


“Introduction L .

"In the last  decades . the investigation of classical
mechanlcs ground L-t:i.mulated by  discovery of dynam1ca1 systens
’chaotlc motion have stated once more the fundamental . question = of

gquantun mechanics: what. is the interplay between:. classical
‘integrability and properties - of the quantized' system‘s) The
.transformation ;: of = classical. Hamilton . systems ‘lnto4 Birkhoff-

(6-7)
N

“Gustavson ‘normal - form’ (BGNF) . prov1des a powerfull (even

formal): tool for study this problem“”.

: -In thlS talk . new approximate 1ntegra1s of motlon for two-
51mp1e models for nuclei have written out: i) three a-particlcs ‘on
the line % 1ii) collectlve surface vibrations in the liquid drop
model for superdeformed Tigr (10,11) pucleus:. Making use of ..the

icorrespondlng ‘quantum Hamlltonlans both qua51cla551ca1 spectra_and
phase space structure ‘have been analysed and compa1red with the
"exact“ numerical results. .

The first rather quick programs in. FORTRAN- for obtalnlng‘

: 3
normal forms were realised’ in .-ref. Ty12) g that(l )

14) t5)

suggested - by

Hori and Deprit. In the present paper, we explore our REDUCE
program GITA(ls)for analyt1cal construction of . BGNF. according ' to
the Gustavson algorlthm “as.it-is briefly represented 1n sec.2.
This program is used.for f1nd1ng the normal form. of up to a - given
~ order Spax both for resonante and nonresonante cases.
-1 The Birkhoff-Gustavson normal form .

Every two-dlmen51ona1 Hamlltonlan near to equ111brium

points can be represented in polynomial form as follows:
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H(q,p)= H™ (q,p) + V(q) (1)
where ]
' g? = 2 2 2

(@p)= ¥ 1/2 o, (B, * @) ()
1 32
Vi@ =) V5 S G ey Ry Ry (3)
: 131 =3 ) o
The procedure of reducing to BGNF form  and . its realization

depend whether the frequencies v.of the - Hamiltonian (2) - are

‘incommensurable or not.If they are then}there exists a canonical
(4,p)+(£,m)  such that in’ (€,m) the
Hamiltonian I'(€,n) will be a function’ of . only ' two combinations

I,=1/2(€3+3), v=1,2. In other words, the Birkhoff '

transformation variables-

normal form is

an expansion of the initial Hamlltonxan over two one-dimensional . ‘-

‘harmonic oscillators ’ B

H(q,p)» I'(§,n)= v I +w I+ “uvIuIv+"'
are commensurable,

(4)
i.e. 1if  there exist.
0,(n,m e N \(0)) the

If the frequencieS'wv

resonance relations ‘of the - type nw, +mw =

Hamiltonian (1) can not be reduced to the normal Birkhoff form due .

to the’ appearence of zero denominators nw, +mw =0. Therefore, one .

‘schould not cancel “some terms 1n the - Hamlltonian (1), i.e.

as-well. In our cases

€1n2~ Ez"t
called the -

“other combinations of variables. Ev and n,
- with resonance condition © =0, these combinations are
and nnt E1Ez‘ Such an  extended normal  form is

Birkhoff- Gustavson normal form
Besides that, since Il(ﬁ,n)
integrals of motion up to s-approximation,
through the initial coordinates q,p, we obtain the approximate
:.integral of motion I, (d,p) mentioned in the Introduction.
The (1) to BGNF contain

a sequence

indepenent
and ' 7

and Fs(ﬁ,n) are .

expressing & -

procedure of reducing Hamlltonlan

of canonical transformations

g—q+_(”__3_), =,,+__Lg___

V

1,2 '('5)“

(s)

¢ V=

: with the help of the s—-order po1ynom1a1 generatlng function, W'
(s) .

F,(q,m)= Zq n, + W (q,m)

the

normal form beccmes more complicated and 'will contain apart from Iv

(6)

{

R (€,m)=H

‘h,follows

- Now the quantlty

The 1nteger s labels the pover of that Hamlltonian s part

which.
is reduced to the normal form .

Under canonlcal transformation (5) "the Hamiltonian “H(q,p)
- turns into'a'new one I'(£,7) so that ) '
(s): LR (s)
8 W "9 W .
H(q,n+ )=T(@+ ——o . (7)

K Expandlng thls expression -in Taylor series near g=g,m=p we
equate the terms of_the same power. For i=2
result - that the Hamiltonian (2) is still in.a

re2 g2 :
(9,P);  @=€,p=n
For hlgher ternms: (i.e. i—s=3) the procedure starts
a. generic equation in the form s
D(a,mM¥ (q,m= - (q,m) + I (q,m)
D is an. "operator: of the normal forn":

D(E,m) =Y w,(n, as - &y an _).

One - should ‘solve’ eq (9) at each step 1“3,..5-2 reducing the
Hamiltonian to the normal form of order S. Eq(9) we have " to - find
.two unknown functions: the . generatlng polynomlal W(') and - the
normal form Hamlltonian F(éz To solve Eq. (9) a canon1ca1 transfor—
mation to

complex varlables x,0¥ is performed

ve get .the known
normal form
. (8)

by, we derive

(9)

where

(10)

q,= 1/V2 (x,+iy, Yom,= INVTT(xm iy, (11)
d1agona11z1ng the operator B EE REI P
; ‘s - .
Dxey) =1 0,0, w, = Yy g—ﬂ ) (12)
Then the ba51c equatlon becomes
7
® (x,y)= - f(x,y) + B x,9). (13)

The basis in the Hilbert space vwhere H is self—adjont con51sts -of

monomlals :
1, 1. m m

(s) 1,72 1
‘ ®’éx x, ylkyz"’\ : (14)
L belng elgenfunctions of. the oprator D ,namely
bo®=1iYw, (m -1 )]o“’ (15) "

Then . the solutlon ‘of the generlc equation,jcan be written as

u) DR S Lo B
g ] . ) . . (16)
.can unambiguosly be represented as ‘a

D [F



o ’ ~ S -~ (
sum of polynomials H(') =f=) + r'® )
f“) “)(the normal form). we see that the terms or the .
Hamiltonian =) leading to the condition Ew (m 1v)= 0 cancels
by the same terms in the Hamiltonian F‘S)v .Moreover, the equation
Ew (m l )— 0 holds either if w,, are incommensurable and mv—l ,or
if n, =l but there exists a resorance relation of the form vawv
0 . In the last case, the structure of the normal form T becomes
more complicated due to the presence of resonant terms £ néf _gznl

and n,m, + g g . Making an inverse transformation from the complex

varlables x and y to variables g,n we f1nally find the Hamlltonlan

(s) g
in the normal form F("(E m) and the generating function:W =" in

'the s order of approxlmatlon in terms of the 1nit1al variables.
A certain modification 1T of the reducing - procedure “is

-much more approprlate for . finding the 'BGNF.. One’ introduces a

" cannonical transformatlon (q,p)=(n,8), whlch would

.into . the dlagonal one. In the

' su1table
transform the operator D (10) ’
resonance case 0=, for Hamlltonlan (1) this transformation is

_of the form
ql

1/2( =€ +E,4m 4 ), P=1/2(E,-E4,-m), -

- Now the Hamlltonlan (1) becomes

K(g,m= K'* (g, n)+z K"’(e m.eoo s

‘the quantltles : :
K2 (g,m= 1(E,7+E,0,), . |
being canonlcally conjugate coordinates and momenta E—(E ,E )
» ~n—(n n, ). Note that the transformatlon (17) is a’ generallzed
canonlcal one *®’.
2 Descriptxon of the program in REDUCE

The GITA program ,cons1sts of 6 basic and 4 auxiliary .

blocks, some of them being created as procedures.
Block 1. Trans formatlon of the coordinates p >V pv,qv
/V v for reduclng H‘z’(p,q) to the normal = form. The nonlinear
part of the Hamiltonian (3) is slmultanlously transformed too. .

" . Block 2.Here one starts a cycle with respect to s—J,.smax

) with BR‘®*’= 0 . Choosing’

a= 1/2(§, +€ 0.+ ).p —1/2(6 +E, -n,-7,) - (7.

’ ‘deplcted on the left column in Flg 1 for energies . 0.25E

Snax being the maximal order of reducing to the normal form. The
procedure SUPQXY performs transformation to the complex variables

(S)(XIY)"'
(e,q9). ' . _ ' : , 5

(11) of the homogeneous part of the s-order Ham11ton1an H
(s)

Block 3. The SEPA procedure makes .division of (”(x y)

‘into monomials  (15).

Block 4. The BASIS procedure solves Eq(13) ‘and. finds the

generating = function #‘®’

(x,y) and the normal form of the
(s) ’

Hamiltonian T (x, y) of the sth order.-
" Block 5. The 1nverse transformatlon is fulfllled from the
complex variable x, y  to the initial variables .q,p .

‘ Block 6. Here the remaining part of the Hamiltonian
contalnlng higher than s orders is transformed. ‘At the end of the
cycle one goes back. to block 2.

Upon completlon of the cycle w1th respect to s one .gets la:
Hamiltonian in the normal form up to order and the "abnormal" part‘
of the order higher than s .

max-”

Block 7.0ne transforms the normal form. r's?

(q,p) from the
cartesian coordlnates to the actlon—angle variables I, ¢. -

Block 8. Output for further convenlence.
3. Appllcatxons of BGNF in two phy51cal models

I. Approx1mate 1ntegrals .

The ‘general potent1a1 form correspondlng to the~ surface

quadrupole vibrations - of ‘the 'spherical liquid drop

can be
19-20) : .

parametrized as follows S
v(q,,q,)=) Cnm(q +@) (- - o - (19)

which is. clearly C3v invariants. ‘
Consider the physically interesting case. .of 'kryptonium -
nucleus 7‘Kr, the parameters Cnm,(nfm=6) being'determined in??

This potential surface possesses.four ~minima .and three saddle

polnts. on the P01ncare sections for the model (done cin '"Mana.

pt ~0.SE_,
0. 9E .) one sees that the larger energy the larger portion of
chaotlc ‘phase space . : : o



. is comming up.

On the right column were drown the energy isoclines of the
’approximate sixth-order integral of motion. The similarity of
‘both- plcture is 1mpre881ve up to energles where stochastlc motion
) As a second model we choosed three a:partioles movingrvon

the line w1th Hamlltonlan. 7 A '
. v . .
. 4, 4 2 2. 4,°

H= V3 /2(q +p )+1/2(q2+p )+1/(2\/_) (q Lt —q2)+ 73 (9 +6d, % r ).
‘ ‘ (20)
integral of

correspondlng 51xth-order approx1mate

The
I(q 19,,P, ,p) equals to I= I“)+I(5)+I(°’

1)

, where

I7=10" [.59687(q2+p2)_+2.16942(q +p ) 243, 69791(q +p. )(q2+p )]

motion .

(s)_. -3 4 3 ‘27 i 2 2
1'¥=107[6.50658p,q,~3.75658p,p,q,~5.13399. P,P,q,+36.97906pq;q,
: 2 2 3 . 3., 3
+2. 964f1p1pquq2+1 . 982764p1q2-3 . 75658pxp2qx+2 . 96411p1p2q1+ :
+17. 07155p§qfq2+2 .29738pog +2 .29738qf+20.‘47248q:q2+24 -18817q54}],

f1‘5’=1o‘3[6 79063p,q’+5.85592p;p q1q2+5 zzso7p2p2q2+3' 22043p1p2q3q2

+7. 60642p q +9 42845p q qé+3 64681p q, -2 41142p P q:qz—
-1. 84092p p q,q, P42 70779p q, +3 71579p q +6 60353p q q2+3 07933q1+

+1. 87203q q2+7 71598q q, *+o0. 565414q2] : )
Again its topography map fits very we11 the corresponding

Poincard@ section up to chaos is becomming on. Summing up one sees

- that the approximate integrals reproduce to large extent details

of the Poincaré sections below.the transition energies to chaos.
JIT. Quasiclassical spectra

Hamiltonian

; . The normal Blrkhoff-Gustavson form for the
' ... H(p,q): ‘
‘ ' H(a,p)=1/2(p+p))+ V(a,,q, ) (21)
with potential . . :
v(q,,q,) ,="—z}—(qf+q'§) + b(dla,- )+ c(d+d)? (22)

in 4th approximation order (n+m=4) equals to

T =21,+(- —§9+ -——(‘)I +( 7?

2 .
+ ————)I ¥ (%— -c)I. cosp, -

(23)

the Iv,p (v—l 2) beiné‘the action-angle variables. Note that. the
variable ?, doesn’t appear expllcitly in(23),  the
canonlcally conjugate nomentum I belngthe integral of motion. The
exp11c1te dependence of (28) on: the angle P, destroy the standard

Bohr-Somerfeld quantlzatlon forcing out "to use of another methods
(8,20-22) (Sec.2)

‘corresponding

) .The above mentioned
standard quantization in

(for -example WKB procedure
modified BGNF allows us to perform the
N=g n + £.m, and M= 0 -{,n,,

terms of the 1ntegra1 of motlons

%

i . The modified normal form for the same Hamlltonian (21,22)

\} "~ in the 4-th approx1mat10n (obtalned by the GITN program) equals to

f - . 2 : ; . :
S TEig n + £, p+(—— +C) (E2n7+E202) - (2D~ 4c) §.€,m,1). (24)
‘1;11 . Rewrltting the. Weyl quantizatlon in the form : ‘

} LW, = 1/22 —'1—.—(n_—1,r | [ (&.5,- n+2es) (25)

Jj=

i . )’



for the quantum'Hamiltonianvone gets the following form

A~ A A A A - A A A A A A
= (8,748, 04104076 (8,5 % (§,7,)°-58 7 -58 5 128 7 E,7)
+ c((sn)+(sn)+3(£n+€%)+4§%%%+z). (26)
Here the operators E,n are determined as, in Eq (17) after

q'anq p being replaced by the standard coordlnate and momentum
operators. In the oscillator basis
INL>= [ ((N+L)/2)! ((N-L)/2)! 1 g

. 10> (27)
where the vacuum is deflned by

Far k)

7,10>=1,10>=0,N=0, 1, 2.., L=tN,#(N-2),..1 or O .

The spectrum of Hamiltonian F becomes

E(N,L)=N+1+b’/12 [7L -5 (N+1) +1] +c/2 [3(N+1) L2+1] (28)

4 6 8 10 12 . F

46 8 10012 14 16 F

Fig.2.
8

S

Note that ‘the formula (28) glves a quite good approximation for~
the initial Hamiltonian - (21, 22 ) spectrunm prov1ded that . the
stochasticity is not highly developed one. This fact is. visualized

in Fig.2a, 2b. The lower curve in Fig.2a ‘s~ depicting. the

~ difference between exact and approximate eigenvalues. The - upper

curve on the same figure shows the nexact” level distribution for
Hemlltonlan H. Hersin the values of-paramefers b and -c -equal to-
0. 12347 and 0.00135 respectlvely, wilst E denotes the: charac-
teristic energy for transltlon to chaos. Flg 2b gives us' the . samei
portraxt as the prev10us one for parameters b= 0.1, c—O., whereas

E stands for the saddle point energy.

There is no point concerning the .quasiclassical spectrum”f
of the Hamiltonian (20). ‘Its sixth~ order BGNF in terms of: action
variables I ,I equals to i

F (I I )—1 73205 I +I —0 01[8 6776 I 242, 3876 1 +14 7916 I I ]-‘

0. 001[2 313 I +0 2331 +1 128 I, 1 +7 744 I 1° ] . Vf",¢ (29)
and the standard Bohr-Somerfeld correspondence Iw—n +1/2 glves us
E(nl,n2)=F(n1+1/2,n2+1/2),
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