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Introduction 
In the last decades the investigation of classical 

mechanics ground stimulated by· discovery of dynamical systems 

. chaotic_ motion hav~ stated once more tha fundamental question of 

quantun mechanics: what is the interplay between classical 

integrability and properties · of the quantized system
1

-
51

• The 

transformation' of classical Hamilton systems . into Birkhoff­

Gustavson normal form (BGNF) <
6

-
7! provides a powerfull (even 

formal) tool for study this problem<Bl~ 
·In this talk new approximate integrals of motion for two 

simple models for nuclei have written out: i) three ~-particles .on 

the line 91 :ii) collective surface vibrations in the liquid drop 

model for supe.rdefo~ed 7 4 Kr < 1 0
_' 

11 1 nucleus • Making use of . the 

_ corresponding quantum Hamiltonians both quasiclassical spectra. and 

phas~ space ~tructure have been analysed and compaired with th~ 
"exact" numerical results. 

The first rather quick programs in FORTRAN· for obtaining. 

normal forms were realised in ref. 7
'

121 or that<
131

suggested by 

Hori141 and Deprie 51 In the present paper, we explore our REDUCE 

program GITA< 161 for, analytical c~nstruction of BGNF according to 

the Gust~vson algorithm 71 as it is briefly represented in sec.2. 

This program is used.for finding the normal form of up to a given 

order smax both for resonante and nonresonante cases. 

1·. The Birkhoff-Gustavson normal form 
Every two~dimensional Hamiltonian near to equilibrium 

points can be represented in polynomial form as follows: 



H(q,p)= H~1 (q,p) + V(q) {1). 

where 

H121 (q,p)= ~ 1/2 w~ (p~ + q~), 

' . j1 j2 
V{q) = L vj j q1 q2 ,q=(q1,q2) ,p={p1,p2) 

I J I z:3 
1 2 

The procedure of reducing ~o BGNF form and _ its realization 

(2) 

(3} 

depend whether the· frequencies w .of the Hamiltonian (2) are 
v . 

in~ommensurable or not.If-they are then there exists a canonical 
transformation (q,p)-+(~ 1 11) such that in· variables (#;~11) the 
Hamiltonian r(#;,11) will be a function of. only two combinations 

- I ·c 2 2 > . - • • Iv=1 2 l;v+11v , v=1,2. In other words, the B1rkhoff normal form 1s 
an expansion of the-initial Hamiltonian over two one-dimensional 

harmonic oscillators 

H(q,p)~ rc~,'l))= w1It+w2I2+ L a~VI~Iv+•-· (4) 
If the frequencies w are commensurable, i.e. if there exist . v 
resonance relations of the type nw1+mw2= o-, (n,m e IN \{0}) the 
Hamiltonian (1) can not be reduced to the normal Birkhoff form due 
to the.appearence of zero denominators nw +mw =0. Therefore, one 

t 2 

schould not cancel'some terms in.the Hamiltonian (1)_, i.e. the 
normal form becomes more complicated and will contain apart from Iv 

other combinations of variables l;v and 1lv as well. In our cases 
with resonance condition w1=w2 these combinations are ~1 112- #;2111 

and 11
1

112+ 1; 1~2 • Such an extended normal form is called the 

Birkhoff- Gustavson normal form 
Besides that, since I 1 (#;,'lJ) and r 8 (#;,1J) are indepenent 

integrals of motion up_ to s-approximation, expressing I; and 11 
through the initial coordinates q,p, we obtain the approximate 
integral of motion I 1 (q,p) mentioned in the Introduction. 

The procedure of reducing Hamiltonian (1) to BGNF contain 

a sequence of canonical transformations 
( J l (j) 

~ = q + a w (q,'l)). P = 1l + a w (q,'lJ) v= 1 2 (5)-
v v a11v ' v v a qv ' ' 

!'lith the help of the s-order polynomial,generating function, W
181 

F 2 (q, 11) = -L qv'l)v + w(s) (q, 'lJ) (6) 

• ··:: • 0 ·- ~. ~ --~ •• 

2 

-I 
! The integer s labels the power of that Hamiltonian's part which· 

is reduced to the normal form • 

Under canonical transformation (5) the Hamiltonian H(q,p) 
turns into a new one r(#;,'lJ) so that 

a w(s l - a w(s l 
H(q,'l)+ 8'""Cf" )= r(q + lilJ ,'l)). (7) 

Expanding this expression in Taylor series near q=#;,'l)=p we 
equate the terms of the same power. For i=2 we get the ·known 
result that the Hamiltonian {2) is still in a normal form 

r t 2 > < ~;' 1l > = H t 2 > < q' P > ; - q=l;' p=1J <a> 
For higher terms (i.e. i=sz:3) the procedure starts by, we derive 
a generic equation in the form 

D(q,'l))W!sl (q,'l))= -H<sl (q,l)) + r<sl (q,l)) 

where D is an "operator-of the normal form": 
'\ a a 

D(#;,ll) = L "'v(1lv Br - l;v~ ). 
- v " v 

(9) 

(10) 

One should solve eq.(9) at each step· i=3, •• s-2 reducing the 
Hamiltonian to the normal form of order.s. Eq(9) we have to 'find 

. two unknown functions: the generating . --polynomial w ( s l and the 
normal form Hamiltonian r 1s! To solve Eq.(9) a canonical transfor­
mation to complexvariables x, y is performed 

qv= 1/v-2 (xv+iyv) 1 1Jv= if~ (xv- iyv>' (11) 
diagonalizing the operator 

- '\ a ·a D(x,y) = i L wv<xv-ax-- Yv a-y- ). (12) 
. v- v 

Then the basic equation becomes 
iiw<s> (x,y),;, .., H(x,y) + f<s> (x,y). (13) 

The basis in the' Hilbert space where H is self-adjont consists of 
monomials 

1 1 m m 
tl>!sl= X 1x 2 y 1 y 2 (14 ) 

1 2 1 2 

being eigenfunctions of the oprator D ,namely 

D. tl>!sl= [i L wv(mv-lv) ]<~>ts>. . (15) 

Then ,the solution of the generic equation can be written as 
follows 

W181 = i5-1[f<•>_ H181 ] • (16) 

Now the quantity H181 can unambiguosly be represented as a 

3 



sum of polynomials ii 1 •~" ':'N 181 + R181 with DN 181
= 0 • choosing 

f 1•1= N181 (the normal form) we see that the terms of the. 

Hamiltonian ii(s) leading. to the condition Ewv<mv-lv)= 0 cancels 

by the same terms in the Hamiltonian r 1• 1 .Moreover, the equation 

Ewv<mv-lv)= o holds eithe+ if wv,are incommensurable and mv=lv,or 

if mv~lv but.there exists a resoriance relation of the form Invwv= 
0 • In the last case, the structure of the normal form r becomes 

more complicated due to the presence of resonant·terms ~1~2+ s2~1 

and ~1~2+ s1~~· Making an inverse transformation from the complex 

variables x and y to variables·~.~ we finally find the Hamiltonian 

in the normal form r 1•> (s,~) and the generating function•W
181 

in 

the s order of approximation in te~s of the initial variables. 

A certain modification 171 of the reducing procedure is 

much more appropriate for finding the 'BGNF. One introduces a 

suitable cannonical transformation '(q,p)-+(1i/~). 'which would 

transform the operator D (10) into the diagonal one. In the 

resonance case w
1
= w

2 
for Hqmiltonian (1) this transformation is 

of the form 

q1= 112.< -~1+s2+~1+ 112>' p1=112 <.st-~2+li1-~2>, 
~= 1/2 (~1+~2+~1+~2) ,p2=1/2 (~1+~2-~1-~2). . 

Now the Hamiltonian (1) becomes 

K(s,lJ>= K(2) <~.~>+I K(j) <~.~>, 
J>2 

the quantities 

K 121 (~,~)= 1 <~1~1+~2~2)' 
being canonically conjugate coordinates and momenta 

.~=(~ 1 ~ 2 ). Note that the transformation (17) is a 

canonical one 181 • 

2. Description of the program in REDUCE 

(17) 

(18) 

~=<~1's2>. 
generalized· 

The GITA program consists of 6 basic and 4 auxiliary 

blocks, some of them being created as procedures. 

Block 1. Transformation of the coordinates Pv-t~pv,qv~ 
t,il,/~ for reducing' H121 (p,q) to the normal form. The nonlinear 

part of the Hamiltonian (3) is simultaniously trans~ormed too. 

Block 2.Here one starts a .cycle with respect. to s=3,.s · max 

4 

smax being the maximal order of reducing to the normal form. The 

procedure SUPQXY performs transformation to the complex variables 

(11) of the homogeneous part of the s-order Hamiltonian ii 191 (x,y)= 
H(s)(p,q). 

Block 3. The SEPA procedure. makes .division of iilsl (x,y) 

into monomials (15). 

Block 4. The BASIS procedure solves Eq(13) and. finds the 

generating function W181 (x,y) and the normal form of the 

Hamiltonian f 181 (x,y) of the sth order.· 

Block 5. The inverse transformation .is fulfilled from the 

complex variable x, y to the initial variables q,p 

Block 6. Here the remaining part of the Hamiltonian 

containing higher than s orders is transformed. At the end of the 

cycle one goes back to block 2. 

Upon completion of the cycle with respect to s one.gets a 

Hamiltonian in the normal form up to order and the "abnormal" part· 

of the order higher than s . 
max (sl 

Block ?.One transforms the normal form.r (q,p) from 

Cartesian coordinates to the action-angle variables I, ~­

Block 8. output for further convenience. 

3. Applications of BGNF in two,physical models 

I. Approximate integrals 

the 

The general potential fo.rm corresponding to the surface 

quadrupole vibrations of the spherical liquid drop can be 

parametrized as follows 19-201 

V( )-\' c ( 2+ 2)n( 2 1 3)m .q1,q2 -L. nm q1 q2 q1q2- ~q2 (19) 

which is clearly c
3

v invariants. 

Consider the physically interesting case of kryptonium 

nucleus 74Kr, the parameters cnm (n+m=6) being determined in11?1 

This potential surface possesses four minima .and three saddle 

points •. on the Poincare sections. for the model (done in 1111and 

depicted on the left column in Fig.1 for energies 0.25E
0

, 0.5E
0

, 

0~9E0 .) one sees that the larger energy the larger portion of 

chaotic phase spa~e • 

5 
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On the right column were drown the energy isoclines.of the 

approximate sixth-order integral of motion. The similarity of 

both picture is impressive up to energies where stochastic motion 

is.comming up. 

As a second model we choosed three a;particles moving on 

the line with Hamiltonian: 

· H= v'3 /2Cq~+p~)+1/2·C~+p~)+1/C2v'3> Cq~~+ R>+ :;cq:+6q~~+~>: 
(20) 

The corresponding sixth-order approximate integral of motion 

I(q1,q ,p ,p) equal-s to I=I 141 +I 151+I 161 , where. 
2 1 2 . 

I 141 =10-2[. 59687 (a2+p2) 2+2 .16942 (q2+p2) 2+3. 69791 (q2+p2) (a2+p2)) . "2 2· 11 11 "2 2. 
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I 
\ 
l r 

I 151 =10-3
[ 6. 50658p:~-3. 75658pip2q1-5 .13399 p~p2~ +36~ 97906p~q~~ 

+2: 9641lp p q a 2+1. 98264p2a 3 -3. 75658p p q3+2. 96411p p 3a + 1 2 1"2 1"2 1 2 1 1 2-~ 

+17. 07155p2q2a +2. 29738p2a 3+2 .2973aq5+20. 47248q4a +24 .18817q2a 3
], 2 1"2 2"2 1 1"2 1"2 

(6) -3 4 2 3 2 2 2 3 I =10 [6. 79063p1q1+5. a5;>92p1p2q1~ +5. 22507p1p2q1+3 .22043p1p2q1~ 

+7. 60642p~q:+9. 42845p~q~~+3. 64681p~q:.-2. 41142p1p~q1~-

--:1. 84092p p q q3++2. 70779p4q2+3. 71579p2q4+6. 60353p2q2a
2
+3. 07933a

6
+ 1212 21 '21. 11"2 . ~ 

+1. 87203q4a 2 +7. 7159Bq2q4+0. 565414a6
] • . 1"2 12 "2 

Again its topography map fits very well the corresponding 

Poincare section up to chaos is becomming on. Summing up one sees 

that the approximate integrals reproduce to large extent details 

of the Poincare sections below.the.transition energies to chao~. 

II.Quasiclassical spectra 

The normal Birkhoff-Gustavson form for the Hamiltonian 

H(p,q): 

H(q,p)=1/2(p~+p~)+ V(q1,q2) (21) 

with potential 

V(q1 ,~) = +(q~+~) + b(q~~- ~)+ c(q~+~) 2 
(22) 

in 4th approximation order (n+m=4) equals to 
. 2 2 2 
5b . 9 2 7b c 2 1 7b 2 

r4=2I1+(- T + ~)I1+(- """"24 + -4-)I2 + -4-(6 -c)I2·cosv>2 
(23) 

the Iv,v>v' (v=l,2) being the action-angle variables. Note that the 

variable 9> doesn't appear explicitly 'in(23), the corresponding 
1 . 

canonically conjugate momentum I belngthe integral of motion •. The 
1 . 

explicite dependence of (28) on.the angle 9> destroy the standard 
. 2 

Bohr-Somerfefd quantization forcing out 'to use of another methods 

(for ·example.WKB procedure 18 '
20 - 221 }.The above mentioned (Sec.2) 

modified BGNF allows us to perfo~ the standard quantization in 

terms of the integral of motions N=~ 1 ~ 1 + ~2~ 2 and M=~ 1 ~ 1 -~ 2~ 2 • 

The modified normal form for the same Hamiltonian (21,22) 

in the 4-th approximation (obtained by the GITN program) equals to 
2 . 

r4=i(~1~1+ ~2~2 +(-} +c::> <~~~~+~:~:>-( 2b2- 40>~1~2~1~2}. 
Rewritting the Weyl quant~zation in the form 

n . 
n'\' . n! 

we~:.~:>= 112 L 1!(n-1)! 
1=0 

7 

n 

n (~ ~ - n+l+)) 
0 0 

j=1 

(24) 

(25) 



for the quantum Hamiltonian one gets the following form 

A A A A A 2 A A ~ 2 A A 2 A A '< A A A A A A 

r4=CI;t11t+l;2112+1 )+b / 6 ( c~;t 11t> +(1;2112> -5~;t11t-5 ~;2112-12 ~;t11t1;2112> 

+ C( (~1 ~1) 2+(~2~2) 2+3 (~1 ~1 +~2~2)+4~1~1~2~2+2 } • ( 26 ) 

Here the operators~~~ are determined as in Eq.(17) after 

q and p·being replaced by the standard coordin~te and momentum 

operators. In the oscillator basis 
N-L N+L - --

INL>= [((N+L)/2)!((N-L)/2)!]-u2 ~ 2 --~ 2 
2 1 

(0> (27) 

where the vacuum is defined by 

-~ (0>=~2 (0>=0,N=0,1,2 •• , L=±N,±(N-2), •• 1 or 0. 
1 •. 

The spectrum of Hamiltonian r4 becomes 

E(N,L)=N+l+b
2
/12 [7L

2
-5(N+1)

2
+1]+c/2 [3 (N+1)

2
-L

2
+1] . (28) 

\ 
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approximation 

provided that 

for· 

the 
Note that the formula (28) gives a quite good 

the initial Hamiltonian · (21,22. ) spectrtim 
stochasticity is not highly developed one. This fact is-visualized­

in Fig.2a, 2b. The lower curve in Fig;2a is depicting the 

difference between exact and approximate eigenvalues. The upper 

cur/e on _the same figure shows the "exact" level distribution for 

Hamiltonian H. Herein the values of-parameters band c equal to 

0.12347 and 0.00135 respectively, wilst Ecr denotes the. charac­

teristic energy for transition to chaos.Fig.2b gives us the same 

portrait as. the_previous one f~r parameters b= 0.1, ~=0., whereas 

E
0 

stands fcir the saddle point ·energy. 
There is no point concerning the .quasiclassical spectrum 

of the Hamiltonian (20). Its sixth- order BGNF in terms of action 

variables I 1,I2 equals to 

r
6
(I

1
,I

2
)=1.73205 I

1
+I

2
-:0.01[8.6776 !~+2.3876 !~+14.7916 Ii.I2]-

0.001[2.313 !~+0~233 !~+1.128 !~!2+7.744 I 1 I~] (29) 
and the standard Bohr~somerfeld correspondence I~=nv+1/2 gives us 

E(n
1
,n

2
)=r(n1+1/2,n2+1/2). 
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