P.Ivanova, A.L.Komov, G.Kyrchev, V.G.Soloviev, Ch.Stoyanov

ON THE ANHARMONICITY OF VIBRATIONAL STATES
WITH K $=2^{+}, 0^{-}, 1^{-}$AND 2^{-}
IN DOUBLY EVEN DEFORMED
NUCLEI 228 \leq A ≤ 240

Submitted to Изв. АН СССР

Иванова С.П. и др.

E4-9070

Изучение ангармоничности вибрационных состояний
с $\mathbf{K}^{\top}=2^{+}, 0^{-}, 1^{-}, 2^{-}$в четно-четных яарах с $228 \leq A \leq 240$
Изучено влиянне взаимодействия квазичастиц с фононами на энергию и структуру состояний с $\mathbf{K}^{\pi}=2^{+}, 0^{-}, 1^{-}, 2^{-}$для ядер в области $228 \leq A \leq 240$. Покязано, что первые состояния являюгся, в основном, однофононными, а многие вторые состояния имеют сложную структуру. Если фиксировать значения констант к (λ) мультиполь-мултипольных взаимодействий с $\lambda=2$ и 3 из условия описания экспериментвльных данных для первых состояний с указанными \mathbf{K}^{π}, то учет ангармоничности приводит к постоянству к ${ }^{(\lambda)}$ внутри зоны по A.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследовании

 Дубна 1975Ivanova S.P. et al.
E4-9070
On the Anharmonicity of Vibrational States with $\mathbf{K}^{\boldsymbol{\pi}}=2^{+}, 0^{-}, 1^{-}$and 2^{-}in Doubly Even Deformed Nuclei $228 \leq A \leq 240$

The influence of the quasiparticle-phonon interaction on the energy and the structure of states with $\mathbf{K}^{\pi}=2^{+}, 0^{-}, 1^{-}, 2^{-}$ for nuclei in the region $228 \leq \mathrm{A} \leq 240$ is studied. It is shown that the first states are mainly one-phonon, and most of the second states have complex structure. If the values of the constants $\kappa(\lambda)$ of the multipole-multipole interaction with $\lambda=2,3$ are fixed so as to reproduce the experimental data on the energies of the first K^{π} vibrational states, the consideration of the anharmonicity leads to stabilization of $\kappa^{(\lambda)}$ inside the zone in A.

Preprint of the Joint Institute for Nuclear Research Dubna 1975

I. Introduction

The lowest vibrational states in the doubly-even deformed nuclei are calculated, as a rule, in the framework of the ideal vibrator model $/ 1,2 /$. This is mainly due to the fact that the experimental data on the anharmonicity* of vibrational states and on the "two-phonon" states in deformed nuclei are very scarce ${ }^{/ 3 /}$.

The "two-phonon" states exist among a large number of twoquasiparticle, rotational and one-phonon excitations, and thje "masking" makes it difficult to separate them experimentally. Nevertheless, the information on the two-phonon and second one-phonon states is being accumulated, though very slowly.

The theoretical investigations of the anharmonic effects in even deformed nuclei have been attempted long ago $/ 4 /$. Different terms, which are anharmonic with respect to the phonon operators, naturally appear in the Hamiltonian of the superfluid nuclear model. Thus, the above mentioned effects have been consistently deacribed in the framework of the model taking into account the qua-siparticle-phonon interaction.

The first calculations by the model have been performed in ref. $/ 5 /$ with wave functions containing one- and two-phonon terms.

It has been found that admixtures of the two-phonon compoe nents in the first vibrational states of strongly deformed nuclei are small but they are increasing for the nuclei of transitional regions. These calculations have been recently repeated making use of the Saxon-Woods potential instead of the Nilson one and with a

[^0]somewhat complicated wave function as compared with that in ref $5 / 5$ By the example of nuclei from the $150<A<190$ gion, it has been shown that the first vibrational atates with $K^{\pi} \neq 0^{+}$are practically one-phonon. The structure of the second states is, as a rule complicated and this is due to the quasi-particle-phonon interaction.

The aim of the present paper is to investigate the anharmonicity of the vibrational atatea with $K^{\pi}=2^{+}, 0^{-}, I^{-}, 2^{-}$in doubly even nuclei in the region $228 \leqslant A \leqslant 240$. The gtates with $K \pi=0^{+}$ will be considered separately.

2. Formulation of the model

As is known, the Hamiltonien of the superfluid nuclear model includes the average field, the interactions, leading to superconducting pairing correlations, and the separable quadrupolequadrupole and octupole-octupole interactions.

$$
\begin{equation*}
H=H a v+H p a i r+H a \tag{1}
\end{equation*}
$$

After carrying out the Bogolubov transformations and introducing the phonon operators, the main part of the Hamiltonian (I), taking into account the solutions of the secular equation for the onephonon states, is of the form:

$$
\begin{align*}
& H=H v+H v q= \\
& \sum_{g} \omega_{g} Q_{g}^{+} Q_{g}-\frac{1}{2} \sum_{g v i}\left[\Gamma g\left(v v^{\prime}\right) \sum_{\sigma} \pm \alpha_{v \pm \sigma}^{+} \alpha v^{\prime} \sigma x\right. \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \left.x\left(Q_{g}^{+}+Q_{g}\right)+h . c\right]+\frac{1}{2} \sum_{\tau} G_{\tau}\left[\sum_{v v} v_{w} U_{w^{\prime}} x\right. \\
& \left.\sum_{\sigma} \sigma \alpha_{v-\sigma}^{+} \alpha_{v o}^{+} \sum_{\sigma} \alpha_{v_{j}^{\prime} \prime^{\prime}} \alpha_{v^{\prime} \prime^{\prime}}+h . c .\right] \tau .
\end{aligned}
$$

The following notations are used: (V), $\sigma= \pm 1$ is a set of quantum numbers characterizing the single-particle states;

GT is the coupling constant for the neutron or proton syatems respectively.

$$
u_{v v^{\prime}}=u_{v} V_{v^{\prime}}+U_{v^{\prime}} v ; V_{w^{\prime}}=U_{v} U_{v^{\prime \prime}}-V_{v} V_{v^{\prime}}, Q_{q}, Q_{q}
$$

are the creation and anninilation operators the phonon g with monent and projection $\mathcal{q}=\lambda \mu \quad$, number i, and frequencyldg;

$$
\Gamma^{g}\left(w^{\prime}\right)=\frac{f^{q}\left(v v^{\prime}\right)}{2 \sqrt{Y g}} V_{v v^{\prime}},
$$

where

$$
f ?\left(V V^{\prime}\right) \text { is the single-particle matrix element of }
$$ the multipole operator $q, \quad Y g$ ia phonon characteriatic (see ref. ${ }^{1 / \text {). }}$

The second and third terms in (2) describe the quasiparticlephonon interaction, and they originate from H_{Q} and Hpair reapectively. In the Hamiltonian (2) not only the collective but also the one-particle degrees of freedom are taken into account explicitly. Correspondingly their coupling is taken into account in the vave function too:

$$
\Psi_{n}\left(K^{\pi}\right)=\left[\sum_{i=1}^{n} C_{q_{0}}^{n} Q_{q_{0}}^{+} i+\sum_{q_{1}, q_{2}} \Delta q_{g_{2}}\left(q_{0} n\right) a_{q_{1},}^{+} Q_{q_{2},}^{+} \psi_{0}(3)\right.
$$

Here n is the number of the excit ed state, $Q_{g} \Psi_{o}=0$. The coefficients \quad and Δ obey the normalization conditiof:

$$
\begin{equation*}
\sum_{i=1}^{\log }\left(c_{q_{0} i}^{n}\right)^{2}+2 \sum_{q_{1}, g_{2}}\left[\Delta g_{g_{2}}^{q_{1}}\left(q_{0} n\right)\right]^{2}=1 . \tag{4}
\end{equation*}
$$

In the wave function (3) the three-phonon and so on admixtures are not included, and this limits the range of applicability of the model. Obviously, the wave function of the type (3) will not be valid in the case of high excitation energies.

Under these assumptions the model permita an exact analytical solution.

The energies of the excited states are found from the secular equation:

$$
\begin{equation*}
\operatorname{det} \|\left(\omega q_{0} i-\eta_{n}\right) \delta_{i i^{\prime}}-K_{i i^{\prime}}\left(q_{0} n\right) / 1=0 \tag{5}
\end{equation*}
$$

where

$$
K_{i i^{\prime}}\left(q_{0} n\right) \equiv \frac{1}{2} \sum_{q_{1} q_{2}} \frac{U_{i}^{q}\left(q_{0}\right) \mid U_{\xi_{2}^{\prime}}^{q_{2}}\left(q_{i^{\prime}}\right)}{W q_{1}+\tilde{\sigma_{g_{2}}-\eta_{n}}} .
$$

Here $U_{g_{2}}^{g_{2}}\left(g_{0}\right) \quad$ is the matrix element H Vg between onephonon and two-phonon $\left.i_{2} \mu_{0} i_{0}\right) ;\left(\lambda_{1} \mu_{1}, i_{1} ; \lambda_{2} \mu_{2} i_{2}\right)$ etatee, and ita explicit form ie given in ref. $/ 8 /$. The expreasions for

$$
\begin{align*}
& C_{q_{0} i}^{n} \quad \text { and } \quad \Delta g_{2}^{\prime}\left(g_{0} n\right) \text { are the following: } \\
& C_{q_{0} i}^{n}=\frac{M^{i}}{\sqrt{\sum_{i g}^{2}\left(M^{i}\right)^{2}+\frac{1}{2}} \sum_{g_{g_{2}}}\left(\sum_{i=1}^{2} \frac{U_{i}\left(q_{0} l M^{2}\right.}{W_{g_{1}}+W_{g_{2}}-\eta n}\right)^{2}}=\frac{M^{i}}{N} \tag{6}
\end{align*}
$$

$\underset{\text { where } M_{i}^{i}}{\Delta_{g_{2}}^{g_{1}}\left(\varphi_{0} n\right)=\frac{1}{2 N} \sum_{i=1}^{\mathbf{B}} \frac{U_{1}^{\ell_{1}}\left(q_{0} i\right) M^{i}}{W g_{2}+W g_{2}-\eta_{n}},}$
is the i-th minor of the matrix (5) $(i=1,2,3)$.
If $U_{g_{2}}^{g_{1}}\left(g_{0}\right)=0, \quad$ then $\Delta g_{g_{2}}\left(q_{0} n\right)=0$,
$\eta_{n}=W q_{0} n, \quad C_{q_{0}}^{n}=\delta_{i} n$, i.e., the harmonic model is obtained.

3. Parameters of the model

The considered mass region has been divided into 2 zones of nuclei according to the chosen single- particle scheme:
a) ${ }^{228} 7 \mathrm{~h},{ }^{230} \mathrm{Th},{ }^{232} \mathrm{Th}{ }^{232} \mathrm{~J}$
b) ${ }^{234} \mathrm{U},{ }^{236} \mathrm{U},{ }^{230} \mathrm{~J}, 238 \mathrm{Pu},{ }^{240} \mathrm{Pu}$

The parameters of the Saxon-Woods potential and the constanta $G \tau$ have been taken from ref. /8/. The constants of the mul-tipole-multipole interaction $\mathscr{X}(\lambda)$ are the only varying parameters in the calculations. They are chosen so that the first roots of the secular equation (5) describe correctly the experimental energies of the firat vibrational atates. (The experimental data on the energies of the low-lying vibrational states are syste tematized in reviews $/ 9 /$). For each of the considered nuclei it was possible to find a set of constants $\left\{X^{(\lambda)}\right.$ unharm. $\}$ allowing us to describe the energies of all the first vibrational states. The values of the constant $X^{(\lambda)}$ anhorm, are plotted in figs.1-8 versus As They are compared with the values of the constants of the multipo-le-multipole interaction \mathscr{C} har \mathscr{C} harm. for which the energies of the
first vibrational states, calculated in the haxmonic approximation, cafncide with the experimental ones. The isotopes belonging by the same single-particle acheme are given on the horizontal axis of each figure, and the vertical axis representa the values of \mathscr{P} (a) harm. (connected by dashed line) and of \mathscr{P} (anharm. (connected by solid line). It should be noted that the values $\left\{\mathcal{P}_{a}^{(\alpha)}\right.$ harm. $\}$ as a function of A behave more smoothly than $\{\mathscr{C}$ harm. $\}$. "A tendency" of straightening" the solid broken line is clearly seen on figs. 1,2 and 6.

It means that in the model by one set of constants $\left\{\mathcal{L}^{(\lambda)}\right.$ anharm. $\}$ a group of nuclei is described.

The effect of stabilization of constants $\left\{\mathscr{C}^{(\lambda)}\right.$ anharm $\}$ may be interpreted in the following way: the Hamiltonian (2) is more close to the "true" one than $H_{v}=\sum_{g} w g Q g Q g$, and thus the coupling constants are determined better from the Hamiltonian (2).
IV. The results and discussion

The calculation results for the energies and wave functions of the vibrational nuclear atates with $K^{\pi}=2^{+}, 0^{-}, 1^{-}, 2^{-}$ in the region $228 \leqslant A \leqslant 240$ are given in Tables 1-9. In the column "structure" each line represents the one- and twophonon components $\left(\lambda_{0} K_{i}\right), \quad\left(\lambda_{1} \mu_{1} i_{1} ; \lambda_{2} \mu_{2} i_{2}\right)$ and their contributions $\left(C_{\lambda_{0} K i}^{n}\right)^{2}, 4\left[\Delta_{\lambda_{2} \mu_{2} i_{2}}^{\lambda_{1} \mu_{1}}\left(\lambda_{0} K n\right)\right]^{2}$ and their contributions $\left(C_{\lambda_{0}} K i\right)^{2}, 4\left[\Delta_{\lambda_{2}} \mu_{2} i_{2}\left(\lambda_{0} K n\right)\right]^{2}$
(see eqs. (6) and (7)) to the state $\Psi_{n}(K \pi) \quad\left(\pi=(-1) \lambda_{0}\right)$.

It is seen from the Tables that except for the first
$M^{\pi}=2^{+} \quad$ in $2 \geqslant 0 P_{u}$ all the first statea are practically one-phonon ones, the total contribution of admixtures does not exceed 10%, i.e., the situation is the same as in the region
$150<A<190$. As to the aecond vibrational atates, it should be noted that just in their structure the anharmonic effects become evident. In most cases, the structure of the second statea is very complicated some different components give a conmiderable contribution to the wave function. For instance, in ${ }^{230} \% / \%$ the second $K^{\boldsymbol{\pi}}=0^{-}$state has the contribution of 87% of the component (201,301), 9% of (302), 3% of (301) and 1% of (303). The quasiparticle-phonon interaction distorta essentially the picture of harmonic nuclear vibrations mixing the collective degrees of freedom with the non-collective and two-phonon ones. Such a mixing is observed, e.g., in $232 \mathrm{Th} \quad$ (Table 3): the second $K^{\pi}=2^{+}$, the second $K^{\pi}=0^{-} \quad$, the second $K^{x}=2^{-\quad \text { otatea. }}$

In a number of cases the model predicta almost pure two-phonon structure of the second vibrational states. For instance, in ${ }^{228} 7 /$ the component $(201,301)$ gives 98% contribution to the second state.

It is difficult to compare the calculation reaulta of the energies and the structure of the aecond vibrational states with the experiment due to scanty experimental data. When the energies are experimentally measured the theoretical energy valuea agree with them.

The authors are grateful to A.I.Vdovin, R.V.Jolos, L.A.Malov, and Y, O. Nesterenko for fruitful discussions and for the help in calculations. One of the authors (G.K.) is very indebted to I.N.Mikhailov.

Fig. 3.

F1g. 4.

Fig. 5.

Fig. 6.

Table 1.
Lowlying vibrational levela in ${ }^{228}$ Tr

K_{W}^{π}	Energy	MeV	Structure, *
	exp.	calc.	
$2 \pm$	0,977	I, 0	(22I)95(30I, 32I)2
2_{2}^{+}	I, 620	I,6	(3II, 3II) 98
$\mathrm{O}_{\mathbf{I}}^{-}$	0,328	0,4	(30I) 97 (20I, 30I) I
O_{2}		I.7	(201, 30I) 99
$\mathrm{I}_{\mathrm{I}}^{-}$		0,7	(3II) 97 (20I, 3II) 2
I_{2}^{-}		I. 8	(3I2) $90(20 I, 3 I I) 9$
$2 \overline{1}$	I.I23	1.2	(32I) 90 (22I, 3OI) IO
2_{2}^{-}		I,5	(22I, 30I) 90 (32I) I0

Table 2.
Lowlying vibrational states in ${ }^{230}$ Th

$K_{n}^{\mathbb{1}}$	$\begin{aligned} & \text { Energy, } \\ & \text { exp. } \end{aligned}$	MeV calc.	Structure, \%
$2+$	0.782	0.9	(22I) 97 (30I, 32I) I
2_{2}^{+}		I. 9	(30I, 32I) 98 (22I) I
O_{I}	0,508	0.6	(30I) 96 (20I, 30I) 3
O_{2}^{-}		I. 9	(20I, 30I) 87 (302) 9(30I)3(303)I
$\mathrm{I}_{\mathrm{I}}^{-}$	0.954	0.9	(3II) 96 (20I, 3II) 2
I_{2}		1.8	(3I2) 97 (20I, 3I2) I
2^{-}		I. I	(32I) 94 (22I, 30I) 5
2_{2}^{-}		I. 6	(22I, 30I) 95 (32I) 5

Table 3.
Lowlying vibrational levels in 232 Th

$B \pi_{n}$	Energy , exp.	MeV calc.	Structure, \%
$2+$	0.785	0.8	(22I)94(20I.22I)4(30I,32I)I
$2+$		2.0	(222)67(301,32I)29(201,22I)I
$\mathrm{O}_{\mathrm{I}}^{-}$	0,713	0.8	(30I)94(20I, 30I)4(202,30I)I
O_{2}		2.0	(22I,32I)95(303)2(302)2 *
$I_{\text {I }}$	I. $0-\mathrm{I} . \mathrm{I}$	I. 0	(3II)96(20I, 3II)2(22I,3II)I
I_{2}		I. 9	(3I2)94(20I,3II) 4
2^{-}		I. 0	(32I)95(22I,30I)3(20I,32I)2
$2-$		I. 8	$(22 I, 301) 95(32 I) 3(322) I(323) I$

Table 4
232

K_{n}^{π}	$\begin{aligned} & \text { Energy, } \\ & \text { exp. } \end{aligned}$	$\begin{gathered} \mathrm{MeV} \\ \text { calc. } \end{gathered}$	Structure,	\%
$2+$	0.868	I. 0	(22I)98 (20I,22I)I	
$2+$		2.0	(222)98 (20I, 22I)I	
$\mathrm{O}_{\mathrm{I}}^{-}$	0.564	0.8	(30I)98 (20I, 30I)I	
O_{2}		2.0	(302)95 (20I,30I)I	
$\mathrm{I}_{\mathrm{I}}^{-}$		1.3	(3II) 99	
I_{2}^{-}		I. 8	(3I2) 99	
$2-$	(I.OI9)	I. 3	(32I)98 (22I,30I) 2	
2_{2}^{-}		I. 9	(22I, 30I)98 (32I) 2	

Table. 5.

Lowlying vibrational atates in ${ }^{234} U$

Table 6.
Lowlying vibrational states in ${ }^{236}$ U

K_{n}^{π}	$\begin{gathered} \text { Energy, } \\ \text { exp. } \end{gathered}$	MeV calc.	Structure, \%
$2+$	0.959	0.9	(22I)90(30I,32I)5 (20I,22I) 4
$2+$		I. 4	(222) 98
O_{I}	0.685	0.7	(30I)96 (20I,30I)I (22I,32I)I
O_{2}		I. 8	(302)82 (2IO,30I)I3 (202,30I)I
II	0.970	0.8	(3II) 98
I_{2}^{-}		I. 6	(3I2)96 (20I,3II) 3
${ }^{2} \mathrm{I}$		0.8	(32I)94(20I,32I)3 (22I,30I) 3
2_{2}^{-}		I. 7	$(322) 64(22 I, 301) 24(323) 4(20 I, 32 I) 3$

Lowlying vibrational states in ${ }^{238} 8_{U}$

K_{n}^{π}	$\begin{gathered} \text { Energy, } \\ \text { exp. } \end{gathered}$	MeV calc.	Structure, \%
$2+$	I.06I	I.I	(22I)84(20I, 22I)9(222)4(20I, 222)I
$2{ }_{2}^{+}$		I. 4	(222)93 (22I)6
$\mathrm{O}_{\mathrm{I}}^{-}$	0.680	0.8	(301)97 (20I,30I) 2
O_{2}		1.7	(302)94 (20I,30I) 2
$I_{\text {I }}$	0.931	0.9	(3II)97 (20I,3II) 2
I_{2}^{-}		I. 7	(3I2)87 (20I, 3II)IO(20I,3I2) 2
$2 \overline{1}$		I.I	(32I)97 (20I,32I) I
$2 \overline{2}$		I. 8	(322)97 (20I,32I) 2

Table 8.

Lowlying vibrational states in ${ }^{238} \mathrm{Pu}$

K_{n}^{π}	$\begin{gathered} \text { Energy, } \\ \text { exp. } \end{gathered}$	MeV calc.	Structure, \%
$2+$	I. 028	I. 0	(22I)93 (20I,22I)4 (30I,32I) 2
$2+$		I. 4	(222) 99
$\mathrm{O}_{\mathrm{I}}^{-}$	0.605	0.6	(301) 98
O_{2}^{-}		I. 6	(302) 94
$I_{\text {I }}$	0.963	I. 0	(3II) 99
I_{2}		I. 6	(3I2) 99
$2-$	(I.3I0)	I. 3	(32I)88 (22I,30I)9 (20I,32I) 2
$2{ }_{2}$		I. 7	(22I,30I)6I (322)30 (32I)8

rable 9.
Lowlying vibrational statea in $\mathbf{2 4 0}_{\text {Pu }}$

K_{n}^{π}	Energy. exp.	YeV calc.	$S t r u c t u r e,$
$2_{\text {I }}^{+}$	0.938		(22I)74(30I, 32I)8(20I,22I)8(222)7(20I, 222)2
2_{2}^{+}	I. 559	1.4	(222)88 (22I)I0 (20I, 222) I
$\mathrm{O}_{\text {I }}$	0.597	0.6	(301)96 (20I,30I) 2
O_{2}^{-}		1.5	(302)8I (20I, 30I) I8
$\mathrm{I}_{\mathrm{I}}^{-}$		1.0	(3II)99 (20I, 3II) I
I_{2}		1.7	(3I2) 98
2^{-}	0.959	0.9	(32I) $92(20 \mathrm{I}, 32 \mathrm{I}) 4(22 \mathrm{I}, 30 \mathrm{I}) 2$
$2 \frac{1}{2}$		I. 9	(22I,30I)69(322)I4(323)I3(32I)I(20I,32I)I

References

2. Н. І. Григорьев, В.Г.Соловьев. Структра четннх десорииованных ядер. Наука, I974.
3. J.Barrett, M.Barrett, A.Boutord et al. Can.J.Phys., 49, 2462, 1971.
R.A. Meyer. Phys.Rev., 170, 1089,1968;174,1478,1968.
4. V.G.Soloviev. Phys.Lett., 21, 320. 1966
V.G.Soloviev. Nuclear structure, Dubna Symposium 1968, p. 101 IAEA, Vienna.
5.R.V.Jolos, V.G.Soloviev, K.N.Zheleznova. Phys.Lett., 25B, 393 (1967); R.V.Jolos, U.M.Finer, V.G.soloviev, K.N. Zheleznova. Phye.Lett., 27B, 614 (1968).
6. Г.кырчев, В.Г.Соловьев, Ч. Столиов. Препринт ОИЯИ, P4-86II (1975).
7. А. .. Вдовин, Г.пирчев, Ч.Столнов. ТАФ, 2I, I37(I974).
8. С.і.Иванова, А.Л.Комов, Л.А. аалов, В.Г.Соловъев. Препринт OFAK, P4-8459, Діубна, I974.
9. Nuclear Level Scheemes $A=45$ through $A=257$ from Nuclear Data Sheets, Academic Press, inc. New York and London, 1973.
Y.A.Ellis and M.R.Schmorak, Nuclear Data Sheets, 1972, v.8, No. 4.

Received by Yublishing Department on July 25, 1975

[^0]: *In the present paper by "anharmonicity of vibrational atates" we mean the deviation from harmonicity generated by the quasipar-ticle-phonon interaction.

