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1. Extensions of the Dcyson mapping 

Tho ~son mapping of fermion pairs onto bosons is well known 
{1]. Its generalisation b~ Janssen at a1.[2] has been applied 
in an increasing number of publications to the foundation of 
tbs interacting boson model (IBM) [3] and interacting boson 
fermion model (IBrM) [4] b~ fermion pairs introduced in the 
shell model (SM) and in the fermion d~namical o~mmetry model 
(!'DSM) [5], called by us also interacting fermion model (I!'M), 
Recently tho pcssibilit~ ot obtaining analogues ot the D,rson 
mapping for boson pairs [ 6-B] , for boson and fermion pairs 
and for fermion triplets has been shown, and the general 
posslbilit~ for its extensions to ,any numbers of bosons and 
fermion& has been noticed [7,8]. Here we are going to show 
the existence of such extensions to ~ numbers of bosons 
and fermions and to demonstrat~ their importance for obtaining 
tho relation between particle and subparticlo nuclear modele 
(PSNM), and generally particle and subparticlo quantum mo
dels (PSQM). 

Suppose we consider composite particles with their an
nihilation Ai ,_ i and creation A(i+~- i operators, 1-z•• a 14:!••• s of s fermion subpartioles with their annihilation ai and 
creation at operator~, being ant~s~mmetrio with respect to 
any two 1nd1coo permutation. Tho index i represents all 
quantum numbers describing a single fermion subparticle 
state. Let them satisf~ tho commutation [ -,- J or antioom
mutation ( -,-} relational 

• 0 (1) 
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where (-,-) = [-,-] if s is even and (-,-) = { -,-} 

if s is odd, 

(2) 

Here means a permutation 

in~.ices onl;y i 

of the 
pjs 

(-) = + if 
pjS 

if the permutation is oven, (-) = - if the permutation 

is odd; L. represents the sum over all suc·h permutations. 

Formulae pjs (1) mean that A, A(+) satiaf;y '1 ideal11 boson 

commutation relatione if s is even, respectivel;y "ideal" 

relations if B is odd. We are fermion anticommutation 

going to call A, A(+) quasibosons 1 respectivel;y quasifer-

mions, having in mind that A.(t) is generall;y not 
is••·•il 

the hermitian conjugate operator of A 11 •••• 18 
Let us denote the product of s fermion annihilation 

operators as 

Then b;y using (1) and the fermion a1, ar anticommutation 

relations, we derive the extentions of the D~eon mapping 

as follows: 

+ + + 8i 8 i •••• ai 0 j 0 j ' ''' 8 j 12 r12 r 
= 
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) 
k:1,2, ... r; P~, 

(~) 

• (k) (k) 
11 • • • .ls-1 

A{+) - A A(+) A 
i 1(1) 1(1) 1(1) lt1);j ••• i l(k) l(k) l(k) l(k);j . 1 1 ••• s-1 s-t••• 1 1 k 1 ••• s-1 s-1''' 1 k 

eli ;j •••••• [i;j k+1 k+1 r r 

r = 1,2,, .. 1 e· 

are obtained by (2) with the following limitations on their 
permutations 

h i < < i i <hi 1 ..... hk • ~+1 < ..... r 

(If-) 
h1j < < ~;j • j '~j f I I I I ~+1. ..... 
It means that P~r induces only the ( k ) combinations of 
the 1 indiceez r elements k-th klass, P~r induces 
the same combinatio~s of the j indices together with the 
(r-k)l permutations of the last r-k indices ~~i •. ,h ~ 
We see that the number_ of sums in(3) of given r and k 
but different ~r, Pir ~pe i$ obtained by the number of 
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combinations Pir being { i) times the number of combina-

tions with permutations P~r being {~}Cr-k)l 1 i.e. it 

is ( ~)2 <r-k)! • 

Let us notice that if we had composite pa"rticles 

B B(+) instaad of A A(+) of 
kl. • • ks I kl. • • ks il • • .is' 11 • • .is 

bOSOn SUbpartiCleS bkl b; instead Of 811 ar I being 

B3mmetr1c with respect to indices permutations, we would 

obtain the same formulae (1-4) with the following additio

nal changeso (-,-) into [ -,-], and the signs (-,Ck/2] in

to (-)r-k, {-)P~. (-)Plr into + • This means that B, B(+) 

would be quasibosons for a~ s • Let us also notice that 

the general extensions to composite particles ot ef fermion 

and sb boson, or altogether s subparticles, are straight

forward. This will be evident from the particular case 

a = 2 in section 4. A particle of e = sf+Bb fermione and 

bosons will be a quasiboson if sf is even or quasifermion 

if sf is odd. 

The usual form of the Dyson mapping can be obtained from 

(3) by transforming all the A, A(+) products into normal 

form by the well-known Wick's theorem, which states that 

their usual product is the sum of all normal products (all 

A(+) to the left; all A to the right-hand side) with any 

contractions. This will be shown in the particular cases of 

fermion and boson pairs in section 4 and of fermion triplets 

in section 5. The advantage of the last transformation is 

that it is more convenient to transform the ph;ysical opera

tarat e.g. hamiltonian and transition operators, from sub-

particle into particle form. Ita drawback is thut a greater 

number of'different type terms appears. 
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2. Hermiticity problem 

Aa we have seen in section 1, the well-known advantage or 

the D~son mapping being finite is preserved in its extended 
analogues, although the number of terms increases with in
creasing number of subparticles. On the other hand ita ap
plications have been hindered b~ its known disadvantages, 
e.g. of transforming the hamiltonian matrix into a nonhermi
tian one. The mentioned drawback is due to the fact that the 

operator Ai:: .. 
11 

is not the hermitian conjugate to 
A1 1 • Man;y publications have been devoted to this prob-1""" a 
lam. Recent!~ ways to its solution have been presented (9 
12]. A possible development of [ 9] has been mentioned in [ s] 
and is left to be realised in a future paper. 

In principle this problem can bo solved if one finds a 
nonunitary transformation: 

(5) 

such that A+ becomes the hermitian conjugate to A • A very 
nice algebraic wa~ to do it avoiding the additional difficulty 
with the infinite transformation Z has been suggested in a 
particular case in [9]. The problem is if one can extend it 
to a more general case. 

3. OrthosYmplectic supers~mmetr~ 

The unitary supersymmetr~ ubf(n/m) 1n n boson and m fer
mion dimensions has been suggested an4 shown to describe spec
tra of adji.cent nuclei [13]. It has been judged to be 

the first evidence of existence of supersymmetr~ in nature, 
although not a fundamental·one. Ita generators are the upper 

rows of each square in figure 1. 
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k, l = 1,2, ... n 

i,j = 1,2, ... m 

'' obf( 2 /'> ) ::.::pu .. n """m goner3.tors 

in the l.h.s,; its ~u~er-

algebra operation scherue 

in the r.h.s.: Q 

co;r.mutation, 0 ""''"'""-""""' 
~~tico~mut~tion, 

A moi-e general orthos;ympletic supers;ymmetr;y with the up

per supergroup ospfb(2m/2n) is known from elementar;y particle 

ph;ysics .[14], It has been proposed to be used in nuclear 

ph;yeica recentl;y [15,?,A]. Its upper supergroup has been de

noted also Spobf(2n/2m) and generalised to a aemidirect pro

duct with a Heieenberg-We;yle t;ype supergroup [rl ,a], Its ge

nerators and their superalgebra operations are shown in fi

gure 1. Its subgroups Spb(2n,ll) denoted hero b;y Spb(2n) 

[16], respectively of(2m) [17], have been considered about 

20 J~ears ago. rrheir generators are shown in the left upper, 

respectivel;y right lower squares of the same figure. The em

bedding of their representations has alread;y been discussed 

[1s]. Thus its important chains are the fqllowing: 

[";, sal2nl~ Hblnln+11/21 i1 Ublnl 

r·t;,Ublnl IIMBM;> IBM,CM) 

' :"' ::>S~2nl• 0112ml-j
1 

6 

(6) 

FiR.Ure 2. Super~oup 

;3p0bf (2n/2m) lattice, 

includinE; the upper 

(supper)groups of the 

known osm.~. 



Let us notice that this suppers~mmetry gives a group

theoretical method to classify and unif~ the well-known dy

namic symmetry nuclear models (DSNM)t IBM, IFM and IBFM1 as 

shown schematicallJ by its lattice in figure 2. 

4. Interacting spinor model 

The SM single particle states can be denoted by their quantum 

numbers as followst J nlm1 sm8
tlllt > or f nlsjmjtflt> • The_y have 

been transformed for the purpose of IFM into I ~i"i t"t > 
1 

and the quantum numbers separated ~n a pseudoorbital part 

nkmk which will ba denoted shortly by k and pseudospin

isospin part im1tmt denoted by i [5]. We have suggested 

a further step in this separation by avoiding the usual 

nucleon nm fermion operators and introducing instead 

subnucleon n pseudoorbital boson bk and m pseudospin

isospin fermion ai operators. Thus the nucleon is described 

b~ bkai 1 i.e. by a subnucleon boson-fermion pair. This 

has given the name interacting spinor model (ISM) [7,8], 

This DSNM will be described bJ the same Sp0bf(2n/2m) 

orthosymplectic supergroup or by the semidirect product ~ of 

the Heisenberg-Weyle type and orthosympletic aupergroups dis

cussed in section 3. However the boson and fermion meaning 

will be quite different• the boson is related not to a pair 

of nucleons, but to a quaaiorbital subnucleon , the fermion 

is related not to a nucleon but to quasispin-iaospin aubnuc

leon. Correspondingl~ the numbers of boeons n and of fermions 

m will be lower. If we consider tho IPM uf(nm) subgroup 

and compare with it the ISM ubf(n/m) subsuporgroup, we will 

aee the advantage of ISM with respect to IFM by the lower 

number of dimensions and much lower of generators as followal 
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Model Nucleon (Super) Dimensions Generators 

operators group 

LFM "'ki U(nm) nm (nm)2 

ISM bkai U(n/m) n+m (n+m)2 

We are going to obtain the EDMto boson and fermion pairs. 

We will use the results of section 1 for antis~mmetric fermion 

pair quasibosons A1 j and s3mmetric boson pair quasibosons 

Bk11 and generalise them to include boson-fermion pair quasi-

ferm1ons as welll Cki = bk~ , cf~l , sat1sf~ing the fer-

mion anticommutation relationsa 

{ck1' 01j} = 0 

r0<+l 0 (+)1 0 I ik • jl J = (7) 

Extending (3) of section 1 for A1 j , Bkl to include 

Cki' and appl~ing the Wick's theorem to the result., we ob

tain the following EDMz 

- L. [A<+lc<•l c<•lA 1 
hm 1h jm + 1m hjJcmh 

b+b+ = B(+)+ l: B(+)B(+)B - I: c(+)c(+)A 
kl kl mnkmnlmn ghgkhlgh + 

+ L [B<+lc<•l + c<•lB(+rfc 
hm mk hl hk lm'J mh (8) 
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+ z: B(+)B + L: c<•>c bkbl 
m lcm ml h hk lh 

+ .L. A C + >c + L: cC+)B aibk 
h ih kh 

m im km 

b~a1 = £ B<•>c + .L: c<•>A 
m mk mi h hk hi 

It ia constructed so that A A(+) • 
commutation relations (1), B B(+) 

satisfy the boson 

satisfy the boson com
je 

mutation relations (1) with the modification (-)p --+ + , 

but c, c<+) satisfy the fermion anticoromutation relations 

(7). However operators of different A,A(+) or B,B(+) or 

c,c<+) ty~e commute. Nevertheless the relations of ·the 

Spobf(2n/2m) supergroup generators of figure 1 are reproduced. 

In the particular case of the known Dyson mapping for 

fermion pairs onl~ (8) is reduced to its first, second and 

fifth formulae with terms including A,A(+) onl~. For its 

extension to boson pairs only (B) is reduced to its first, 

third and sixth formulae with terms including B,B(+) only. 

For its extension to boson-fermion pairs only (B) is reduced 

to ita first, fourth, fifth and sixth formulae with terms in

cluding c,c<+) only, 

We are going to show that ISM is able to ~ield founda

tion of ·the kn'own DSNMr IBM, IFM, IBFM. Let us consider the 

physical operators, e.g. hamiltonian and transition operatorso 

If the~ are r-bod~ subparticle operators, they transform in-
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to r-body particle operators according to formula (3) and 

its transformation into normal form b~ the Wick's theorem 

(section 1), 

A simple and known exaffiple is the transformation of the 

nucleon two-body fermion hamiltonian of the SM into a nucleon 

pair two-bod;y quasiboson hamiltonian of the IBM. It can be 

obtained by the usual D~son mapping with the only A1 A(+) 

including t~rms of formulae (8). Thus it will give a known 

wa~ to derive the IBM from the SM. 

We illustrate the situation b;y a slightly more compli-

cated example of a aubnucleon two-body one-boson and one

fermion operator T of the ISM in a nucleon two-body boson 

and fermion operator of an IBFM. Let the original one of ISM 

be: 

T = L "ik ljarb~bl aj 
ik ' 

(9) 

lj 
The transformed one is obtained directly by substituting 

the bkai and arb~ formulae of (8) into (9)1 

T • 

The pseudofermiona C1 c<+) describe separate nucleons as in 

the SM:. 1rhe pseudoboaons B1 B(+) are analogues to the qua

Biorbital nucleon pairs of the IFM. The paeudoboaons A, A(+) 

are analogues to the quasispin-isospin nucleon pairs of the 

IFM. This means that we can obtain the foundation of an exten

sion of the J;F~(, giving a new type of IBFM. 
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5. Quark nuclear-plasma model 

There is a high number of quark models in the elementar~ par

ticle ph~sics, some of them applied in nuclear ph~sics as 

well [19], including the quark bag model. An attempt to create 

a quark shell model of the nucleus has also been performed. 

References about it, as well as its comparison with the classi

cal nucleon shell model, can be found in [20]. Their drawback 

from the view point of nucleus description is that the~ do 

not give a direct d~namical mechanism of the quark condensa

tion into triplets representing nucleons, except by some im

posed conditions,e.g. of allowed colour combinations. Q.uark 

confinement interactions alone do not give a clear solution 

of the same problem either. The~ can do it lndirectl~ if they 

contain some colour hidden ~·namics to make them saturating 

[21,22]. 
In this situation the idea to construct a quark triplet 

analogue to the nucleon pairing operator seems an imp~rtant 

one [23]. We have used this idea to suggest a colour expli

cit dynamics by a quark triplet interaction, analogue to the 

nucleon pairing interaction, which might solve dynamical!~ 

the problem of obtaining a quark condensate into nucleons in 

the nucleus [?.a]. As we have mentioned in section 4 and as 

we are going to show here, tho EDM will load general-

1~ up to a three body nucleon interaction. The necessit~ of 

such interactions in quark models starts to be recognised [24]. 
Now we formulate the idea of a nonrelativistic quark nuc

lear-plasma model (QNPM). Let us denote the quark single par

ticle states b~ their quantum numbers as follows I 

J nlm1am8 t"to > = I i > , where to the orbital nlm1 and epin

isospin smst~ we have added the colour quantum number o 

of the u and d quark~ having as usual three values: red 
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(r), green (g) and blue (b). We also represent I i > as 

I 1° 1° :> where 1° is onl;y the orbital and spin-isospin 

part of the quantum numbers nl~sm8t~ , and i 0 - their co

lour part c. 

We introduce the quark triplet operator Q b;y analogy 

with the nucleon pairing operator P: 

(ll) 

It ls chosen so that it has white colour, i.e. all the 

three quarks have different colour, and it corresponds to 

the nucleon representations of the U0(') colour group. 

Finall~ we write the quark up to three bod;y hamiltonian 

as follows: 

(12) 

We notice the possibility of including gluons in the formalism 

as well. 

We are going to obtain the EDM to fermi~n triplets. We 

appl;y directly the EDM of section 1 to the particular case 

of a = ~ 
A(+) 
il 1213 • 

(1) with 

antisymmetric quasifermion triplets A1 i-i , 
1-d 3 

satiBfJing the fermion anticommutation relations 

(- 1-) = [ -,-J , . Applying the Wick's theorem to 

(3), we obtain the following EDM1 

ai1 ai2 ai3 = Ai112i~ 

a+ a+ a+ -A(+) 
1!1. 12 13 - i112i3 
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1 ~[A(+) A(+) 
- 2 111213 111112 121313 

+ A(+) A(+) +A(+) A(+) J A 
121112 1;;1:rh 1;;1112 11hl3 111213 

- .l r::= A(+) A(+) A(+) A(+) A(+) 
a 111213 111112 121314 131516 111213 1415~ (13) 

141516 

+ + <;---- (+) (+l 
R11 a12 "j1 aj2 = T A111zlA1j1j2 

+.lLA(+) A(+) A A 
,, 1112 11111z 121314 1112,j1 131,,j2 

1314 

• + _.lL A(+) A 
•1 •j - 2 u 112 1211 j , 

1112 

App1Jing the EDM (13) to the three-bodJ quark hamilto

nian (12) of the QNPM, wo obtain ita transformation into the 

following generall~ three-bo~ hadron hamiltonian: 
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Choosing the quark interaction to include confinement, 

we can see that in the 

the first sum in (12) 

limit of high densit~ and temperature 

(and (14)) will prevail and describe 

free quarks. On this sum will be imposed the second and 

third sums including interactions )ielding corrections. 

Thus we obtain quo.rk chaotic behaviour or plasma. On the 

other hand in the limit of low denait~ and temperature the 

third sum of (14) (and (12)), with coefficients chosen so as 

to make the nucleon representations of the Uc(j) colour 

group energeticall;y favourable, will prevail and make the 

phase transition with quark condensation into nucleons pre

dominant. In this wa;y we obtain quark condensate into nuc

leons or nucleus. 

Now we can see that in the second nuclear limit we ob

tain a relation between the nuclear SM and the Q,NPM. The 

first term of the third sum of (14) gives the single nucleon 

shell model, and the second term of the same sumt the nucleon 

-nucleon two body interaction. This ;yields a method to obtain 

a foundation of the nucleon SM on a quark level of the QNPM, 

or an opposite method to get some additional information 

about quark interactions of the QNFrA from the well developed 

nucleon SM of the nucleus. 

6. 'Relation of particle to subparticle gua.ntnm modele 

In conclusion let us notice that the method suggested in 

this work, based on the extensions of the D;yson ma~ping deve

loped in sections l and ~ and illustrated b~ the relation be

tween PSNM for the ISM in section 4 and for the QNPM in sec

tion 5, rna~ have rather wider applications to the relations 

between PSQM in rm::J mrm::~- bo<IJ' problem. This is due to the 

generality of the EDM as shown in sections 1 and 4,and to 
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their applicabili t;y to ruzy ph;ysical operator as dEnnonstra

ted in sections 4 and 5. 

In fact, any quantum model for particles consisting of 

sf fermion and sb boson subpart.icles can be derived b;y 

the EDM from the subparticle model. It will become a quasi

boson model if sf is even or a quasifermion model if sf 

is odd. This Situation is well known if the particle intrin

sic degrees of freedom are considered to be frozen·. The 

EDM give a method to take them into account. When we freeze 

them, we can see, e.g. from the first term of (10) o~ from 

the first term in the third sum of (14) that we return to 

free particles. 

The point left for a future publication, which has been 

recently developed rather much in literature, as noticed in 

section 2, is the transformation of the p~sical operator 

matrices, so that hermitian are transformed again into 

hermitian. 
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