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Uayyenne aHrapMOHHYHOCTH BUGPaNMOHHBIX COCTOSHAH
cK™= 2+, 0, 1,2 B gerHo-ueTHHX agpax c 228< A< 240

WaydeHo BAHSHHEe B3aUMONEHCTBHH KBal3MyaCTHU q_¢OHOHaMH Ha
9HEPruio H CTPYKTYpY COCTOSHHH C K7=2%, 0,1, 2 nng gaep B 06—
nacru 228< A £ 240. loxa3ano, 4TO nepBble COCTOSHHSA SABIAIOTCH, B OC—
HOBHOM, ONHOGOHOHHBIMH, & MHOI'Me BTOpble COCTOHHHMS MMEIOT CIOXHYIKO
CTpykTypy. Eciu ¢uKkCHpOBaTL 3HAYEHHS KOHCTAHT kD) MYk THIIONE-MY /BT H~
HOMBLHBIX B3auMofAe#CTBUE ¢ A = 2 n 3 M3 yclOBMA ONHCAHHA SKCIEPHMEHTAab-]
HbIX OAHHBIX /1S NMEpPBBIX COCTOAHHH C yKa3aHHBIMH K7 ro yuer aHrapmoHHu-

HOCTHM NPHBOAHT K HDOCTOSHCTBY K )eryTpR 30MH TO A .

Pa6ora BunonHena B JlaGopaTopuu Teoperudeckolt dusmky OUSH.
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Oon the Anharmonicity of Vibrational States
with K" = 2%, 07, 17 and 27 in Doubly Even
Deformed Nuclei 228<A < 240

The influence of the quasiparticle-phonon interaction
on the energy and the structure of states withK7=2%07,17 2"
for nuclei in the region 228< A< 240 is studied. It is
shown that the first states are mainly one-phonon, and
nost of the second states have complex structure. If the
values of the constants x@W of the multipole-multipole
interaction with A= 2,3 are fixed so as to reproduce the
experimental data on the energies of the first K7 vibra-
tional states, the consideration of the anharmonicity
leads to stabilization of xW inside the zone in A .
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I. Introduction

The lowest vibrational states in the doubly-even deformed
nuclei are calculated, as a rule, in the framework of the ideal
vibrator mode1/1’2/. This is mainly due to the fact that the ex-
perimental data on the anharmonicity* of vibrational states and
on the "two-phonon" states in deformed nuclei are very scarce/j/.

The "two-phonon" states exist among a large number of two~
quasiparticle, rotational and one-phonon excitations, and this
"masking” makes it difficult to separate them experimentally. Ne-
vertheless, the information on the two-phonon and second one-pho-
non states is being accumulated, though very slowly.

The theoreticel investigations of the anharmonic effects in
even deformed nuclei have been attempted long ago/4/. Different
terms, which are anharmonic with respect to the phonon operators,
naturally appear in the Hamiltonian of the superfluid nuclear mo-
del, Thus, the above mentioned effects have been consistently des~
cribed in the framework of the model taking into account the qua-
giparticle-phonon interaction.

The first calculations by the model have been performed in
ref./S/ with wave functions containing one~ and two-phonon terms.

It has been found that admixtures of the two-phonon compoe
nents in the first vibrational states of strongly deformed nuclei
are small but they are increasing for the nuclei of transitional
regions., These calculations have been recently repeated meking use

of the Saxon-Woods potential instead of the Nilson one and with a
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*In the present paper by "anharmonicity of vibrational states"
we mean the deviation from harmonicity generated by the quasipar-~
ticle~phonon interaction.



somewhat complicated wave function as compared with that in ref{5/
By the example of nuclei from the I50<A< /‘90 re-
gion, it has been shown that the first vibrational states with
K’Z # 0" are practically one-phonon, The structure of the second
states is, as a rule complicated and this is due to the quasi-
particle-phonon interaction.

The aim of the present paper is to investigate the anharmo-
nicity of the vibrational states with Aﬁf=2+,0',1_,2- in doubly
even nuclei in the region 228g Ag240. The states with ng=0+

will be considered separately.

2, Formulation of the model

As is known, the Hamiltonien of the superfluid nuclear model
includes the average field, the interactions, leading to super-
conducting pairing correlations, and the separable quadrupole-

quadrupole and octupole~octupole interactions.

H =Hay *Hpair *Ha . 1)

After carrying out the Bogolubov transformations and introducing
the phonon operators, the main part of the Hamiltonian (I),taking
into account the solutions of the secular equation for the one-

phonon states, is of the form:
H=Hv +/‘/y¢ =

| V " (2)
%myﬁgﬂg —égzw[rg(vv)grd;tédvé X

x (@3 +09)+/7.a]+2’-‘ b) Ge[ZVwliw *
PHCE R dis 2 dygdyg *hL T -

The following notations are used: ( V(S L C5=ff is a set of quan-
tum numbers characterizing the single-particle states;
(;z’ is the coupling constant for the neutron or

proton systems respectively.

lj’V'==lJvL6".*ZJV"/; b@l'==[/vl/V’"'l79 D@? 6%;,6%?
are the creation and annihilation operators the phonon 9 with

moment and projection 9—_-/?/1 , number l, , and frequencyldg;

Gop)= LoV 1p
F(W) 2‘/TVVV,

where

Jr9 (vV,) is the single-particle matrix element of
the multipole operator 9 , Yg is phonon cha-
racteristic (see ref./1/).

The second and third terms in (2) describe the quasiparticle-
phonon interaction, and they originate from fio and /ﬂoalr
respectively. In the Hamiltonian (2) not only the collective but
also the one-partic;e degrees of freedom are taken into account
explicitly. Correspondingly their coupling is taken into account

in the wave function too:



w”//(r/_[i C‘g LU%L"‘ 2 Ay (90/2,}094-09}{7(3)

Here N is the number of the ex01ted state, 09?’0 =y -

.

The coefficients ’ and A obey the normalization

Seh 2 g 0], gom =

(4)

In the wave function (3) the three-phonon and so on admixtures are
not included, and this limits the range of applicability of the
model. Obviously, the wave function of the type (3) will not be
valid in the case of high excitation energies.

Under these‘assumptions the model permits an exact analytical
solution.

The energies of the excited states are found from the secu-
lar equation:

det!l(g,i =7, it ~Kilgor)ll =0

(5)

where

Kii{gn =1 Uf;(%t'/yﬂ/g[,)
L(9 ) Q Iz'gzajg’+w92__7n
o U? /90) is the matrix element IL/V9 between one-

phonon and two-phonon wa}lglo) (/?,ﬂ, L, ﬁz 2‘2 ) states, and

its explicit form is given in ref, /8 /. The expressions for
n
Cgot and Ag (90,2) are the following:
M* M‘

- VT % lJyJ;fly A "

Al =4 J, U;'( OZ)M[ ,
A,19: (70’7)"2/\/% U;_,_If/’z_?” (7
where

18 the i-th minor of the matrix (5) ( (=123).

1 Uf (o) = ={, then Ay‘, (9,7)=0 ,
7,7 [dgon, cy [ = ’ i.e., the harmonic model

is obtained.

3. Parameters of the model

The considered mass region has been divided into 2 zones of

nuclei according to the chosen single-~ particle scheme:

228
23417"/2 2307—/2 2‘.327"/7 ZJZU (4=229)
U 23€U, 230[/, zsepu , 240pu . (A=239)

The parameters of the Saxon-Woods potential and the constants
G'L- have been taken from ref./a/. The constants of the mul-
2
tipole-multipole interaction 24 are the only varying

parameters in the calculations, They are chosen so that the first
roots of the secular equation (5) describe correctly the experi-

mental energies of the first vibrational states.(The experimental
data on the energies of the low-lying vibrational states are sys¥e
tematized in reviews/g/).For each of the considered nuclei it was
possible to find a set of constants i x(a)a"harm.jallowing us to
describe the energies of all the first vibrational states.The va-

x"l’anharm. are plotted in figs.1-8 versus i

lues of the constant
They are compared with the values of the constants of the multipo-

) . .
le-multipole interaction &’g,.m_ for which the energies of the



firgt vibratiornal states, calculated in the hagmonic approxima-
tion, coincide with the experimental ones. The isotopes belonging
by the same single-particle scheme are given on the horizontal

axis of each figure, and the vertical axis represents the values

R)
of & {harm_ (connected by dashed line) and of
aogzﬁn)barm, (connected by solid line). It should be noted

that the values wan/)aﬁm,] ag a function of A behave

7
more smoothly than [wh(ﬂlj‘/ﬂ] . " A tendency" of straighten:

ing" the solid broken line is clearly seen on figs.1,2 and 6.

. )
It means that in the model by one set of constants 20’7/70/‘”7.}
a group of nuclei is described. )
%
T.h f t . . . 7
e effect of stabilization of constants {f a/z/)arm

may be interpreted in the following way: the Hamiltonian (2) is
Hy = d; @

more close to the "true" one than v ‘ng ? 9 , and thus

the coupling constants are determined better from the Hamiltonian

(2).

IV. The results and discussion

The calculation results for the energies and wave functions
3 -y=n-
of the vibrational nuclear states with /‘{ =2+,0 » l ,2
in the region 223\<A<240 are given in Tables 1=9. In
the column "structure" each line represents the one- and iwo-
( f;//{/‘//f?zﬂz ()
n L
and their contributions (0/10 I(i)2 4[Allﬂ' : {/? Kn)]‘?
» zjl,ll o /?
(see eqs.(6) and (7)) to the state %//(ﬂ} ( T={-4) "° ).

It is seen from the Tables that except for the first

phonon components ( A Ki),

/(f =2+ in zwpu all the first states are practically
one-phonon ones,the total contribution of admixtures does not
exceed 10%, i.e.,the situation is the pame as in the region

/50<A< 190 . A to the second vibrational states, it
should be noted that just in their atructure the anharmonic ef-
fects become evident. In most cases, the structure of the second
states is very complicated some different components give a con~
siderable contribution to the wave function. FPor instance, inz”n
the second Kﬂ=0- state has the contribution of 8T% of the
component (201,301), 9% of (302), ¥ of (301) and 1% of (303).
The quasiparticle-phonon interaction distorte essentially the
picture of harmonic nuclear vibrations mixing the collective de-
grees of freedom with the non-collective and two-phonon ones.
Such a mixing is observed, e.g., in 2327'/1 (Table 3): the
second Kﬁ=2+ , the second Kﬁ=0- , the second

Kﬁ= 2_ states.

In a number of cases the model predicte almost pure two-pho-
non structure of the second vibrational states. For instance, in

zzarﬁthe component (201,301) gives 985 coniribution to the
second state.

It is difficult to compare the calculation results of the
energies and the structure of the second vibrational states with
the experiment due to scanty experimental data., When the energies
are experimentally measured the theoretical energy values agree
with them. .

The authors are grateful to A.I.Vdovin, R.V.Jolos, L.A.Malov,
and V.0.Nesterenko for fruitful discussions and for the help in
calculations. One of the authors (G.K.) is very indebted to

I.N.Mikhailov.
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Table 1.

228

Lowlying vibrational levels in Th

k¥ Bnergy, MeV Structure, %

ud exp. calc,
24 0,977 1,0 (221)95(301,321)2
23 1,620 1,6 (311, 3I1) 98
01 0,328 0,4 (301) 97 (201, 30I) 1
05 1,7 (201, 30I) 99
I7 0,7 (311) 97 (201, 31I) 2
I; 1,8 (312) 30 (201, 3II) 9
21 I.123 1.2 (321) 90 (221, 30I) IO
25 1,5 (221, 30I) 90 (32I) IO

Lowlying vibrational states in

Table 2.

230,

K1: Enerey, eV Structure, %
exp. calc.

27 0.782 0.9 (221) 97 (301, 321) 1

23 1.9 (301, 321) 98 (221) I

0 0,508 0.6 (301) 96 (201, 30I) 3

05 1.9 (201, 301) 87 (302) 9(30I)3(303)I
17 0.954 0.9 (311) 9% (201, 3I1) 2

I 1.8 (312) 97 (201, 312) 1

27 1.1 (321) 94 (221, 30I) 5

2, 1.6 (221, 301) 95 (32I) 5

e ity

Table 3.

232
Lowlying vibrational levels in 3 Th

K:: Energy, BeV Structure, %
exp. calc,

2{ 0.785 0.8 (221)94(201.221)4(301,321)1
25 2.0 (222)67(301,321)29(201,221)1
OI 0,713 0.8 (301)94(201,301)4(202,301)I
05 2.0 (221,321)95(303)2(302)2
I; I.0-I.I 1.0 (311)96(201,311)2(221,311)1
IE 1.9 (312)94(201,311) 4

2; I.0 (321)95(221,301)3(201,321)2
25 1.8 (221,301)95(321)3(322)1(323)1

Table 4.
Lowlying vibrational states in 2320

K:: f::fgy, c:i:. Structure, %
21 0.868 1.0 (221)98 (201,221)I

23 2.0 (222)98 (201,221)1

OI 0.564 0.8 (301)98 (201,301)1

05 2.0 (302)95 (201,30I)I

II 1.3 (311) 99

IE 1.8 (312) 99

ZI (1.019) 1.3 (321)98 (221,301) 2

25 I.9 {221,301)98 (321) 2




Tadble 5.

Lowlying vibrational states in 2340

4qr Energy, MeV

K, Structure, %
eXp. calc,
2} 0.927 0.9 (221)9% (30I,321)2 (202,221) 1
25 1.7 (222)85(223)8(301,321)4(201,222)2(201,223)1
Of 0.785 0.8 (301)95(20I,301)I(221,321)1
05 I.7 (302)91(202,301)3(201,302)2(201,301)2
If (1.436) I.2 (3I1)97 (201,313) 2
I; 1.6 (312) 98
2; 0.989 I.0 (321)96 (221,30I) 3
25 1.7 (322)62 (221,301)37 (321)1
Table 6.
Lowlying vibrational states in 2360

K™ Energy: MeV

" Structure, %

eXxpe. calc,

2} 0.959 0.9 (221)90 (301,321)5 (20I,221) 4
23 I.4 (222) 98
Of 0.685 0.7 (301)% (201,30I)I (221,32I)I
05 1.8 (302)82 (210,301)I3 (202,30I)I
If 0.970 0.8 (311) 98
I; 1.6 (312)9 (201,3I1) 3
2; 0.8 (321)94(201,321)3 (22I,301) 3
25 I.7 (322)64(221,301)24(323)4(201,321)3

Table Te

Lowlying vibrational states in 238U

Energy, MeV

Kg: Structure, %
eXpe calc,

2} 1.061 I.I (221)84(20I,221)9(222)4(201,222)1

25 I.4 (222)93 (221)6

Of 0.680 0.8 (301)97 (201,301) 2

05 1.7 (302)94 (201,30I) 2

II 0.931 0.9 (311)97 (201,31I) 2

IE 1.7 (312)87 (201,311)10(201,312) 2

2; I.I (321)97 (201,32I) 1

25 1.8 (322)97 (201,321) 2

Table 8.
Lowlying vibrational states in 238Pu
Ener, MeV
Kf: & Structure, %
exp. calc.
2{ 1.028 I.0 (221)93 (20I,221)4 (30I,321) 2
23 I.4 (222) 99
q 0.605 0.6 (301) 98
05 1.6 (302) 9%
If 0.963 I.0 (3II) 99
IE I.6 (312) 99
2; (I.310) I.3 (321)88 (221,301)9 (201,32I) 2
25 I.7 (221,301)61 (322)30 (321)8
7



Table 9.

3

Lowlying vibrational states in 240Pu

K:{ EneTeys HeV Structure, %
eXp. calc.

21 0.938 1.0 (221)74(301,321)8(201,221)8(222)7(201,222)2
2% 1.559 1.4 (222)88 (221)I10 (201,222) I
01 0.597 0.6 (301)% (201,30I) 2
05 1.5 (302)81 (201,30I) I8
17 1.0 (311)99 (201,311) I
15 1.7 (312) 98
27 0.959 0.9 (321)92(201,321 )4(221,301) 2
25 1.9 (221,301)69(322)I4(323)13(321)I1(201I,32I)1
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