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1. Introduction 

As is known/ 1/, the most essential details of the super-low­
-energy scattering of a charged projectile by a target with a exten­
ded charge distribution may be established within the two-body model 
with a potential 

In the system of units ("I; = C = JL = 1.) 
'fc from (1) reads as :t !/tR , where t 

the projectile and the c.m. of the target 

( 1 ) 

used in the following 
is the distance between 

and R > 0 is the Bohr 
radius for the system "projectile plus target". When the target has 
a spherically symmetric charge distribution, which is assumed in 
the following, the rest of Coulomb interactions, i.e. the polariza­
tion potential denoted in (1) by vp ' bas in the adiabatic appro­
ximation the asymptotics / 2/: 

vr (l) ~ - <~- /2 R zlf t »R (2) 

where o(. ia the electric polarizability/3/ of the target. The 

last term in ( 1 ) • i.e. vs , describes the non-Coulomb part of the 

effective interaction, and therefore 

'l: » R (3) 

Below we restrict our consideration to the S-wave collisions 
of two particles interacting via V(1) with \/p having asympt~tics 
(2) and V5 having an arbitrary shape but satisfying the conditions: 

£im ~ 2 Va. en = 0 
'7.-0 

£im '!:" ( exp(lf ( 'l: sgn Vc IR )l/2) Vacn=O, 
'l:_,.oo 

where a: = S and n. =0, 1 , ••• 

(4a) 

(4b) 

For brevity we use everywhere the following notation. We detone 
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by Oca. the total phase shift from Vca.. =. Vc + Va , where 

a:::p~s,ps,, .. and Vps = Vp+ Vs . Symbol Dc,a stands for the 

phase-shift produced by Va , a= p,s,ps, ... and additional to 

the phase shift ()C from the Coulomb potential ~ • We represent 

by ficp,S the phase shift associated with V5 and additional 

to 6_c =0:+ (£ • In the above notation, we write Vc =VU) 
p c c, p ps 

and 

Ocps = 1\ + bc,PS 

8'cps = 8'cp + ifcp, s 

( 5 a) 

(5b) 

when vp and vs are present in (1 ). When Vp or vs is ab­

sent in sum (1), we use bcs = Sc + dc,s or bcp instead of 

S"cps (5). When necessary, the analogous· notation is used for some 

other functions corresponding to the above-mentioned cases and the 

shortened symbol A or A(K) stands for the limit as t- oCJ of 

the phase function/4 • 5/ A (l) or ACK "l:), where K2= E is the , . 

collision energy. 
Now, to explain our main aims, we recall some results known in 

the potential scatterin' theory, a modern review of which one can 

find, for instance, in 6,7/. 

The low-energy (K~O) asymptotics (LEA) of be /BI, 8;: ~9/ 
and ~ S /5, 10 •11 / are known explicitly and, respectively. read ~a 

' 
be (K) ~ 9 ( ln!) - 1) + :JC I 'I (b) 

' 

~ f 
Lfo< K 5 !15 R 2 s > 0, (7a) 

tan 4,P 
+ o (KR) \{; 

- ac, p 1< C 2c ~) ( 1 + o ( i)) 11.: < 0 (7b) 

and 

lanSc,s CK)~- ac,s K C2
c,{(i-ac, 5 K

2 (zc,si2+RI3))+0(KR)'):sJ 

In (.,-~) the function c (~) of !) " sgY> vc 12KR ia the Coulomb 

barrier fa~tor/B/, ac p, aC Sand 't:c S are the finite constants 
/1 ') 7/ ' ' . , 

usually "• called the scatter~nr: lengths and the effective 

radius. 

Kext, it is known/4,5/ tbat 'the picture of threshold potential 

scattorinc is determined mainly by the behaviour of 

tail. Due to (1-3) the tail of Vcps is Vc + Vp 

2 

the potential 

When VC.,. 0 



' 

and K -0 then, according to (7a) and (8), 

and therefore, 

Hence, in the above case the contribution from Vp to de ps do­
minates over the contribution from V

5 
, and therefore, Vp has to be 

taken into account in the super-low-energy problemsof nuclear pby­
sice. 

Attention to this physically apparent statement was renewed in 
112

•
1
31, where the pd -phase shift bc,ps was inserted into 

Kc,ps (I<J = K C 
2<'> cotb;,,ps(K) + hc,>IR , (1oJ 

and then by using (9) it was shown that the scattering length 

I< - i 
c,ps (I<) (11) 

is infinite. Thus it was proved that, when Kc ps (10) _and ac (11) 
defined analogously to the effective-range function/1 , 10/ ,ps are 

and the scattering length 

for Vcs , one 
It is just 

(I<) 
K-+0 

gets I ac,PS I = 00. 
the result that has been conjectured 

( 13) 

in 191 and tbat 
has stimulated extensive research of' the effects caused by electric 
polarizability of' nuclei in elastic and inelastic nuclear reactions. 

In Sec. 2 we give a critical and, as we believe, complete enough 
review of' the works devoted to this oOject and published after the 
report/121. We explain in detail mistakes and inaccurate points con­
tained in some quoted papers. Also we prove that the methods employ­
ed in some works may be improved and developed for solving important 
problems of the low-energy potential scattering theory and the theo­
ry of astrophysical nuclear reactions. 

In Sec. 3 we formulate four problems of' that sort and outline 
possible methods to solve them. 
One of these problems, namely the coOception of the action radius 
of a polarization potential having the asymptotics (2), has as we 
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believe, a more fundamental significance than the others. Therefore, 

in Sec. 4 We analyse this conception in detail. In ~ec. 5 we summari­

ze the original results and discuss some prospects. 

Before proceeding to a review, we want to stress the following 

facta. Physically, \ Vp \ << \ VC J everywhere, therefore all the ef­

fects caused by V p , i.e. the so-calJ:.ed polarization effects are 

essentially the minor corrections to the pure Coulomb picture of 

collision. These corrections have to be evaluated by mathematically 

rigorous methods to guarantee the justice of consecutive physical 

conclusions. It is the point that we shall try to follow throubhout 

all the present work. 

2. Critical review 

2.1. The polarization effects in elastic nuclear reactions 

There is a series of papers/14- 23/, where these effects were 

explored within the two-body model. It was assumed that the S-wave 

radial function U..CK, 't) describing the scattering of two nuclei. 

obeys the equations 

( 14a) 

UCK,0)=0 ( 14 b) 

tUK,~) ~sin Cp- "£rt2p+ [i (I<)) p=J<~-oo (14c) 
J cps > - ~ 

where V is the sum (1) with VC > 0 , V5' satisfying (4) and 

VP c -r) =- ( c< I 2 R -c If) @ c ~- T P ) ( 15) 

where @ is the Theta-function/Sf and {: p lS an arbitrary but 

fixed parameter such that (J) is valid when l: > "[ p 
In/14 , 15/ the problem (14) was solved numerically for the pd­

scattering. The phase shift De, ps was extracted from the asympto­

tica (14c) and then was inserted into the function J) (see eqs. 

(J-5) of ref./15/ which is actually the phase function 

tc a CK, 7.0 ) = tan be a (K, '! 0 ) (1G) 
, ' 

where the other phase function b'c,a (K, (. 0
) is U1e phase shift 

produced by the potential Va.en9ct.
0

- "z_) and a= ps . The scat­

tering length Clc,ps ("l0 ) correspondint: to this cut·of'r potential 
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' 

was defined analogously to ac s from (B), (12) and (1)), i.e. 
' 

as 

ac,aCt0 ):- f,·m.
0 

tc,aCK,'z0 )1KC 2c9 ),<11J 
K-

where a:= ps 
asymptotics 

Tben, it was shown that function (17) has the 

ac,ps (z0)~-ci(2R)
2exp( t ( 

SOd formulae (10,11,16-18) Were USed to prOV€ that QC S(OD)(17) ,p 
is the scattering length ac ps(11) and I ac psl=ooe. Thus, the main 
result Cfac,psl = o.:=>) of "papers / 12 •13/ wa~ confirmed in/14, 15/ 

by direct numerical solution of the problem (14). 
Note, all the numerical results reported in 114, 15/ were obtai­

ned with a too poor accuracy, because (18) disagrees with the asymp­
totics 

/" 3 1!2) ac,ps C'r
0
)"'- to.RI16:Jr'r0 )exp('l('z0 /R) , t 0 -+""' (19) 

derived in / 18 •21 1 explicitly. 
In view of .this critical remark and also for the following dis­

cussion we present the facta proving that a high accuracy calcula­

tion of tL and lir,ps by a direct numerical solution of the problem 

(14) with K- 0 is impossible. 
Firat, even when V (1) is Vc , the high accuracy calculation 

of regular UCK,'O= f(p,:J)• as well as irregular lf"(K,'z)= t;c.p,!J)• 
solution of eq. (14a), i.e. the Coulomb functions/ 81, is possible 

124, 25/ only by using special recipes baaed on the asymptotical ex­

pansions (AE•a). For instance, when "! .(_.(. "lc := 1/ 1<2 R , one may 

successfully use the finite aeries of the Bessel-Clifford expansion~ 

00 f""' 
F'cp.~) = t< Cc!:P 2: 1< 2"f,.p>, ~(p,~)=C(:J)Lk2 "~JnCtlF0 l 

n=O ""0 
where f Yl. and 9n. are the known/8 • 25/ functions. 

Second, when K-"'0 , the asymptotic& (14c) rap~dly oscillates; 

due to (5), (6), (7a) and (9) O::ps and fie are large whereas 

Sc->pS _v~nishea; moreover, U is also a function rapidly decrea­

sing in the region 't < l'~.: , because in this region 11.""' K ((!))(see, 

for instance, refa/20 , 211 ). 

And finally, to find 8";:->ps 
evidently, to calculate U with a 

5 

within the problem (14), one has, 

relative accuracy£< J dc,ps\for 



any '2 ;; 8 
of (14a), must be equal 

as K-0 

i.e. the actual upper limit for integration 

to' a certain 'lc 1191. Hence, c-o, B..-.o-

For the above reasons a direct numerical treatment of the prob­

lem (14) becomes still more complex with decreasing energy. Evident­

ly, one has to rewrite this problem in a form more adopted for nume­

rical and analytical investigations. 

Worka/16- 23/ have been performed along this line. 

Having actually used only the decompositions (5) and the known /S/ 

trigonometric identity, Bencze and Chandler 1161 have elegantly de­

rived a simple formula for the Coulomb modified s-wave scattering 

length function Ac a (I<) in the presence of the potential Va. 
that falls off faat:r than 'l- 3 as 'l- r>= • Also, they have nume­

.ric1ally proved that for the pd-scattering length function Ac,ps (K) 

this formula, i.e. 

A K-1 
c,ps(K);;;. c,ps(K) "'Acp 5 rJ<l[i-tan~pCKl/AcpsCKli<CZJ; l 

, , , \21 a 

H-~-Acp,sCK)iarz/SC,pcK)K C2 ] , 

where Kc, pS is defined by (10) and 

Acp,s (K) =- [KC 2c,) tan (icp,s (K)+ he.'))/ R ri., (21b) 

is more accurate than formula obtained in / 12 •13/ by using (10), tbe 

approximation 

be, ps z 5;:,s "" ~, p (22) 

and tbe first Born approximation/9/ 
0<> 

tan.?icaCKlzianocBaO<l=-k-i ~ V (OF'
2
CKt,'))at, (23) 

' , 'l' a 
a 

for iand;: a with a= p and 'Za < "lc. 
Since'1965 it is known/9/ that {23) correctly describes the 

thresbould behaviour of tbe phase shift lie a produced by the cor-

rection1 Va:. ,._ -Vo'l-Cl,a>3,'l .... pOt0 vc>o . Recently, Kvit-

sinsky/ 7' has generalised this statement to the case a> 1 ' ana­

lysed LEA of~cwhen V.c < 0 and decribed the threshould b~haviour 
.~ -

of the scattering amplitudes fc,a(K)• 
In particular, he proved the asymptotic (K ...... O) relations 

'1:0 

oc,p(K)~ <f!CK,'1:0 ) = ) (Vact)12pc(K,tl) dt 
'lc 

6 
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(24b) 

where "l
0

:oa ~ 8 is the Beta-tunction/S/ and. c.p
0 

is the zero app­
roximation for the solution 4? of a very complex nonlinear problem 

rp' = CVa12pc)(cos2CXc+'f!)-1.) + 

( p~ !pc) sin !fl:COS { :<. Xc + '{l) 
with the single boundary condition 

<P ( K, 'rc) = 0 

and the functions 

"'l' > "!c , 

' 1.12 Pc ( K, 'r) = K (! - sgn. \{;·'rc I 't ) , 

XccK,'tl" arctan (pccK,'O Pcp,,l!F'(p,I]J ). 

(25a) 

(25b) 

(25c) 

(25d) 

Unfortunately, Kvitsinsky/17/ has not noticed three essential 
facts. First, when Vc =0 , eq. (25a) becomes the equation firstly 
derived by MacCallum/267 and studied in detail by Dashen/271. Second, 
due to (25c), the unhomogeneous term of (25a) diverges as~- tc 
Hence 1281, the problem (25) may have many solutions. And finally, 
owing to (25), for all K ~ 0 the phase shift Dc,a (K):; lj}CK,o<>) 
does not depend on the behaviour of Va. in region 't < "tc • Phy­

sically, it is an absurd result. For the above reasons we are compel­
led to note that Kvitsinsky's proof of the formula (24a)is not 
quite corrent. Undoubtedly, the problem (25) has to be added by a 
second boundary condition, for instance, by the value of cp 1

( K/le) , 
or regularised by Daahen's method. Although, having done this, we 
have verified (24), we want to stress that the problem (25) as well 
as its above modifications seem to be impractical. In fact, the solu­
tio~n tp ( K, "t.0 ) of (25) has no meaning of the phase Shift from 
\, G'('t

0
-?;), if 7 0 <<>"", due to '{!.<'pC-term, it tends to I{)(K,oO) 

as 't0 -+ 00 too slowly; moreover, due to oscillating :Xc (25d), 
it rapidly oscillates as 1 K, "(; :i-+ 0 • Therefore, it is wise to deal 
with the phase functions having an apparent physical meaning for all 

t ~ 0 and defined as solutions of correct and simple problems. 
These phase functions are for instance 8'. 118 , 19/ CS and /'\..:_ ' ' ca. ' ~,, 
/ 20/, and C end S 121 /. ' 

Bencze and Chandler/1U/ have used (16), (17) and the limit 
(K~O) forms of AE's (20) to derive from the known/4 ,5/ equations 

7 



s~,a- = - K-
1 va ( F cos&;;,a.. .. c. sin fie, a )2,, z >0, (2Ga) 

Oc,a CK,O) = 0 (25b) 

the equations 

a~,a = Va (f0 - ac,a 9o )2
, t>O, 

ac,a CO)= 0 

(27a) 

(27b) 

for aca.Ct)(17) and then to find the asymptotics of a~ a('Z) as 

t.....,. 0.::. explicitly. ' 

By integrating this asymptotics one gets (19) when a= pS • 
Although Bencze and Cbandler/1B/ have pointed out that their main 

result (lac S(oa)l= oe) baa been conjectured in/5/, we refer to 

the origina~~abikov'a paper/11 /to formulate a useful criterion. 

By employing (20) and assuming for tc a(16) AE 
oo' 

tc a CK, t)= K C 2c~p L: K2n Aa ("t, h(!Jll, <28 ) 
' n.=O ,n 

Babikov/11 1 has reduced the problem 

(29a) 

tc,r:x.CK,O)=O (29b) 

to the recurrence equations for Aa Yl, Vl. =0,1 , ••• By analysis of 

these equations written as 'l >> R ~ one can easily prove thBt 

l A (oo 0)\<c.o if and only if Va meeta (4b) for all am , . 
n. .$ m + f . Due to this Babikov 's criterion and the identity 

ac,ps (oe) = Aps,o (oa, o) that. followa from <n> and (2o-29l, 

one bas to keep in mwd that the fact J Clc ps ( 010)} = oO has 

also been conjectured in 111 1. ' 
Clearly, when solving (26) or (29) for a~l 'l >0, one may, by 

analysis of the ratio 8'c a (K., 't)/ 0(.' a(K,o.o),get a detailed infor-

' ' v mation about contributions from various parts of a to the phase 

shift S"C CX.. • It is just the reason, why for treatment of the 'JL+d-
scatteri~g within the problem (14) we / 19/ have numerically integra-

ted eqa. (26) rewritten in terms of the P.= K "l: variable. As we 

have found, the u+d.. -phase shifts Oc p and dc ps are formed 

mainly in the interval ( 0.8 'lc., 2 "lc) both 'limits of" which are ener·gy­

-dependent since 'tc .= :1. IK2 R ;the relative accuracy of the approxi­

mations fie, a (K,oa)o: dc,.a ( K,15"'z:c) is 10-4 ; when V5 ;;; 0 

8 



~be aolution lLcp of tbe problem (14-) witb Yp (15) may be appro­
xi .. ted by ita asymptotica 

or (14c) onl.;r for 't>2'tc or 'l> 10'rc , respectively. 
Alao we b•ve calculated the nonoscillattng parts 

6CaC10a lf.!LK-2sin 25ca.O(),wherea=p,ps of the :n•d-
cross ~actions fiCa!K):E '1Jr.K.!2 sin2ti;:a(l<) and proved that, due 
to the fact 5 c, p • Oc, S < 0 as K-+ 0 , tbe cross section Dc, ps 
has a deep and sharp minimum. As we have pointed out, this effect is, 
in essence, ge~:~erated by interplay of V5 and Vp in the :tt+d -
sc8ttering end bas therefore the same nature aa the Ra~auer effect/~/ 

The above results of refs./11 •18•19/ show that eqs. (26-29) are 
well adopted for analytical and numerical treatments of ·the contribu­
tions from Vp (15) to the scattering length (17), phase shifts and 
cross sections of elastic collisions. However, to get the solution 
of the problem (14) within eqs. (26) or (29), it is necessary to solve 
these equations, evaluate the corresponding amplitude functions/4,5/ 
and only then one can construct ll . Therefore, it is more practical 
to use another version of the variable phase approach, namely, a ver­
sion in which U. and 5c,aCI<)may be found simultan.eously after solv­
ing a simple linear system for two phase functions, for instance, cs,sn 1201 or c, s /21/, 

The moat sound Bencze et al./20/ results are the following. 
Firat, the suggestion to use CS and Srt. for a high accuracy calcu::.. 
lation of the regular U.ca and irregular 'lfCa solutions of eq.(14a) 
with V= Vca, a=p,s,ps, and K-0 . We remind that, following/4/, 
Bencze et al. represented the function llca as 

Uca"' Uca = (cs(F'tKC)+ sn (CQ)) (}1) 

found a complete set of the equations 

cs' = Va Uca (C~) , sn'=- Va Uca {F'ft<C), 'l>O, U2•l 

CS(K,0)= i , .sn (K, 0) = 0 
that uniquely define cs and sn. ' and showed that 

(32b) 

tan£ (K)=-K['2(!'}) fim (sn(K,'I:)ICSCK,~)).UJ) 
~a ~_,.oO . 

Second, the formula 
tanOc,aO<)= B1aCK,0,o<>)/{i+ B2a(K,0,,;.,)), 04al 

9 



where ' 'l: 

BnaCK,'l0 ,'r)a K-i )XzltllLcaJK,t>lG-cKi,!J~ S"n 2 :_ 04b) 

'lo - PIKi,~) fin' 1] dt, 
~~at has been proved by the known method of the gener~l theory for 

the potential scattering/291. Third, developing the known idea (see, 

for instance, refs./9-11 •3°/ to use decomposition (5b) instead of (5a) 

and exploit the corresponding effective range-function 

1"-2. ,.._ ! 

Kcp,s(J< 1 ., K C (!Jl cotO::p,s r~<J+ h CJl =- a~p,s + 1<
2 'lcp,s I z ..... , 05 l 

where { and h are expressed/JO/ in terms of certain integrals 

but, in general, are unknown explicitly. And finally, the proof that 

the modified scattering length acp~s from (35) is equal to 

~2 . ~ 2 

acp s =- fim tan<\: psCKl/K C r91= -lim tanuc psCK)/K Cr!J) 0 6 l 

, . K .... O " k_..O " 

is finite, has a phjaical meaning and may be eaaily evaluated by ext­

rapolation of t.anOc ps(K) to K=O or by direct solution of eq. 

(14a) with K=O • ' 
Undoubtedly, it is. urgent to ,!!ddr-the Bencze et al. theory by an 

efficient method for evaluating C" h and ~C..P~Sentering into 

(35) and (Jb) and find tbe boundary conditions uniquely defining CS 

and sn for 1JCa. In the present work we are compelled to restrict 

ourselves to presenting these conditions. So, we write VCa. ..... Uca, 
where Uca.is defined by (31 ), and get (32a). Neft, comparing tbe esym­

ptotics of Uca. as L. - 0 wi tb the required form ( 1fca=0(z-~) we find, 

by iterating· (32a), that 

'l: 2 
cs ~ C\!Jl ~ Valt) ~ CKt,,)dt, sn.-1, t0 >'l ,'l-0. 07l 

.'l: 
In /Z1/ we devel~ped a version slightly different from (31-33). In 

this version lJ, a being (14) readS as 

uca ~ Nc,a Uca = Nc,a ( c P .. s 4) , osl 

the phase functions C and. S related with t from (16),. (29) and 

with CS and 511. from {31-34) by relations i=SIC, C;, CS , 

S s 1< C 2(~)SY'l.t satisfy the equations 

c' = K- 1 Va Uca 4-, s'=-K-1 ~ 

CCK,0)=1, SCK,0)=0, 

10 
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sod the phase shift oca (I<) end the norm factor N, a(K) :from (JS) 
ere defined by limits as t ~ oo of the correspondirt'g functions a 

Oc a< K, 'l > = au tan ( 5(1<, 'l>l C(K,'n) (40l ' , 
N (K,'l:)=cos~a(t<,'Z) /C(K,'t). (41l c>a , 

Our treatment of system 09) with K -0 and a:: p, S~ pS was 
based on the Babikov411 / idea to Use AE's (20) and on the Levy and 
Keller~3 1 / idea to employ the iteration method/281. 

Below we generalise some results of the work/21 / discussed by 
using the complete AE's (20) and AE's: 

instead of the truncated ones. So, inserting (20) and (42) into (JB), 
(39) we get the analog of the first AE of (20): 

ikca = , (43a) 

where 

Un"' L (cefm +Seam) 
f+m = n J 

(43b) 

and en and sn. obey, the recurrence equations 

c'=VaX: Ueam, 
!+m=n J 

en (0) = 0rt,O 
' 

aod Nca expands as /
21

/ 

' 2 <n) N (K) = L 1<211 N + l:J. N (K) ' (45) t;a I1=0 c,a c,a 
where N(Yia) 'n=0,1,.2, are finite constants and ·l:J.Nc s=0(K61, 

c, N N - 0 ~6t3 , but A c p , t. C OS - ( K ) • 
In the regiob ~~ ~C ,the AE'a (20), (42) and (43) conyerge 

too slowly. Therefore, for approximation of C, S and U in this 
region we have used in ( 21 / the functions C(m), sCm) and u;(m>ort-: 
ginating from an mth_iteration ·o.f system (39). We have got the con­
dition on Vp (15), ac.s<13) and K : 

ll 



f/ = ( <X.!3R 'r}) max~ 3 CYt/2) 112 , c46l 

lacgl~p+0fKR)2 J) < 1/2 

that ensures the uniform convergen~e of these iterations in the re­

gion t ~ l' p and the validity of the representation 

tan b;;,p(K) = tan 8d,1}(K,-i 1 + 0 ( B ~~)(K,'tp,""))J,C47al 

where I<.......,. (},. 

'"w tanoc,pCK,'l:l= 
(47b) 

Bri) r 
and h.p is given by 04b) when UCf.. is replaced by • We .have 

shown that, due to (16), (17), (33), (40) and (42), the scattering 

length ac a, a.= p,s,ps and the effective radius 'lc,s from (8) 

are the 1imi ta as 'l ....... ooo of the corresponding functions: 

a.c,a('l)=-socnlcoczl , C4Bl 

'l:c,acz>= 2R!3+ z[c1c'l:>+S1C'l:>/ac,acn1; S0 C'l).c49 l 

Also we have proved that LEA (?a) follows from (47), the function 

ac psC~0)C17) represented as ratio C4s) has aaymptotics Cl9),and 

therefore,diverges as t.0 ....... oo whereas the effective radius t (),) 

C49l corresponding to tbe potential VP en Bc-c
0
-t) tends to c,ps 

2 R/3 as '1:0 - <>=. 
5 

(i) 

Undoubtedly, the KC2-behaviour declared for B 1 p (K, "£
0

, 'tc) in 

(47b) is a gross mistake of our work/21 1. In fact, u~ing for F the 

appropriate AE's/25/ and applyin£ the stationary phase method/32~ 

one can easily be convinced that B ~~) ( K, "l0 , 1c) = 0 ( K 4613 ) when 

I(- 0 and t 0 < 'Z:c Fortunately, this mistake, as we have 

established by a careful revision, does not alter the main results we 

have obtained in 121 1, discussed before and shall use in the following. 

The results of papers/17- 21 / convincingly show that the variable 

phase approach is a well adopted method for exploring the .problem (14) 

with 'Vp (15) and I(_,. 0 . Another efficient method is the WKB-app­

roacb 33/, because it also bas an apparent physical interpretation/1/ 

and allows. one to get some LEA explicitly. 

These facts led us/22 / and, as we believe, also L'vov/23/ to 

investigate the problem (14) within the first order of the WKB-app­

roach. We and L'vov reproved (7a) and (24) for a:= 'I and found, in­

essence, the WKB-approximation 0;'f,6 (K,"c) for the phase function 

&;.,p {K, 't) from (16) and (2b)! This approximation reads as 
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iS ;;6
CK,'O = IPo (K, 'l) = (l{ci.K 5!15R 2

) (1- 0 112 . (50) 
' (3t 2!13 + t/2 + 1) 

with <Po (24a) and f: E. 'l/ Zc ):.. 1.. • When "l _... 0 , the WKB-approxima-
tion ( U WJ<8) for U becomes incorrect/33/, therefore, in/221 we 
have constructed , Ucps as 

Ucps = N u;: = N (F'cos~.s(KJ+4 sin<f;,s(K>\ t~'lp,<51a) 
Ucps = «cp coslicp,'i.(K)+Zfpsin5;p,~K), ~~ 'lp~51b) 

Replacing F' r llc and 'lf:co by their found WKB-forma, we got the • <.f' f II/K6 c WKB-approximationa ll.cps for llc S. (51 a) and llcps (51 b) and then 
from the usual/ 1/ condition uri<B p G.. C { )we found the WKB-appro­
ximationa N"'"8 and 0~/(85 ps for (ONand 8;: S from (51). 
Next, exploit ink, the idea ~f refs/12 , lJ/ but usint: ~'e approximation 
dc,ps. <::: OCp 8+ 0 ~K~ inatead of (22) we have treated the 
threshold beb~viour orP{he functions A VJJ(. B (I<) approximating the · cps i scattering length functions Acps(K)' 2 _ K~ f?_ (K), where 
Kc, ps is defined by (10), for "'the scattering of" p: d, ~Hand "l-Ie 

by deuterons and for the !Jr+d !Jt+ 3 H and :Jr+4/-le -scattering. We 
. ' have made this to estimate the upper bounds of energy intervals, where, 

due to Vp (15), the funct.ions A~KSs(K) ar~ nonlinear functio-ns of 
energy and where, for this reason,,p Vpshould be taken into account 
in the theoretical investigations of the above collisions. 

Deriving in/22 / the formula for 8~:~ we have, without the 
slightest grounds, dropped some factors.~or the collisions we have 
considered they are very close to unity. However, now using the func­
tions P,., ( K, 'Z p), go?, 'lp)'nd Q (0, "t p) found in/22/ explicitly, we 
present the correct result , 

tan Sc~:~ (K) = -K·l?Xp(-!ri!J)·[ ac,s Po + (52) 

'tp r ac,s - 'l p) P; J I [ P1 + ( ac,s - 'l p) P; J , 
to get the WKE-approximation 

a WKSB E- ftm. (tan (ScWpK& (K) IK c2(!J)) = exp (-2 Q)· cp, K-">0 ,s 
[ac,s+ 'lp (ac,s-'lp)(g'lg-Q')!{i + (ac,s-'lp)· (53) 

Cg';g + Q'))] WK8 
far the scattering length a'cp .. s()6) and show that l acp s \ <00• 

/19/ A WK6 ~ ' > '1-'+d As. we pointed. out in , .;ps .- fl c,ps f~r .the vc. -
scatter~ng. Prepar1ng the present work we have ver1f1ed that 
AIIKB ~ A ~21) for the pd -scattering. Although these facts show c.os c . /22/ tfi"'a't the -formal1sm of ref. seems to be correct we must add it 
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ensuring the validity of the inequalities 

I Z(K,'t)/zWKBcK,'o -i I< { 
where Z = Utp, 1ltp and ! > 't0 > 0. 

(54 a) 

< en 3!2., 

(54 b) 

Completing this part of review we wish to point out some inte­

resting details. The exact representation 04a) for fan <:S;,p is re­

duced to (47b), where 2':=- ~ , by epproximatinglicp;tp. When (46) 

is valid, the denominator of the fraction (47b) maybe approximated 

by unity·. Tben,one gets formula (23) which is reduced to (24a) or (7a) 

by using the WKB-asymptotics/25/ F' <:: ( l{Pc }
112 with Pc (25c), Because 

of these connections between the r·eaults of different works/9, 17 •20 •21 1, 

one should expect that for calculating of ~,p(K)the approximation 

(47b) is more accurate than (23) and (24 a). 

2.2. The polarization effects in the nucleosyntbesis reactions 

Since 1986 when. Belyaev et al/34/ predicted that the pd -po­

tential VP (15) violates the pcds) 3 He-reaction uniturity, the role 

of a polarization potential in the nucleosyntbeaia reactions is inten­

sively treated. To demonstrate bow understanding of this role baa 

developed with time, we shortly review all the relevant papera/21 - 23, 

34-47/ in that order in which they have been published. 

The extraordinary results of paper/34/, in particular, the proof 

that Vp (15) causes the divergence of the pd. .-reaction cross sec-

tion and its factor S (in our notation 6f~pee and Scp) made 

us to present in / 22/ the WKB-estimation ])WKB for the contribution 

D (K)- scps (t<) I Scs (K) - 1 (55) 

from the pd.. -polarization potential (15) with d.=-0.7 fm3/3/ and 

'l'p =- 4 fm to Sq~s· As we have shown, D WK B is a smooth continuous 

function of the pet-energy and :DW'KB;:t; 10-3 for O..:G E ~ 6 keV. Hence, 

the factors Scps and SC? are also continuous and finite functions 

in the vicinity of E =0, which contradicts to the above result: 

scp ( 0) = o<> of ref ,134/. . 

Later in/35,3G/ it was predicted th~t!:tbe .oPe-reaction cross 

,.. i~d ( "'" tnt / ~· "'"' - 10 30 ) 
section v cp had a very large v cp v cs .... and 

sharp maximum caused by Vp (15). 

14 



The next work was the L'vovkpreprint/231. Using elements of the 
WKB-approach end perturbation theory in Vp (15), L'vov constructed the 

pd. -scattering function Ucps within the problem (14). Unfortunate­
ly, to estimate :D (55), he replaced the obtained Ucps only by two 
terms of ita asymptotica as t- 0 • This approximation is too poor, 
because /4S/ the con.tribution from the region Z .:!- "ld ~ 4 fm, where 

't(t is the deuteron size, to SCS' Sc ,;.a smaller than that from the 
region Z'> "(d • Nevertheless, L'vov got p:D:t10-3 and, hence, he confir­
med our res~1~221. Further, in /37/ it was predicted that the cross 
section Oc<npt of the 3 H (d n.)'l.fJ.Ie-reaction bad a narrow maximum . ! . ? 3 (O~P(! I rJLne ~ 100) produced by the d H -polarization poten-
tial. CS 

Note, in the rapporteur report/3B/ 
have been summarized without mention of 

the results of papera/34-37/ 
L'vov's/23/ and· Levaabev!/39/ 

criticism. In this connection we must stress that L'vov is the first 
who bas explained that the gross mistake of papers/34,35/ is the as groundless replacement of U.cp by li.cp (3~) for all l >,- 0 and K-+0. 

Later. this mistake common to worka/34 37/ was pointed out by Le­
vashev in theses/39/and then was discussed in detail in a series of his 
papers/40-43/ actually repeating each other. According to the standard 
theory for nucleoaynthesia reactions/4B/, Levashev has conjectured 
that the pp -reaction factors Scs and Scps are proportional to 
the square of the corresponding matrix element 

3 2 -~!ZooS Aca(Kl=(8:1L"td K~C(~l) 0 Ua(~!llcaO<,''Od"t, (56) 

where a= S, ps and tid is the deuteron function. Then, he re­
placed the pp -.scattering function llcps by the function l.lc~s con­
structed by him within the first Born approximation over the pp­
polarizahon potentiaL As a result of this replacement, he found/\~ps 
and ]) 8 instead of !\cps (56) and j) (55). Hence, if one formulates 
the main Levashev result more correctly, this result means that the 
contribution .DB from Vp (15) to .Sc~S is neglegible because ]) B is 
determined by the value of Vp on the boundary of nuclear forces. 

Although Levashev's treatment is more complete than that carried 
out in/22 , 23,44-46/, and for the pd -reaction his estimation 'D 6~ 10-3 
of]) (55) agrees with earlier/22 , 23/ estimations, we are compelled 
to give two more critical remarks. First, L'evasbev has estimated only 
the part ]) p, of the total contribution D (55), namely it is (see 
ref.f21 1)the part l.inear in the parameterd./Rz~. Second, mathema­
tically, bis construction of tbe function ·U~ps is formal. Indeed, 
he. instead of proving that u~~s ~ u~ps for all '( >.- 0 ' has un­
successfully referred to s numerical evidence/16 , 19/ of the fact that 
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ffcBp from (23) well approximates the phase shift 5C p • Obvi-

' u , ,8 
ously, from this fact one may only conclude that cp ~ ""Cp for 

large enough Z: , namely / 19/, for t > 2 'rc. 
Before the journal versiona/41 ,42/ of preprint/40/ appeared, 

Bencze presented in/44/ an elegant and physically apparent method to 

estimateD (55). It should be atressed·that this method based on the 

S-matrix theory is more general than that developed in/21 -23,34-43, 

45-47/. Unfortunately, the final Bencze's formula (eq.(14) in/44/) 

meaning that "D (55) equals (ian Oc p )2 is incorrent. As Levasbev 

/ 43/_noted, when this formula was dlrived one term was lost. Never­

theless, this regrattable fact does not alter the main Bencze's re­

sult showing the electric polarizability of nuclei to have a negle­

gible effect on the inelastic total cross sections of super-low-ener-

gy react~ons ~nvolv~ng deuterons. 122 23 39-44/ 

~ow we giVe the critical remarks common to works ' ' 

Although, in these papers various approximation methods are employed, 

none of the authors have est~mated the arising residual terms reli­

ably and none have indicated the energy region, Where employed appro­

ximations are correct within a given accuracy. Further, the results 

obtained in 122 •23 ,39-44 / for D (55) are actually only estimations of 

]) in the order of magnitude. Note also, all the authors of the 

above works concentrated on these estimations rather than on the treat­

ment of LEA for the factors Scps. 
The above defects led us to construct in / 21 •45,46/ the mathe­

matically rigorous and complete enough theory for the pp -reaction 

including the pp -polarization inbraction (15). 

In /45/ we exploited (31-32) and (55,56) and used the RSC-poten-

tial /49/ as ~,the RSC-deuteron function ud and Vp (15) with 

r:J.. =2·10-3 fm3/3/ and "tp::. 4 fm. As a result of a series of high 

accuracy calculations, for D (55) we established that D(O) ~ 10-6 

andD(E)/])(0)~1.02 forE =6 keV. 
Working again in the framework of eqs.(31-32,55), we proved in 

thesis /46/ that 2 
""" 2n (\ern 1\ 0 

f\ca (K) = L... K ca + D. cjK), K-> , <57) 

1\Cnl n= 0 ~ 

where ca are constants independent of a= s or a= ps whereas 

t.Ac-;0cK6) and t.Acps = 0(~~513) 
In a subsequent preprint/ I we explored the truncated system 

(44) and AE (43) with Ncc£45) in detail end suggested a reliable me­

thod to calculate the codatants of LEA (12,45,57) without energy in­

terpolation. By this method, that, in essence, is based on (38-45, 

55-57), we carried out a detailed analytical and numerical analysis 

of Aca<56), LEA (57) and D (5-5). 
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In particular, for the pp -model used earlier in 1461 we have got 
that!>~ 10-~D has a broad maximum at energy E = E0 ~ 400 keV and D 
slowly falls with growing E in the region E >Eo . Also, we have 
proved that the contribution from the tail Vp @('l-'/:C)of Vp (15) to 

/\CDS (56) has the K 1613 :-threshould behaviour and therefore is 
not dominant as compared with that from the part Vp Q ( ZC- ~) . 

To complete this part of review, we should mention the rece~ 
work/47/. In this work the known/4,5/ first Born approximation iC p 
for tc p(16) obeying eqs. (29) has been used to construct the fun~­
tion , U~p approximating the p rBe -scattering function Ucp being 
a solution of the corresponding two-body problem (14). As a final re­
sult, it baa been shown that the first Born approximation D ~?. of 
the contribution J). (55) from the p 78€-poiarization potential (15) 
to the factor scp of the 18eq~r>8B-reaction is about 2.6·1o-3• 

2.3. Resume 

First,we recall the main results of works we have reviewed. The 
result I ac,psl=oo conjectured in ts, 9, 111 and the fact that electric 
polarizability of nuclei has a negligible effect on the nucleoaynthe­
sis reactions are supported by various analytical and numerical evi­
dence. The finite scattering length QCp,S having the physical mean­
ing is defined by (36). Asymptotics (7a) fou~ in /9/ actually by 
inspection of the first Born approximation ,tC PS for the phase func­
tion fc,ps from (29), may be evaluated within' various approximations 
presented above as (24), (47) and (50). The upper bounds of energy 
intervals, where some nuclear-nuclear and pion-nuclear elastic colli­
sions are described within the problem (14) mainly by the tail Vcp 
of Ycps(f) , are estimated. It is shown that the polarization effect 
analogous to Ramsauer's effect should be expected in elastic colli­
sions, if they may be considered within the two-body approximation 
(14) and if Oc,p·8;;s<0 aaK-+0. 

Now, we focus o~r attention on two facts. So, the main contribu­
tion from V ps to the phase shift ~ ps and the qorrespotiding 
elastic cross section 6C,ps is caused fi'y the tail VP @('l- Zc) ot 

Vp when ~ ) 0 . However, the main contribution from Yp to the 
norm factor NC 

5
(45) of the scattering function llcps (JB} and ·to 

the factors sC;fs. of the nucleosynthesis reaction l.S produced by the 
other part of Vp.namely by the part vp @c'tii '2:' ) • where 'lN is 
of the order of magnitude of the nuclear size. Hence, the region, 
where \lp acts effectively and therefore cannot be replaced by iden­
tical zero, depends essentially on the kind of process and e function 
of interest. 
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Finally, we must stress that ell the above results have been 

found within the effectively two-body approximation. Ho~ever, there 

is no criterion ensuring that an arbitrary few-body observable may 

be established within this approximation with a desirable accuracy. 

As it follows from all the review and essentially from this remark, 

the modern theory of low-energy potential scattering and the theory 

for nuclear-polarizebility effects on the super-low-energy nuclear­

polarizability effects on the super-low-energy nuclear collisions are 

incomplete and there are many interesting and unsolved problems. 

3. Four problems and possible methods to solve them 

Below we formulate four problems of low-energy potential scat­

tering theory, give acme recipes to solve them and explain why a comp­

lete solution of these problems is urgent for both the theoretical 

and experimental treatment of interplay of short- end long-range fOr-

ces in quantum systems. 

As. is known/ 1/, all the functions characterising the collisions 

of quantum mechanical objects are expressed through a regular or an 

irregular wave function of these objects. Hence, 1) construction of 

the LEE's for regular ( Uca) and irregular ( VCa) solutions of eq. 

(14• l wi tb V = Vc + Va , Vc > 0 and a= p,s,ps ia the key-problem 

for construction of the L~E'~ ,for the phase shifts 5 C a , elastic 

6C ct and inelastic 6f~~ cross sections and so f~rth. We aug­

gest'to solve this problem within eqs. (38-45) as follows. Firat, in 

the regions 't < "lc , ~"' ?:'c and 't > 'l r_ one has to represent F'and 

G as AE'a (20), as the Olver 1 s/50/-AE's containing the Airey 

functions/Sf and as the WKB-series / 25,33/, respectively. Second, one 

has find the appropriate AE's for the phase functions C and S to 

separate the variables K and 'l . And finally, it is necessary to 

reduce in this way the original problem to the solution of K -inde­

pendent system. 
It was just the recipe following which we got AE (41 ). Now, we 

derive similar AE for Vca obeying (14a) and the boundary conditions: 

z- -0 , (5Bal 

p-+ oO. (58bl 

Due to (14c) and (5Elb), Wronskian/2B/ for U and 1J is identical­

ly equal to K • Hence, we may write Lfca as 

V'ca = Nc-ta V = W1 
( c F' +- s C) C59l 

~ c,et 
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with Nc a being the norm factor ofUca(JB). 
(14a) by' Zf(59) and using (58) we get for C 
(J9a) but with the boundary conditions 

Next, replacing U in 
and 5 again system 

'1: 2 
CCK,'n- K-

1 
) Vart) c; (Kl,,)dt, S(l<,'l)-+1:, 'l0 'J'l-+0, (60) 
to 

that follow also from 07) and the relations CeCS 
Now, inserting F' and <:;. as AE's (20) and C 

assumed AE's 

c: , 

and S=KC
2sn. 

and S as the 

(61 ) 

into (39a) we get the recurrence eqs. (44) which, owing to (60) and 
(61), should be added with the following boundary conditions 

'1: 

Cnct)- S Va (t) s! (t)dt , 5
11

('1;)- On O, '!0 > 'i, 'r.--+0. (62) 

'l:o , 
As a next step, we substitute AE's (20) and (61) into (59) to write 
the searched AE as 

) -1 ~ 2n ,r-
l'ca :(NcaC L.. K uno:) 

• n=O ' 
(6Ja) 

where Nc a has LEA (45) and , 

lf,_ :s L (Ctfm. + 5e 9m) 
l+m:n 

(6Jb) 

Since the polarization 7ffects arise in the region of very low 
energies usually inaccessib~e for direct experimental treatments, 
experimental data shourd be extrapolated into that region. To this 
end, it is necessary to know, in particular, the LEE's for the cross 

sections Oc,p , 6"C,pS and ~p,S • Due to the formulae 

t'c,a = ('IJr K-2) (sin~,a )~ a=p,ps; es;p,s=(9JLK-2)(sinb;p,s ): · 

tbe construction of these LEE's is actually reduced to the solution 
of the following important problem that we formulate as 2) construc­

tion of LEE's for the phase shifts SC p , f5c S and~ ,$ . 
We do not know a simple method to' build the'~omplete L~E's for 

8;; p and q; ps • As we believe, the first few terms of these LEE's 
may'be found ~xplicitly within an ~~~order of the WKB-approach or 
by a careful anaJrsis of LEA for the functions C(m) and S(rh)ob­
tained by an m:L. -iteration of the system (39) or by employing the 
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new method/5 1/ for evaluating the phase shifts. A reliable method to 
find AE for S'cp,s is based on the known idea/4 ,5• 20/ which allows 

us to write the solution of the problem (14) as 

licps = Ncp,s (c ll.cp + 5 VCp) (64) 

to get the system 09) in which a:::.S and F', G 
11cp, lJCp , respectively, and to introduce Ocp S and 

with (40) and (41), ~.e. as the limit at z.,.... 6o of 

stands for 

Ncp, S by analogy 
the correspond-

ing functions 

8;:p,s (l<,'n ~ a'tcfan ( S(K,'l:)/C(I<, n) 

Ncp,s (K,'l:) = (cosocp,s (K, '1:>)/c (K, 'l:) 

Upon substitution £lCp(43), Zfp (63) and 

(6 5) 

(66) 

""' 2 2 ""' :m C67 J c = E K n. en. n > , s = 1< ( Nc P C) .L 1< sn. c~ > 
n=O ' tt=O 

into the system for c and 5 described above we have that ch. and 
Sn. from (67) obey the system (44) in which a= S and 

un = L (Ce umcp + Se lfmcp) (b8) 
f+m=rt or-

where umcp, and zrmcp are the functions uhl (43b) and um (63b) 
from AE's (43a) and (03a) for Ucp end llcp , respectively. 

Now we substitute C and S as AE's (67) into (b5) and get 

the searched AE 

Here We 

only if 

ing. 

tan B";;p,s on= K (Nc,p C)2n~ 1< 
2

"- An. (G9l 

do not prove that \An.\ ( oo for all vt:::. 0, 1, ... , if and 
V

5 
obeys (4b) because this is tedious rather than interest-

Note, problems 1) and 2) are mathematical rather than physical 
ones, while the following problem, i.e. 

3) a correct definition of the action radius fo·r potential Vp (15), 

has a more general and urgent physical significance. Indeed, this 

problem arises at the origin of treatment, when one wants, on the ba­
sis of physical intuition, to qualitatively predict the expected ef­

fects caused by \lp (15) and to compare these effects with others si­

milar in nature but caused by V
5 

obeying (4b). Problem 3) arises 
again when all the desirable formulae are derived, and one wants to 
use them for analytical and numerical treatments of the polarization 
effects. The point is the following. The most part of analytical re-
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lations are simplified by lettin·g Vp := 0 for any "l >_.. B , where 

B <oo is an appropriate radius. Moreover, in practice, the most 

part of equations, relations, etc. containing \fp may be numerically 

solved only on the interval 0 .$ "l ~ 8 , where B is large 

enough but finite. For these well-known reasons it is necessary to 

correctly define the radius B which, in essence, is an upper bound 

o"f the distance range, where vp acts effectively. 

In the physical literature/1 ,G,7/ this bound is usually cSlled 

the action radius meaning a point B on the ~ -axis on the right 

of which one can let Vp =.0 • Although, the conception of action ra­

dius seems to be intuitively clear, it should be specified in each 

particular problem. In the opposite case, i.e. when one relies only 

on his own intuition rather t,han on a rigorous proof, the errors and 

unphysical conclusions seem to be inevitable. As an example highly 

illuminating in this respect, we refer to works/35-39/, where it has 

been groundless assumed that the action radius o~(15), as well as 

the action radius of V5 (4b), is energ;y-independfnt and comparable 

with the deuteron size. 

In computational mathematics152/ the action radius t) of the 

function Vp is an upper limit of the interval iJ $ Z $ B on which 

the problem is solved numerically. This limit is chosen from the con­

dition that the calculated function must be close, to a reasonable 

extent, to an exact solution of the treated problem. In the asympto­

tical methods for the theory of ordinary differential equations/32 ,33/ 

the action radius B has a meaning similar to the one mentioned 

above and is defined as a lower limit of the interval B ~ Z < oo 

where a considered function may be, again in a reasonable meaning, 

replaced by its asymptotics as Z'""""'oO • These two mathematical methods 

for finding B will be developed in the next section in which we 

report the results of our current treatments of problem 3). We belie­

ve, these results wil~ be useful also for solving the problem that is 

is more general than the problem 3) and reads as 

4) a correct definition of the action radius of an arbitrary two-body 

potential in few-body problems. 
To give an interesting fact illu~trating how urgent is this 

problem, we address to the three-body problem with the two-body poten­

tial V5 satisfying (4). Let f Y(l.] ~ be an appropriate potential 

harmonic basis/53/. In general, the matrix elements 

VslLW'l = <Y[LliVsiY[L'l> 
fall not faster than p- 3 when the hyperradius p tends to infinity 

/54/ Hence, \15 usually called a short-range potential/1 •6 ,?/ beco-
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mea in the above three-body problem the potential usually ~alled a 
long-range one/1 •6 '1 I. Clearly, to avoid this di•orepaney, the concep­
tion of the abort- or long-range potential should be defined also 
with respect tO the considered few-body problem. 

4. The action radius of the polarization potential 

Let us start with a gedariken experiment. Let us forget th~t ~ 
and \'s obey (2-4) and aasume that we know only the first, i.e. lead­
ing, terms in LEA (7) and (B), and we do not known the threshold beha­
viour ofA~Jnd AAca.• a.=s,ps , in (45) and (57). l!xploiting 
only this pOor information we try to solve the following inverse prob­
lem: to establish the behaviour of Vp and V5 at large t" • If \{:>0, 
then applying the BabikovScriterion, using (24) and the kno~n, by as­
sumption, leading terms of LEA (7a) and (B) we unambiguoWily· conclude 
that VP and V5 satisfy <2>, o> and V5 obeys (4bl, where n· i 
When VC < 0 , the leading terms of LEA (?b) and (B) have a similar 

K -dependence. Hence, using again the B'abikov$criterion we may only 
show that Yp, V

5 
= o('Z'-3)aa "l-+e>O • Note, in both the cases 

( VC > 0 or V. < £) ) we are not able to prove relations (4b) for 
rn 1 . Next, f~om LEA (45) and (57) with omitted terms t..I.Jc a and4Aca 

we cannot show that vp and vs have different aaym.pt~tics 88 

'l:-+00 • 
As follows from our experiment, the above inverse problem cannot 

be completely solved before solving problems 1) and 2), and the con­
ceptio~ of a long- or short-range potential, usually used for \lp and 

\1
5 

, respectively, should be defined with respect to tbe problem of 
interest. One can say that in tbe studied problem the potential \1 is 
of a more long-range nature than the potential V' only if it ia pro­
ved that namely in this problem the action radii B and B' of V and 

V' obey the inequality B> B'. Below, by Solving the problem 3), we 
wish to demonstrate tbe general strategy for finding tbe aetion radi­
us of an arbitrary potential. 

We define tbe action radius B of vp (15) for a function A' 
as the solution B = B(A,£, {,!'!) of the inequality 

d (A, B)"'\ ACB,fJ3)/Moo,f,l'3) -1 \.$c. (70) 

wi tb a fixed E€ [0, 1) and a nun..ber {X) of all the possible parame-
ters arising in the problem (14). (i) 

Aktk~ we consider: ~he phase functions 4' p (26), ()C,P (47b), 
and De (50),the soluhons Uca (K, 1',8), ' a= p,ps , of the 
problem~14) when Vp is a cut-off at 2: = 8 , the norm factor 

Nc,p/K,B)<41) of ucplK, 'l, 8)and the matrix element !lcp[K. B) 
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defined as the integral (56) in which U is replaced by Uc 5 CK~t,B). 
We stress that in each case A ~d, E. and relation (70) w~ll have 

an apparent meaning. Indeed, A<K,B), by definition, is 

A(K)'OA(K,oo)when Vp(15) is replaced by Vp/9(B-'t), and if B sa-

tisfies (70), then A(K,B) approximates A(K)within a relative 

accuracy d smaller than a required relative accuracy E. 

In practice, ACK, B) is always calculated instead of AcK,oo)and 

B is determined so that a required M significant digits in the 

numbers ACK,B) and ACK, B') are the same for any B'> B . To find B 
as a function ofM, one calculates the sequence { A(K, Bi) Ji~i , cor­

responding to the sequence {/ p e ( B;- t) J ~=1 With B1 < Bz <.N~ BN. 

1'hen,one chooses from {B.~ ._ 1 
a growing subsequence { B· ~ 0 

" c.-. tM M=1... 

with the property that for each, M = 1, ... , N0 -1 the numbers A (I<. B· ) 

and A(t<, BiM ... ~) have the same M significant digits. When that ' LM 

subSequence is found, ineq.(?O) is reduced to th~ inequality 

d(A B. )=I AcK B· )/MK B.> -i\<<£.·10-M ;e. E. U,10), (71l 

' t..M ' 'M ' t..N 'M ' 'M 

that is valid for all M=1., •.. ,N0 -1. Thus, one gets the solution 

B(A,e,\x1) = B,M of ineq. (71) for e =,a(\.; 10-M and fixed 

parameters {X1 including K • 

So, the practical recipe to find B l.s simple enough. We have 

used it in our numerical analysis, the results of which are reported 

below. By complete analogy with our treatment 119/ of the Jt+cf -scat­

tering we explored numerically the 1(-d -scattering within problems 

(14) end (26). The results obtained for the 'Jr:.-d -phase functions~ p 
endOc,ps , in particular, those listed in Tables 1 end 2 show the ' 

followJ.ng. The phase shift 5;;,p forma mainly on the interval 

("rp,~p+2R> and rapidly decreases with growing parameter tp of VP. (15). 

The error dccS.; ,B)(70) becomes smaller than unity When B > .2R+ 'tp. 

All the bounds'gentioned above very slightly depend on K if E ~ 10 

keV 
0
and 0.1 R,< 'l:p ~ 10R. 

The results listed in Table 2 also demonstrate that for VC < 0 
and V5 = o the limit <11 > defining the scattering length ac, P is 

finite in accordance with (7b). 

The facts recalled in Subsection 2.1 for the 'Jt.+d -scattering 

( VC > 0 ) and those given above for the JL-d -scattering ( ~ .( 0 ), 
clearly prove that potential Vp (15) is of a more long-range nature 

when \{: > 0 than in the case '{; < 0. More precisely this statement 

is clarified by the numerically obtained formulae 
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Table 1 
The :lt-d -phase function ~,p (K, "t) of (26) as a function of 

E(keV) and (fe 't/R when the parameters of Vp(15) are: c/..•0.7 fm3 

and "( = R= 104 fm. All the values of S,,p (K,"O are multiplied 
by 1011.P 

~ 0.1 1 10 

1.04 1216 1182 908 
1.08 2287 2216 1685 
1. 2 481) 4312 3402 
1.4 7462 7183 4947 
1. 6 8971 8592 5621 
1.8 9846 9388 5886 
2.0 10356 9837 59.76 
4.0 11033 10343 6213 
6.0 11075 10440 6272 

10.0 11161 10503 6295 
15.0 11165 10512 6300 
30.0 11173 10518 6308 

Table 2 

The 1<-d -phase shift S,,p(K) e Oc,l' (K, 'tp + 30 R) as a 
function of E(keV) and the parameter l:p=J'R: of Vp (15) when 

d. =0.7 fm3 • The values of ~~P (K) are multiplied by 10 10 , 10 11 

and 1014 for ~ =0.1,1,10, respectively. 

~ 0. 1 1 10 

10-4 69845 11249 12449 
10-3 69845 11249 12447 
10-2 69841 11242 12372 
10-1 69748 11173 11711 
1. 0 69572 10518 11469 
10.0 69387 6308 6557 
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8(8:: CK) £ {K san\/. '1: ')~{(0. 3 +0.6CJ/3)'lc, \{; >0, c,p , , ~ a c, pl ~ - -tt3 
0.6'1:p-0.2R+0.5Re , \{:<0. 

(72a) 

(72b) 

It is valid for € = 10-M, M = 1, ... , 5 0.1 R~ 'rp~ 10 R and 0.1..; E 
~ 10 keV and shows that for the Calculation of the Jt±c{-pbase shifts 

with the errord{~.0,.8)C70) aat·isfying (71) one has to cut off Vp 
at point "l= B whicH essentially depends on C and .f 'K?J • 

Since for the Jt.±d -soatterin~ Clcs=0.079 fm /55/, cJ.. =0. 7 fm 
13/ and 'lp >;. 4 fm the condition (4b) i§ fulfilled for "l p >;. o. 1 R and 
8 ~ 10 keV, and therefore in this region d,.C n ( K 't) of (26) is very 

.<:-0) r:. , 
close to UC~P from (47b). Indeed, as we founJ. numerically, 

lo:.~cK;ni~.PcK,'n-il < 10- 9 
, (73) 

wbere ~> 'lp € [0.1R, 10R], E~ 10 keV. 

Further, from (71) we get that the action radius of Vp for 
5. 0 ·> (K oD) is well approximated by the formula c p , 

' B usc~~ ( K,e<>), E ,{ K, '{ >0, ~ PJ)::: (0.3+ 0. 6' e-1./3) ?;c (74) 

when E, tp and E are the same as in (72). 

Clearly, ~ue to (73), the right-hand aides of (72a) and (74) 
must be the same, and thti functional form of relation (74) is caused 
by the explicit formulae (34b) and (47b), i.e.,finally by the struc­
ture of the Coulomb functions. Hence, for an arbitrarY two-body prob­
lem (14) one has the relations (72a) and 04a), if q_ obeys (46). 
This means that for the problem (14) the relations (46), (72a) and 
(74a) are automodel, and <J,., d../'lt R, R and 'tc are automodel para­
meters. They have an automodel meaning analogous, for instance, to 
that, the Reinolds parameter has/57/. 

Next, in the ,framework of eqs. '(JB-43) we have calculated the 
sequences { ufe_ ( 1<_, "l, B f) 3 f=i or the x±d -sca],tering tunc~)iNns 
corresponding to the sequences of the potentials+ LV.p @(B :-- 'l)J. 

· · c J A u+ B- ' ,=1 Hav~ng solved ~neqs. 71 for = Cp and we have found 
that the relations 

B(u.cp<K,'n, E, {K,sgn 'fc, 'l"p 1)= B( ~.PCK>,t")K,S9n \{;, -r P ~) ' 75 
l ±. 

are valid, when e, "lp and £;' are the same as in (72) and -'l..:$ BN. 
We have got also+ that to calculate the functions llfp on the inter­
vals 0 ~ "l' ~ B N within the accuracy of six significant digits, 
one should set s;= 50 'lc and B;:o Z"p+50R.As follows from (72)' (75)' 

25 



to calculate the 3r.±d-scattering functions with the error (70), one 

has to cut off Vp (15) at the corresponding points B± depending 

onE , {K,s9nVC, 'l:p~ analogously. to B (72) for q; pCK)· Clearly, 

this statement is automodel when (4G) is valid. ' 

As a next example, we explored the pp -reaction within the mo­

del and method described in/21 1. Upon a series of calculations car­

ried out within eqs. (38-45) and (56,57) we found the sequences 

{ N psCK B·)JN and { /ICP.S(K,f>;)l·N_, for Nc ps (41) and 
c, ' L L-i D' ... L--,5.. A N , 

the function A cpS (K,o)defined earlier. Letting = Cps and then 

A= A cps in (70) we established that the formulae ' 

B(Nc,ps.C, {I<, 'lp\i= 

well approximate the action radius of Vp(15) for Nc,ps and /\cps 
when£< 0.1 , I:~ 10 keV and "lp= 4 fm. 

Note, due to (72a) and (7q),ithe action radius of \/p for the pp­

reaction cross section O"mE" very slightly depends on E and l.S 

smaller than the action radius of vp for the pp-scattering cross 

SeCtiOO oc,ps I . 

Unfortunately, the demonstrated numerJ..cal method for evaluating 

the action radius B of Vp (15) is not constructive because B may 

be obtained from (71) only after calculating a function A of inte-

rest and because to get B as a function of K it is necessary 

to calculate A for various K • These circumstances are actually 

the main defect of the numerical method for finding B . 
Another method to get B for the studied function A (K, '{;) is 

an cnalytical method. It is based on the ~no~ledge of single (any K 

and t-oa ) or double ( K-0 and Z: is large enough but fixed, 

or K is small enough but fixed and 2:- o.:::. ) asymptotica of A(K,Z). 

To demonstrate this method, we give below two examples. 

Let in (70) A be the :n+d-function o~~B{K 'l) (50), then the 

action radius of Vp (15) for the 'Jt.+d -phase shift , 5:w.t::e(K) reads as 
C,p 

WKB _f/3 1/3 ( 
BCoc,p(K),E,h,\f>OJ):::(16E!S) 'tc:::O.CJe- tc 77 > 

Since for ~ ~ 10 keV and 'lp):0.1R the condition (54a) is fulfilled, 
s- .,- I!IKB 

we have oc .. fCK)-:t uc p (K) , therefore,.for that 'Yp and ener-

gies B (77 has the ~ame functional form as the second and largest 

term of the sum (72a). Hence, the first term, i.e. 0.3~C , describes 

approximately the contribution from Vp {}("rc-~) to the action ra­

dius B (72a). Evidently (54a) and (77) are the automodel relations 

for similar reasons as for (46), (72) and (74). 
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~ow, let in (70) A be the function Nc,ps(0,'t)(41) which, 
owing to (?a), (41) and (45), is equal to 1/C0 ('t). Using the asymp­

totice of C0 (~) as 'l_,.o-.o found in/21 ~ one can easily solve (70) 

for B and analytically find the ;action radius, 

B(N e lK't ~)"' ~t- 21s= R(d;wR3)21se-21s<7sJ 
c,p~, ~ , P ~ 

or Vp<'5l for norm factor Nc,ps of ucps osJ in the case Vc -,o 
and K==O . It should be. stressed that the explicit formula (78) ac­
t.ually gives the major estimate of B which ia valid also for a non­

-zero but low enough energy when the relative accuracy for the appro­

ximation Nc,ps ·(K, "t)::: ~c,ps(i?,'t)is smaller than 8 for any ~ 
Note, also that for pp-collisions (78) agrees with (?G) and S from 

(78) is an automodel parameter. 

So the analytical method allows determination of the action ra­

dius B of Yp(15) without calculation of the sequence {ACK,Bt>3i.~i 
required in the numerical method. However, the analytical method, as 

well as the numerical one, has one defect. In'deed, the exact lower 

lijllit E of the interval "l: >...- f where the explored function A 
may be replaced by its truncated AE as t'-+OCJ, is usually unknown. 

Hence, by the analytical method one can actually find the major esti-

mate of B , i.e. B satisfying ineq. (70) rather than eq. (70). 
The resume of our numerical and analytical treatments is: the 

lower bound B of the interval B < 't ~ o.a , where Vp (15) may be 

replaced by identical zero, is, in general, the function B=B(A,e,{~l) 
depending on the studied function A , relative accuracy C requi'-. 

red for evaluation of A , collision energy, .s9n ~ and parameters 

of Vp 
We propose to use. this bound which should be always defined with 

r.espect to the explored function A and which may be in principle 

found from (70) and (71), as the action radius of Vp (15) at given 

E~K~ssn~,d.."''tPand R . Physically and mathematically, a similar de­
finition of the action radius seems to be correct for an arbitrary 
potential. Using this definition one again bas to keep in mind that 

the actiqn radius should be defined with respect to a problem in ques­

tion and may essentially depend on some other parameters. 

5. Summary and prospects 

Let us recall our main results. In Sec. 2 we indicated earlier 
unnoted mistakes and inaccurate points which, we found in the quoted 
papers/14,l5,l7, 21 -23,40-44/ and we showed bow the methods of papers 

117, 20- 23/ may be improved and developed. In Sec. 3 we formulated four 
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important problems and suggested some ideas to solve them. In Sec. 4 

we presented our numerical and analytical results of treatment of th~ 

problem J), proposed a correct definition of the action radius of th·~ 

polarization potential, and demonstrated two methods to find this ra­

dius. As we stressed, both these methods have defects. This fact and 

the remark given at the end of Sec. 3 show that the problem 4), i.e. 

the correct definition of the action radius of an arbitrary potential 

in few-body problems is an interesting and important problem which we 

suggest to carefully explore along the line indicated in Sec. J. 

Now we list some facta in favour of the formulae (JB-53, 57-59, 

72-78), we have obtained, being useful for future analytical and nu­

merical investigations of the low-energy nuclear collisions. First, 

all these formulae may be easily generalized to the case when V (1) 

is V = Vc + Va + V
5 

, where V S obeys (4) and Va. satisfies 

(4a), but has the asymptohcs Va. = Oc't.-a), a>2~t ...... ~Second, as 

we have shown, when the system (44a) under conditions (44b) or (62) 

is solved, one may: construct the AE's (43) and (63) for regular and 

irregular solutions of eq. (14a), find the coefficients a (oo)(4t!) 
~ ~s 

and "c 5 (DO) (49) in LEE's (8) and (12), and also get the coefficients 

1\~'2. ' and An. in the LEE's (57) and (ti9). Third, it is very impor­

tant that eqa. (3B-45,4b,49,57-69) allow us to calculate all these 

coefficients with a high accuracy and without interpolation to a Zero 

energy because the key-eqs. (44) are very simple for a numerical so-

lution and are K -independent. Fourth, eqa. (38-49) and (56,57) may 

be generalized to the case of noncentral potential \(5 containing 

spin-orbital and tensor terms. To perform this generalization one must 

separate all the discrete, i.e. spin and isospin variables and then 

derive the matrix analogs to eqs. (38-49) and (56,57). 

In the framework of deri~ed equations one can, for instance, 

successfully investigate the LEA for the factors Sq 
3
(E) of aatrophy­

sically important14B/ reactions 3H (ci..,K) 1Li ;nd 3 He (ci..,K) 'Be 
and reliably find the first few terms of these L~ without energy in­

terpolation. ~In this connection we must point that the idea to use 

the first terms of AE's (20) for the calculation of the factors Sq 
3 

at E=O was first realized in /57/ within the two-body SchrOdinger 

equation describing d. 
3 He and cA. 

3 H -scattering. Recently this idea 

has been employed in /5'd/ to calculate these factors also at E' ::::0 
within the algebraic version of the resonan~ing group approach desc­
ribed in /591. 

Fifth, since for the nuclear collisions the ratio d.. /"r~ R is 

always small enough/3/, the approximate formulae (7.2-78) are automodel 

and may be used for a reliable definition of the upper limits of in-
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tegration of various equations containing Vp (15) and oriGinatinb 
from the problem (14). 

In conclusion note that the scheme we have followed to derive 
AE's (4J,63,G9) and formulae (72-7U) look promising for the solving 
the o-- J) low-energy scattering problem written within tbe poten­
tial harmonic approach. The results of these constructions form the 
contents of the subsequent paper. 
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