


1 _ Introduction

An almost universal property of the deterministic nonli-
near dynamics systems is its stochastlc behav1or pertinent to its
_nonintegrability. In fact, the chaotic solutions have been well
established for an enormous number of evolution equations appearing
in all branches of science (e.g. (1=0)) " Tne Hamiltonian = dyna-
mics takes a prominent role among dynamical systems due to the-
importance of complete integrability of haﬁiltonian systems. The
N-dimensional Hamiltonian systeh is completely integrable if there
exists N integrals of motion that are in involution with respect to
some Poissoﬁ bracket struéture the classical trajectories winding
on N-dimensional torus in the phase space. According to the class-
ical - Kolmogorov-Arnold-Moser  (KAM) theofep (e
structure. is stable under a small non- integrable ‘perturbation
admixing”. o

"the phase ' space

Discovery of the c1a551ca1 chaotlc motlon stated the prob—,*
lem of studying. quantum manlfestatlons of the classical stochastl—
‘c1ty. For a large class of "’ Hamiltonians: two-dimensional model sys-
tems, hydrogen atom in a strong external fielq,‘etc, the mean dist-
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ance between the neighboring spectral values becones larger and

the nearest—nelghbor—level spacing distribution. evolves from the .

Poisson to the Wigner distributions, provided that the classica;

dynamics is passing from the regular to chaotic regime, the total
5) other quantum characteristics,
that ‘have not been systematlcally elaborated but merely used for

détectlng classical stochastlclty, are : statistical properties of

-energy being smoothly varying

eigenfunctions - and their nodes, the sensitivity of the spectrum
_under variation of the'nonlinearity strength, the entropy of the
' level’s grouplng.

) In this paper the quantum spectrum of a two-parameter Ham-
iltonian flows is studled In the vicinity of classical energy cri-
tical region where the chaos becomes important a reach ‘sets
of energy levels qua51—cross1ngs were observed for the guantum
Hamlltonlan. A characterlstlc property of these qua51—crosslngs is
that they lay on approximately parabollc -curves - in
space. We 1nvest1gated the break-up of the spectrum shell structure
(with respect to 2dim oscillator quantum nurbers) when the strength
of the non-integrable perturbation is increasing. In this transi-
tion reglon the violation of qua51—per10d1c entropy dependence is
observed.

2, Let us examine the behav1or of quantum spectrum around the
class1ca1 energy correspondlng to transition from regularity to
chaos for a two-dimensional two-parameter Hamlltonlan

H—1/2(p +p )+V(x,y;:c,b) . (1)
where )
_ 1 2, 2 2 1l .3 2, 2 2
Vix,yic,b)= ——(x"+y") +b(xy~ —3Y ) e (X+yT) 5 (2)
This Hamlltonlan is currently used 1n hydrodynamical models
(6-8)

with potentials correspondlng to quadruple vibrations of the
spherical 11qu1d drop surface. This class of: Hamiltonian has the
following pract1ca1 advantages :1i) the structure of the classical
’ phase space is well established (78)

ii) the potentlal surface is smoothly varying between one-and many

parameter
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"Fig 1. A typical Poincare sections demonstrating the change of .

motion for potential'(z) the‘paraneter W being in the:interyal,

-(4,16).
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Fig 2. Dependence of the_phase'space'stochastic part. (in %) on the
energy. The arrows is pointing on the critical energies Ecr'Ecrz'



minima potentlals when the parameters are contlnuously varylng,
111) the classical motion is finite H s

"iv) this class contains both lntegrable and nonlntegrable cases;

v) owing to the C V—symmetrles the Hamiltonian dlagonallzatlon gets
,much simplified.. . /'%

' The topology of potentials V(x,y:a,b) is governed by the

parameter W—b‘/c. For b,c in the region 0 < W < 16 the potential
surface reaches an unique minimum at the origin. This corresponds

to spherically symmetric equilibrium

3 state. In the region 0< W < 4

"'the Gaussian curvature of the potential surface is positive , the

motion being presumably regular and the possible transition to
chaos ‘have to be expected only at and beyond the border of this
region, where the local instabilities are going to appear together
with the negative Gaussian curvature in 4 < W < 16 .The critical
energy for.transition to chaos in this region agrees with numerical

estimates -extracted from Poincare sections (see.Fig.1)

In Fig.2 the rate of chaotic phase space volume is traced

out on-the Poincare sections for the Hamiltonian (2) for W=13. At
low energies the classical system behaves according to the KAM the-
orem The phase torus rigidity is dumping the rate of chaotic motion
up to crltlcal energy predicted by the negatlve ‘curvature criterion
<) - E_ leads

the regularity is re-

for transition to chaos. Energy ralslng -up.to value E
to complete stochasticity, but at E _ 10*E
stored: aga1n .Presumably this sort of regularlty— chaos- regularity
transition is taklng_place‘for all systems possessing a locally ne-
gative Gaussian“curvature@)
timated to a great extent by the upper limit of the negative curva-
ture region.vIn this paper we concentrate on the character of ener-
gy spectrun close to reqularity- chaos transition.

When W € (O, ,16) the potential surfaceé being one well like,
the diagonalization of ‘Hamiltonian (1) can be easily performed in
the following orthonormalized bases:

, the second critical energy being es-

ooy

|NLj>=1/VZ(|N,I> +j|N,~L>), N=0,2,..; L=N,N-2,...1 or O (3)
3 o '
. . L,0 -
<H/L/J7IN L 3> = 2 78 ,8,,8, . L (4)
Here the functions |N,I> span an orthonormal basis for two-dimensi-

nal symmetric oscillator:

2
Cy r
-iLp —_——
_ ;N e 1 /20(N+L) /21t L 2 -
<c,p|N,I>= i v U Tanzznn T °© M.

(10)

,Lu,r }
: : (5)
M being the confluent hypergeometric function

In this basis the matrix elements <N’L’j’|H|N,L,j> being
invariant under the symmetry group Csv
of three blocks 1labelled by . Cav_
index. Following the standard notations we  will denote the
corresponding series: of levels by Al(Mod(L,3)=0,j=1,L=0 included),
Az(Hod(L,3)=o,j=-1,L=0 excluded), E(Mod(L,3)=0,j=t1).

The dependence of E-series on parameter of ‘nonlinearity’
is depicted on Fig 3 for W=13. In. the case b=0,c=0 the well known
harmonic. oscillator spectrum is observed. The relatively sma}l
perturbation b#0 is removing the L-degeneracy forming a -spectrum

were splitted into direct sum
irreducible representations

shell structure.Moreover N,L remains suitable quantum numbers even

though the wave functions cease to be eigenfunctions of ﬁ and ﬁ,
i.e. the classifications of states remains valid even for large
enough nonlinearity b.The numerical results (Fig 3a and Fig.4)
obtained for W=13 shows that the classification of states remains
reasonable in the  region where multiple quasicrossings of
neighboring levels are taking placel. The solid curves laying
crosswise in Fig 3a,b shows the critical energy bound corresponding
to the classical (negative curvature) criterion for transition to

chaos. The break-up of the shells becomes important beyond this

1 Here we call quasi-crossings those points where two

energy curves get much closer than the mean level distance.
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Fig'a. Dependence of energy spectra for (1) on parameter b:
a) quasi classical spectrum calculated according to formula (6);
b) - the numerical exact spectrum. The squares mark quasi’

crossings. . e Lem S W ®
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Fig 4. Dependence of the quantities S,L,<I>,N,<N> on the

’state number k for We(4,16).Legend =*2S,L;0 *<L>,<N>; correspond to

the shell’s crossings; the step-wise line is deplctlng N...
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W<4 tﬁe'nonlinear perturbation parameter b
for which the quasi-crossings were negligible is much larger than
that allowed for W,._ 13. This fact can be interpreted as a quantum
version of classical KAM theorem ‘'!’ 1In Fig. 3a is depicted the

levels structure computed by the quasiclassical formula of fourth
(12)
order

bound. Note that for

E(N,L)=N+1+b>/12 [7L2—5(N+1)2+1 +c/2| 3 (N+1) 21201 | (6)
The ccincidence with the numerical results (Fig 3a) is really
remarkable this way strongly arguing that in fourth order approxi-
mation to the initial Hamiltonian all quasicrossings are exact
crossings at least below the critical energy region. One can trace

the destruction of

shell structure looking on the entropy of the
(13)

expounding the exact solution in the basis |N,L,3> and
1ntroduc1ng the entropy of individual eigenvectors :

' (k) 2 (k)2
S[E,]= ;Z ey T 1%In e 5t : (7)
ILIJ N

the quantities Coo
(3)-(5):

states

being determined by expansion over the basis

<r,p|E> = z c .<r,w|NLj>. (8)

The nature of entropy change at energies below the critical
transition region to chaos (see Fig 4) is correlated with the
transitions from shell to shell. Within individual shell the en-
tropy is monotonically decreasing with increasing of L. As the en-
ergy levels get closer to quasicrossing point one observes two fe-
nomena: i) the quasi-periodic dependence of entropy is going to be
loosed step-by-step, indicating the shell structure destruction;

ii) for energies larger than the critical one, one sees a monoto-

‘nic growth of the (averaged) entropy ascending to plateau 2. The

smearing of shells can be illustrated by averaging the operators
ﬁ,i between unperturbed states (Fig 4) or even better by

differences AN=N-<§>,AL-<£> depicted in Fig 5. It is clear that at

2 This plateau corresponds to purely random sequence.



Fig 5. The differences AN=N-<N>,AL=L-<L> as functions on
the state number for W=13. Legend- o » values of AN,AL;lines =» the
averaged AN and AL.
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Fig 6. Dependence of AE for k=71 and 72 on the paraneter b,
for c=0,00045.
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Fig 7. The variation of energy for approaching levels

k=71,72 with respect to nonlinearity parameter b, ¢ being fixed to
0,00045.

] I ] 1 L

N 0 0 om i g

levels
parameters b,c. Here the following legend j.s used: . 12(k=71,72);
22(k=40,41); 32(k=60,61); 4=(k=34,35);: 52(k=39,40), 62(47,48) all
computations perforrmed for E<Ecr,for 1,2,3, whilst 4,5,6 are

Fig 8. Dependence of  some quasicrossings on

computed at enerqgy E>Ecr' The curves taged by W denote borders
between different topologies of the potential (2). By crosses ‘it
were marked those values of (b,c) where the wave functions have

been computed for purposes of Fig 9.



energies where AN>1 and - AL>2 the classifications of levels in
,'terms of quantum numbers L,N becone meahingless. This fact is
closely related to the level quasicrossings, responsible also for
failing of quasiclassical approximation (Eq.(6)).

o As an example for quasicrossing we show in Figs.6,7 the
b-dependence of the energy levels E=Enand E= E72 approaching one
another up to 10 . As the nonlinearity b gets larger, the dis-
tance between neighboring energy curves increases which is nothing
_else but repulsing of levels . -+

It was observed that the points of minimal distance between

nearby curves (1,2,3) lay approximately on parabolae in the plane
(b,c) (See Fig. 8). This follows easily by the quasiclassical spec-
- trum (Eq.(6)) the appropriate quantum numbers being replaced in the
‘relation Ei(b,c)=Ej(b,c). The situation becomes more subtle in the
stochastic region where N,L lose their proper sense of quantum num-
bers. Besides that the characteristic "thickness" AE of the lines
(4,5,6) is of order 10”2 which freely speaking can be interpreted
as a presence of avoided crossings thereby.

When one passes across some of these lines of minimal’

.distance the wave functions corresponding to the quasicrossing
levels are exchanging. This fact is illustrated on the example of
levels k=71 and k=72 close to b*=0,075255, c*=0,00045.'The nodulus
squared of the coefficients C:% taken on each side of that 1line
being drawn in Fig 9, demonstrate this exchange.’

Note also that the analogous calculations made for A, ,A -

’
levels (See Fig 10,11) demonstrate again reach avoided cro;siig

pictures close to the classical critical energy. '

3 The hypothesis for multiply quasicrossings scenario to chaos
transition seems plausible also for CAv—symmetric Hamiltonians. The
energy spectrum analysis of reduced Yang-Mills Hamiltonian as

- provides a simple model of this type:

1
H=—3—(p}+p) +V (X, ¥ b, C) (9)

V(x,Yib,€)=F (3+y) +bxyPe (v 2.
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Fig 9. Dependence of . coefficients ICMEWZ on the number of

the bqsic state i for energy states k=71,72 . In the left part

* . . .
b<b , while the right diagram is obtained for b>b”

Fig 10.The same as. in-Fig 3a, but for A, spectrum.
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Fig 11.The same as Fig 3a for A2 spectrum.

M B B W0

E

18 20 2 M % 8 B RN

16

Fig 12. Dependence of exact spectra for the Hamiltonian (9)
as function of parameter b. The sguares mark gquasi-crossings.
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The classical energyAcorresponding to transition to chaos results
from the negative Gaussian curvature criterion thereby equals to

g = 22ic_ . :  (10)

4 (b-4c) . -f E

For b and c in. the interval 4<b/c<w and E> E_the Gaussian
curvature‘vanishes and becomes negative one leading: this way to
local instabilities and chaotic motion. Fig.12 shows the  dependence
of Al-typé leQels for b/c=999. Obviously here as well as in the
C,,—case we have discussed in Sec.2 the quasicrossings "are still
teening. Moreover, they also lay along curves. In particular for
the levels k=20,21 the curve of minimal distanées can be quite well
interpolated by the line c=.2655b-.00?958 for b €(.003-.004).
4. In order to establish whether the observed quasi-crossings
are awoided cnoossings on exact chassing one should apply to the
analytié arguments. It is*knowﬂfthat “4,159i¢ there is an acciden-
tal degeneracy at some point of the parameter space (éalled“diabol-

' ic point) then a circuit walk arcund should change the sign of the

wave function. This rule has been succéssfully used for identifica-
tion of diabolic points in the vibration:spectrum of a triangular
membrane (triangular billiard)“sn Unfortunately numerical check
of this test disproved, as far as possible, the ability for isc-
lating any suspicious (diabélic or avoided crossing) points(lﬁf In
other words, within the numerical accuracy of 10~ % for individual
quasicrossings,there are strong indications for singular curve (di-
abolic or avoided- crossings curves)configuration in the parameter
space. This conclusion is supported by simple analytic argunents.
In fact, it is clear that in small neighborhood of any crossing
point (for example A=0) every energy difference AE=E2-Elvbmay be
rewritten in the following form

AE(R )=V @. )% (E.2)% , @=(,)), (11)

where ) - , ] L

§(0)52vlni2(A) B(0)=v, [H (A)-H,(A)]- a2
Therefore the exact crossing necessarily implies parallel or

s
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antiparallel vectors & and T and hence defines locally direction A
orthogonal to 3 (or T). Besides that one ‘sees thé wave funcﬁions
exchange by passing across this direction. The nécessary condition
21 T has been verified numerically by over than 0.3% for levels
(1,2,3 on Fig.8) in regular domain, whilst for “1rregu1ar“ levels
(say 3,4,5 on Fig.8) the check glves us rather bad percentage.These
observations appeal to implication of fundamental topological ‘ar-
guments in analysis of the wave functlons continued to the complex
" parametexr space.(lz) : iJ

5. Resuming all we must emphasize some common trends follow1ng

from our investigations. Namely, it is very plausible hypothesis
that one> of the..most important quantum manifestation of the
_"classical stochasticity is the multiple quasi—crossings of levels
having' even non-isolated characters provided that the restrictive

condltlons (11) is being satisfied. Moreover these crossings are to '

‘be tlghtly related to : i)the destruction of shell structure under
. the growth of the nonintegrable perturbatjon ; ii) the ‘fail of the
" quasiclassical energy spectral approximations ..
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