


1, Extensions of the Dyson mepping

The Dyson mapping of fermion pairs onto bosone 18 well known
[EJ. Its generalisetion by Janssen et al.[ZJ has been applied
in an increasing number of publications to the foundation of
the interacting boson modal (IBM) [3] and interacting boaon
formion model (IBFM) [4] by fermion pairs introduced in the
shell model (SM) and in the fermion dynamical symmetry model
(PDSM) ['5], called by us also interacting fermion model (IFM),
Recently the Dpossibility of obtaining analogues of the Dyson
mapping for boson pairs [6181. for boson and fermion pairse
and for fermion triplets has been shown, and the gensral
poBaibility for its extenaions to any numbera of bosons and
fermions has been noticed [7,8]. Here we are going to show
the exiastence of such extensions to any numbers of bosons
and fermions and to demonatratq their impoitanca for obtaining
the relation between particle and subparticle nmuclear models
(PSNM), and generally particls and subparticle quantum Ro-
dels (PSQM), .

Buppose we conslder composite particles with their an-
rihilation Ai
of 8 fermion pubparticles with their annihilation 8y and

12..15 and oreation A£+) "'is operaters,
creation aI Operatorq. being antysymmetric with raspact to
any two indices permutation. The index i repregents all
quantum numbers describing a single fermion subparticle
state, Let them satisfy the commtation [-4=] or anticom-
mitetion {;-,- } roletions
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where (~-,=) = [-,~] 1f s is even and (-,-) = {-,-}
if s iE odd.,
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Hare 1”;15I means & permubtatlon ) jd eesd J ofjthe
J1354.0d, indices only; < "5 (- -4 i
if the permutotion is oven, (- ) = - if_the permutation
is odd; E::: represents the sum over all such permutatlions.
Formulae Pds (1) mesn that A, A(+) gatlafy "idesl" boson
commutation relations if s 1is aeven, respectively "ideal"
fermion enticommutation relationa If s 1is odd. We are
going to eall A, A(+) quasibosons, respeétively quasifer-
mlons, having in mind that AE;?"'il is generally not

the hermition conjugate operator of Ail-..-i .

Let ua denote the product of s fermion annihilation

operstors asg , - e

a sensl = A .
11 i, is iiie...-is

Then by using (1) and the fermion 8y aI snticommutatlion
relations, we derive the extentions of the Dyson mapping

as follows:
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Here [k/?] is the integer part of X/2 and Pir * Pﬂr
ere obtained by (2) with the following limitations on their

permutations

Bt < <ty nle ol et
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It means that Pir induces only the [i J combinations of
the i indices: r elements k-th klass, BJ” induces
the same comblnations of the J indices together with the

; _ 3. 3
(r-k)! permutations of the last v-k indices hk+1 essh 7
Wo see that the number of sume in{3) of given r and k

but different Pi', PJT type is obbained by the number of



combinations E%r belng {’i) times the number of combilna-
tioneg with permutations Egr" being (E)(r-k)l y l.0. 1t
is (i)a(r-k)! .

Let us notice that if we had composite particles
B uaxy B£+?..ks insteed of Ay . .3 s Ai;?..is of
boson subparticles bk' b; instead of a4 a; , being
gymmetric with respect to lndlces permutations, we would
obtain the same formulae {(1-4) with the following ndditio;
nal changess (~,-) 4into [-,-], and the signs (—)fk/g] in-
$o (<)%, ()FE, (o) 3 into + , This means that B, ¥
would be quasibosons for any = ., Let us also notlice that
the general exteﬁsions to composite perticles of sf fermion
and sb boaon, or altogether 8 subparticles, are straight-
forward., This will be evident from the particular case
B =2 in section 4. A perticle of 8 = 5f+ab fermnions and
bosong will be a quasiboson 1f af is even or gquasifermion
if af is odd.,

The usual form of the Dyson mepping can bs obtalned from
{(3) by trensforming all the A, A(+) producte into normal
form by the well-known Wick's theorem, which states that
thelr usual product is the sum of all normal products (all
A$*) 4o the lefts all A to the right-hand side) with any
contractions. This will be shown in the particular cases of
fermion and boson palrs in section 4 and of fermlon triplets
in section 5., The advantage of the last transformation 1s
that it is more convenlent to trensform the physleal opere-
tors, e.g. hamiltonien and transition operators, from.sub—
particle into particle form. Ite drawback la that a greater

‘mumber of different type terma sppears.



2. Hermiticitx problem

AB weo have sean ln section 1, the well-known advantage of
the Dyson mapping being finite 1is preserved in its extended
analogues, although the number of terms increases with in-
creasing number of subparticles. On the other hand its ap-
plications have been hindered by its known disadvantages,
@,g. of transforming the hamiltonian matrix into a nonhermi-
tian one. The mentioned drawback is due to the fact that tha
oparator AE;?..i 1ls not the hermltian condugafe to
Ail"'is + Many publications have been devoted to this prob-
lem. Racently ways to its sclution have been presented f9 -
12]. A posalble development of [91 hos been mentioned in [S]
" and 1s left %o be realised in a future paper.

In principle this problem can be sclved if one finds a

nonunitary transformation:

A —zaz”l 2% PSRN P T O (53

such that A* becomes the hermitian conjugate to A . A very
nice algebreic way to do it aveidinz the additional difficulty
with the infinite transformetion 2 has been suggested 1n a
particular ¢case in P91' The problem 1s if one can extend it

to¢ & more general case.

3. Orthoaymplectic supersymmetry
The unitary supersymmetry Ubf(n/m) in n boson and m fer-
mion dimensions has been suggested and shown to describe spec-—-

tra of adjacent nuclei flﬁ]. It has been judged to be

the firat evidence of existence of superaymmetry in nature,
elthough not a fundamental ‘one, Ita generators are the upper

rows of each square in figure 1.



Firure 1, Supergroun
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A more general orthosympletic supersymmetry with the up-~
per sgpergroup OSpfb(Em/2n) is known from eleméntary particle
physics fl&]. It has been proposed to be used in nuclear
physica recently [15,7,8]. Its upper supergroup has been de-
noted also Spobf(En/Em) and generalised to a semidirect pro-
duct with a Heisenberg-Weyle type supergroup [?,8]. Its ge-
nerators and thelr superalgebra operatlons are éhown in fi-
gure 1. Its subgroups Spb(En,R) denoted here by Spb(2n)
[16], respectively Of(Em) [1?], have been considered about
20 years ago. Thelr generators are ghown in the left upper,
respectively rlght lower squares of the same figure. The em-
bedding of thelr reprasentetions has already been dlscussed

[18]. Thus 1ts important chaina are the following:
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Let us notice that this suppersymmetry gives a group~
theoretical method to classify and unify the well-known dy-
namic symmetry nuclear models (DSNM): IBM, IFM and IBEM, as
shown schematically by its lattice in figure 2.

4, Interacting spinor model

The SM single particle states can be denoted by their quantum
numbers as follows: ]nlmlsmstmt> or fnlsjmstmt> » They have
been transformed for the purpose of IFY into fnkmkimitmt >,

end the ouantum numbers separated in a pseudoorbital part
nlcmk which will be denoted shortly by %k and peeudospin-
1soapin part imitmt dencted by 1 [5}. We have suggested
a further step in this separation by avoiding the usual
nucleon nm fFfermion By opsrators end introducing instead
subnucleon n pssudoorbital boson bk and m pseudospin-
isospin formion 8y operators. Thus the nucleon is described
by bkai y 1.2, by a subnucleon hoson~fermion pair. This
has given the name interacting spilnor model (ISM) [7,8].
This DSNM will be described by the same SpObf(Qn/2m)
orthogymplectlc supergroup or by the semidirect product[}ﬂ of
the Helsenberg-Weyle type and orthosympletic supergroups dis-
cussed ln gection 3. However the boson and fermion meaning
will be quite differenﬁ: the boson is rolated not to & palr
of nucleons, but %o & quasiorbital subnucleon , the fermion
ia related not to a nucleon but to quasispin-isospin subnuc-
leon. Correspondingly the numbers of boeons n and of fermlions
m will be lowsr. If we consider the IFM Uf(nm) subgroup
and compare with it the ISM Ubf(n/n) subaupergroup, we will
gee the advantage of IBM wlth respect to IFM by the lower

number of dimensions and much lower of generators as followst

w



Model  Nucleon (Super) Dimensions  Generators
operators - group

FM Byq U(nm) nm (nm)*
IsM b8y U{n/m) n+m (rn-m)2

We are going to obbtain the EDMto boson and fermion peirs.
We will use the results of section 1 for antisymmetric fermlon
pair quaslbozons Aij end symmetric boson palr quasibosons

Bkl’ and generalise them to include boson-fermion pair quesi-

fermions as well: Cp, = byay , cj(.;c) , Batlsfying the fer-

mion enticommitation relatlonat

{cki' 013} =0

fost, o§3) )
i
{Cuys °§I’ =0 .-j"J;l

Extending {3) of section 1 for Ai:] v By; to include
cki’ and applying the Wick's thoorem to the result, we ob~
tain the followlng EDM:

aiaj = Aij bkbl = Bkl bkai = ck.:l.
.+ _ 4l (43, (
ata) = A{%)- §A Sl + E‘ °§$’°§1’ B_ -

- E. [Agg)c:(j;) * ci;)Ahd]cmh

vl = (). E Bl(c;'l)Br(&)Bm - s}% cé;()cg;hgh +

. LB&E)CQI) + Gﬁ;)Bg_;)]Gm

hm (8)
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It is constructed so that A4, A(+) setlsfy the boson
commitation relations (1), B , B(+) satisfy the boson com-
mutation relations (1)} with the modification (-)Pjg —_—
but C, C(+) satisfy the fermion anticommutation relations
(7). However operators of different A4,4(*) or B,8(+*) op
C.C(+) tﬁ%e commute, Nevertheless the relations of the
SpObf(En/am) supergroup generators of figure 1 are reproduced,

In the particular case of the known Dyeon mapping for
formion pairs only (8) is reduced %o its first, second and
fifth formulaes wlth terma including A,A(+) only. For its
extension to boson pairs only (B) is reduced to 1te first,
third and sixth formulae with terme including B,B(*) only,
Por ite extension to boson-fermion paira only (8) is reduced
to 1ts first, fourth, fifth and sixth formulae with terms in-
cluding G,G(+) only,

We are golng to show that ISM is able to yleld founda=-
tion of the known DSNM: IBM, IFM, IBFM, Let us consider the
physical eperators, a.g.'hamiltonian and trensition cperators.

If they are r-body subparticle cperators, they trenaform in-



to r-body perticle operators according tio formala (3) and
its trensformation into normal form by the Wick's theorenm
(section 1),

A simple and known sxample 1s the transformation of the
nuclesn two-body fermion hamlltonian of the SM lnto a nucleon
pair two-body quasiboson hamiltonien of the IBM, It can ba
obtained by the usual Dyson mapping with the only ‘A, A(+),
including terms of formulee (8)., Thus 1t will give a known
way to derive the IBM from the 3M.

We illustrate the situation by a slightly more compli-
cated example of a subnucleon two-body one-boson and one-
fermion operator T of the ISM in a nucleon two-body boson
and fermion operator of an IBFM., Let the original one of ISM
be:

_ T +o
T = E 1,137 0Rb12y (9)

1] :
The trensformed one is obteined directly by substituting

the bya; and a{bi formulas of (8) into (9):

~ .
T = % 41,13 {C§§)°13 + %.[c&;)cﬁ;)f “iﬁ)ﬂr&ﬂ CmnCy 3

13
- {‘E% Agg)cfﬁ;)aghcld . ‘E‘ cgg)sg;)smclj} - (10)

The paseudofermions C, C(+) describe separate nucleons as in
the SM, The pseudcbosons B, B(+) are aneloguea to the qua-
siorbltal nucleon pairs of the IFM, The pseudobegons A, als)
are unalogues to the quasispin-iscspin nucleon pailrs of the
TFM. This meens that we cen obtain the foundation of an exten-

sion of the IFM, glving a new type of IBFU.
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5. Quark nuclear-plasma model

There 1a a high number of quark models in the elementary par-~
ticle physics, soms of them applied in muclear physicse as

well [19], including the quark beg modsl. An attempt to create
a quark shell model of the nucleus hes alse been performed,
References about 1t, as well as its comparison with the classi-~
cal nucleon shell model, can bhe found in [20]. Their drawback
from the view point of nucleus description 1s that they do

not give a direct dynamical mechanism of the querk condensa-
tion into tripleta representing nueleons, except by mome im-
posed conditions,e.g. of sllowed colour combinations. Quark
confinement interactions alone do not give a clear solution
of the same problem elther. They ean do 1t indirectly if they
contailn some colour hidden éynamics to make them saturating
[21,22].

In this sitwation the idea to construct a quark triplet
analogue to the nucleon pairing operator seems an important
one [23]. We have used this ldes %o suggest a colour expli-
clt dynamics by a quark triplet interaction, analogue to the
nucleon pairing interasetion, which might solve dynamically
the problem of obtalning a quark condensate into nucleons in
the nueleus [?,8]. A8 we have mentioned in section 4 and as
we are goilng to show here, the EDM will lead general-
ly up to a three body nucleon interactiocn, The necessity of
such interactions in quark models starts tobe recognised [24}.

Now we formulate the idea of & nonreletivistic quark nuc-
lear-plasma model (QNPM). Let us denote the quark single par-
ticle states by thelr quantum numbers aa follows:
jnlmsm tme» =]1i>, where to the orbital nlm, and epin-
isospin smstmt we have added the colour quantum number o

of the u and 4d querks, having as usual three values: red

11



(r), green (g) and blue (b). We also represent | i> as
f1° 1> where i° is only the orbltal end spin-iscspin
part of the quantum numbers nlmlsmstmt , &nd i® - their co-
lour part c.

We introduce the quark triplet operater Q by analogy
with the nucleon palring operator P:

. By Ay By . (i)
£l W P ¥

It ie chosen so that 1t has white colour, i.e. all the

three quarks have different colour, snd it corresponds to

the nucleon representations of the U°(3) colour group.
Finally we wrilte the quark up %o three body hamiltonian

a8 followa:

A + + _+
i) Fu el » gi;i 71112'-'5132 ®1,%,%0, %
(12)

0
1112 3

398533

40,0 Q0,000
AREARRE R LRI

We notice the possibility of including gluons in the formalism
as woll.

We are going to obtain the EDM tb fermion triplets. We
apply directly the EDM of section 1 to the particular case
of 8 = 3 anbtisymmetric guasifermicn triplets Ailizi ,I
A§+321 , satisfying the fermlion snticommtation relations
(1) with (=,=) = {=,-} .. Applying the Wick's theorem to
(3), we obtuin the following EDH1

&y 8, a, = A

11 12 13 111215
a* a*t at al#)

%1 12 13 111215

12
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Applying the EDM (13) to the three-body quark hamilto-
nian (12) of the QNPM, we obtain its transformation into the
following generally three-body hadren hamiltonian:

- 1 (+)
"); ?i'd e 1,:1 A11112%211-'j

> ale) g
111?71112'3139{ 1 Y10 1343
113,

DI }

L1 M1g1,M 21514 11 L M1 314dn

1.1
374 (1a)
+ § {'(+)
iyl V47131 3-313233 151211 3§5235 U 140515 35300,
31.'12:13
_1 E RS NS,
2L Milnthis,
S S R € A(+)
A1t iy A0 01,04 100 3 313233
) REOIEN Y A( +)
L Vs ey MM, 51516 141,150,151, 3,3
1,151g ‘
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Choosing the guark interaction to include confinement,
wo can see that in the limit of high density and temperature
the firat sum in (12} (end (14)) will prevail and describe
free guarks., On this sum will be lmposed the second and
third sums including interactions yielding corrections,

Thus we obtain quark chaotic behsviour or plasma. On the
other hand in the limit of low density and temperature the
third sum of (14) {(and (12)), with coefficlents chosen so as
to meke the nucleon representatlons of the Uc(j) colour
group energetically favourable, will prevall and make the
phase transitlon with quark condensation into nucleons pre-
dominant. In this way we obtain quark condensate into nuc-
leons or nucleus.

Now we can see that in the second nuclear limit we ob-
tain a relation between the nuclear 5 and the QNEM. The
firet term of the third sum of (14) gives the single nucleon
shell model, and the second term of the same sum: the nucleon
~micleon two body interaction. This ylelds a method to obtain
a foundation of the nucleon SM on a quark level of the QNFM,
or an opposite method to get some additional information
about quark interactions of the QNP from the well developed

nucleon SM of the nucleus.

6. Relation of particle to subparticle quantim models

In conclusion let us notice that the method suggested in

this work, based on the extensions of the Dyson mapping deve-
loped in sections 1 and 4, and illustrated by tLe relation be-
tween PSNM for the ISW in section 4 and for the QNPH in ssc-
tion 5, mey have rather wider applications to the relatlons
between TSQM in any many-body problem. Thie ie due to the
generality of the IDM as shown in gections 1 end 4 aend %o

14



their applicability to any physicel operator as demonstrea-
ted in sections 4 and 5. )
In fact, any quantum model for particles conaisting of

£

8= fermion and sb boson subparticles can be derived by -

the EDM from the subparticle model, It will become a quasi-
boson model if sf ie even or a quasifermion model 1f sf
18 odd. This situation is well known if the particle intrin-
s8le degrees of freedom are considersd to be frozen, The

EDM glve a method to take them lnto sccount, When we freeze
them, we can see, o.g. from the first term of (10) or from
the first term in the third sum of (14) that we return to
free particles. '

The point left for a future publicatlon, which has been
recently developed rather much in literature, as noticed in
section 2, is the transformation of the physical operator
matrices, so that hermitian are transformed again into

hermitian.
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