


1. Intrecduction

Ag ig known/1/, the most essential deteils of the super-low=-
~energy scattering of a charged projectile by & terget with a exten-
ded charge distribution may be establimhed within the two-body model
with a potential

V=V, +V,+V, . | (1)

In the gyastem of units (h =L =Ju,::i) used in the following

\é from {1) reads as *{/¥R , where ¥ is the distance between
the projectiie and the c.m. of the target and R > { is the Bohr
radiua for the system "projectile plus target™. When the target has
a spherically symmetric charge distributicen, which ie assumed in
the following, the rest of Coulomb intersctions, i.e. the polariza-
tion potential denoted in (1) by V% , has in the sdiabatic appro-—
ximetion the asymptotics 2/,

Vocry~ - 4/2Rz¥ , t»R | @

where ol is the electric polarizability/3/ of the target. The
last term in (1}, i.e. yé s describes the non-Coulomb part of the
effective interaction, and therefore

V() = O(VP(‘LJ) , T»R (3)

Below we restrict our considerstion o the S-wave collisiong
of twe particles interacting via V(1) with V having asymptotics
{2) snd bg having an arbitrary shape but astisfying the conditions:

zﬂiyg 2V, cny =0 | V) € C(‘;,W) ,  (4a)
bim e (exp (4 Czsgnl, /R)

T~ 0o

172 -
) Va(2)=0 , (4

where =% and L=0,T,..0
For brevity we use everywhere the following notation. We detene



by &,

o the total phase shift from Vca: VC +Va , Where

a=p,s,ps,..and V. ps = V V.S . Symbol 6‘5‘,(1. stands for the
phese-shift produced by Va , s p,s,ps,... and additional to
the phase sghift 8 from the Coulomb potential VC . We represent
by the phase shift essociated with V and additional
¢p, S
to SC.P_ 6;: 5;‘ . In the ebove notatlon, we write V -V(j)
’
and
Seps = o + ps s (%a)
‘ gcps = 5;.-p+ 5@}3 (50)
when VP and VS are preseni in (1). VWhen VP or VS is ab-

gent in sum (1), we use es = 5; + 5(_.’3 or SC ingtead of
SCPS (5). When necessary, the apalogous notation is used for some
other functions corresponding to the sbove-mentioned cases and the
shortened symbol A or A(K) stends for the limit as ¥ -+ o= of
the pnase function’®?’ Aczy or ACK,'Z') , where K2 = £ is the
collision energy. ‘

Now, to explain our main aims, we recall some results known in
the potentisal scatter1n§ theory, a modern review of which one can
find, for instance, 1pn

The low-energy (K- 0) agymptotics (LEA)} of 5 /8/ 8 /97
and 5;’5 /5,10,11/ are known explicitly and, respectlvely, read aa

SE(K) ~ (an - 1)-PJ¢/¢ , (&)
YakS/15R2 + 0(kRY® v, >0, @
iané;p ~ »
’ “Qep K C_(D) (1+0(1)) V. <0 (7%}
and
tang g (KI~ =&, (K C (9)((1 ac,s K (265/2+R/3))+0(KR) 18l

In (u=9) the function C(Q) of h = Sgnv /ZKR ig the Coulomb

barrier factor/B/, &€, p s o
/155571 cany

and t ‘are the finite cobstants
6,5

usually ed the scattering lengths and the effective
radiug.

Next, it is known/4’5/ that the picture of threshold potential
scatterin,g is determined mainly by the behaviour of the potential
tail. Due to (1-3) the tail of V, is + . When

CPS VC VP VC >0
1]
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and K —¢ » then, according to (7a) and (8), ISC PI »!5;281’

and therefore,

Sc,ps (k) ~ O, p (kY ~ Oca kSR™2), k=0,

Hence, in the above case the contribution from V, to Op ps do-
minatea over the contribution from V; , and therefore,b% Baa to be
taken into account in the super-low-energy problemsof puclear phy-
gice.

Attention to this physically apparent siatement was renewed in

12, 13/, where the Pd -phage shift ¢, ps wae ingerted into
2
= 1
Ke,ps (kv = k Coeny ot &, o> + hap) /R (10)
and then by using (9) it was shown that the scattering length
a =-lim K. . (x) (11)
s
¢, P kg G ps

is infinite. Thus it was proved that, waen Kc ps (10 and ac ps(11)
are defiped analogously to the effective-range function’

2 -
KC,SCK) =k C'apeot &, corhop/R-agis+ k2, 12+.012)

and the scattering length

-1
a = - fzm K (13)
C, S K—*C? c, S
. feor VCS , one gets Iac ps l = -

It ig just the result that has been conjectured in /9/ and that
has stimulated extensive research of the effects caused by electric
poelarizebility of nuclel in elastic snd inelastic nuclear reactions.

In Sec. 2 we give & critical and, as we believe, complete enough
review of the works devoted to this object and published after the
report/12/. We explain in detall mistakes and inaccurate points con-
tained -ip some quoted papers, Also we prove that the methods employ-
ed in some works may be improved and developed for solving important
pioblems of the low-energy potential scattering theory and the theo=-
ry of astrophysical nuclear resctions.

In Sec. 3 we formulate four problems of that sort and outline
possible methods to solve them.

One of thege problems, namely the conception of the action radius
of & polarization potential having the amsymptotiecs (2), has as we



believe, a more fundamental gignificance than the others. Therefore,
ip Sec. 4 we analyse this conception in detail. In Uec. 5 we gummari-
ze the origipal results snd discuss somes prospectis.

Before proceeding to a review, we want to stress the followling
facts. Physically, ‘VP‘ & lV%} everywhere, therefore all the ef-
fects ceaused by \/P , i.e. the so-calbed pclarization effects are
esgentially the minor corrections to the pure Coulomb picture of
collision. These corrections have to be evaluated by mathematically
rigorous methcds to guarantee the justice of consecutive physical
conclusions. It is the point that we Bhall try to follow throughout
all the present work.

2. Criticel review
2.%1. The polarization effects in elastic nuclear reactions

There is & series of paper5/14_23/
explored within the two-body model. It was assumed that the S-wave
radial function (L{K,'t} describing the scattering of two nuclei,

, where these effects were

obeys the equations

(a§ + k2 -Very)uekey=0 » (148)
UCK,0) =0 ,  am)

wer,ty ~ sen (p- In2p+ 8, .. Cx>) = K oo (14c)
P-D P+ Ccps s P s _

where ¥  is the sum (1) with VC >, V. satisfying (4) and

S
Vocws 2= (d/2R24) Ble-7p) 09

where é; ig the Theta-function’gl and 2‘P is én gerbitrary but
fixed parameter such that (3) is valid when ¥ > 7 .
In/14’15/ the problem (14) was solved numerically for the pd-
gcattering. The phase shift 5%,PS was extracted from the asympto-
tics (14c¢c) and then was inserted into the functien D (see egs.

(3-5) of ref./15 which is actually the phase function
feq (K Tp) = tan 8y o (x,75) , (o)

where the other phase function 5; a (K"Zo ) is the phase shify
produced by the potential Va(z){;’('zo_z) and & =pPS . The scat-
tering length aC,PS (Z,) corresponding to this cut-off potential
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was defined apalogously to QL. ¢ from (8), (12} and {13}, i.e.
2
as
2
A CtpY - bim Lo 0,200k Cony (1)
K—~¢
where &€= ps . Then, it was shown that function (17) haa the

asymptotics

a, Ps(z)ma((zR)' exp(y ( =, /Ry ) Rey<d, e~ (18)

and formulae (10,11,16-18) were used to prove that CL Ps(ﬂ-ﬂ)(ﬂ')
is the scattering length g PS(H) and iac Psl—oa Thus, the mgin
result ([ac Si -oa) of papera 213/ wag confirmed in 4,15/

by direct numerical golution of the problem {(14).

Note, 81l thé mumerical results reporied in
ned with a too poor accuracy, because (18) digagrees with the esymp-
totics

/14,15/ were obtai-

Qe ps (T ~ — (AR/16T22) exp (4 (7, IRYE) 4 s om 19)
derived in /18,21/ explicitly. )

In view of this critical remark and alsc for the following dis-
cuggion we present the facte proving that a high sccurscy calcula-
tion of & and 5:: s by a direct numerical solution of the problem
(14) with K- ¢ e impossible.

Firast, even when V(1)is VC , the high eccuracy calculation
of regular (K T)= F(P,D). as well ag irregular WK T)= GCP,D).
solution of eg. (14a), i.e. the Coulomb functions , is posgible
/24,257 only by using special recipes based on the asymptotical ex-
pansions (AE's). For instapce, when 7 & 7, = 1/k2R , one mey
succesafully use the finite series of the Bessel-Clifford expansions:

Fepmd = KC(D) Z kK2 ), Glp,m= C(Dyzkmg(z)(zo)

where {-n and gn are the known/B 25/ functione.
Second, when K-=»{} , the asymptotice (14c) rapidly oscillates;
due to (5), (6), (7a) and (9} 5:. g and gc are large whereas
80 ps .vanisghes; moreover, ' is also a function rapidly decrea-
Bing,in the region ¥ ¢ ¥, , because in this region aNKC(D)(see,
for instance, refs. 0, 19) '
And finelly, to find 5 c,ps within the problem (14), one has,

evidently, to calculate a With a relative accuracy €<I5E Psifor
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any < B , where 3 , i.e. the actual upper limit for integration
of (14a), must be equal %o a certein 7, /19/. Hence, £—~0, B-——baﬁ
as K-> .

For the above remsons a direct numericel treatment of the prob-
lem (14) becomes still more complex with decreasing energy. Evident-
1y, one has to rewrite this problem in & form more adopted for nume-
rical and analyticel investigations.

WOrks/16"23/ have been performed alopg thia line.

Having sctually used ouly the decompositions (5) end the known /8/
trigonometric identity, Bencze and Chandler 16/ have elegantly de-
rived s simple formuls for the Coulomb modified S-wave gcattering
length function AC a (KY in the presence of the potential Ve
that falls off faster than 2~ 3 a8 % —» o= , Also, they have nume-
rlcally proved that for the pd-scattering length function AC Ps(k)
'this formula, i.e. *

=K' x ' 2
Appstr= K pocky = ACP’S(K)[‘i-iangc’P(K)/ACP,S(K)KC e

€,ps
L4+ Aep strrtande pcxrk c?]
where KC ps ig defiped by (10) and
)

Ed

-1
Acp,s (K) =~ [szcD) fan5CP,S(K)+ hgp/RT 7, (21v)

is more mccurate than formula obtained in 712,13/ by using (10}, the
approximation

8, ps % 5c,s + 56,{_) (22)

and the first Born approximation/glw

ian,g a(mwz‘ana k> = -k~* S V ce) F! Zext 9)0{7& (23)
7&'.

for iané;amth a=p and Te € Tp.

Since 1965 it is known’ Y that (23) correctly describes the
threshould behaviour of the phage shift 5(.‘ a produced by the cor-
rection Vv - V 'Z’a e 53, Tresto V >0 . Recently, Kvit-
sinsky 17 haa generalised this statement to the case Q)i ,- BRE=-
lysed 1LEA ofg when V < () 8nd decribed the threshould behaviour
of the scatterlng amplltudes {C €K).

In particular, he proved the asymptotlc (K—-O) relations

?0
e p(K)~ K, T)) = S (\/am/zpc(x,f))dt ~ (24a)
(2



~ (Va J2RT X)) ra-3 Bca-1,1/2) , (24b)

where 'zouo, B is the :Beta-function/al and. (po ig the zero app~
roximation for the molution ¢ of e very complex nonlinear problem

0 = (Vg/2pY(cosRCxy+p)-1) +

(25a)
(pe/Pe) sinp-cos (2, +¥) |, ¥>7, ,
with the gingle boundary condition
PR,y =0 (25%)
and tke functicns
CK,2YE K (L~ sqnVv.rx) Y2 (25¢)
P (K, ZYE K - sgn V. T, . 5¢

2, k0 = avctan (p ke P(ﬁ,g)/‘c_"(ﬁ,{)) ). (@)

Unfortunately, Kvitsinsky/17/ has not noticed three emsential
facts. Firgt, when VE =f , eq. (25a) becomes the equation firstly
derived by MacCallum/26 and studied in deteil by Dashen 21 . Second,
due to (25¢), the unhomogeneous term of (2%5a) diverges as T -+ 2& .
Hence /28/, the problem (25) may have many solutione. And finally,
owing to (25), for all K ) & the phese shift é\ea(K)E YK, o0)
does not depend on the behaviocur of \Ql in regioﬁ T« ?C . Phy-
sically, it is an asbsurd result. For the above reassons we are compel-
led to note that Kviteineky's proof of the formule (24a)is not
quite corrent. Undoubtedly, the problem (25) has to be added by =
gecond boundary condition, for instance, by the value of QOQ‘K,ZC),
or regularised by Dashen's method. Althougk, having done this, we
have verified {24}, we want to stress that the problem (25) &s well
as its above modifications seem to be impracticel. In fact, the solu-
tion ¥ (K,%,) of (25) has no meaning of the phese #hift from
) "(a Q(-zo_'z), if 7,<oo, due to \é/.?pc-tem, it tends to {F(K,o2)

88 ¥, —> 0o too slowly; moreover, due to oscillating 'IC (254),
it rapidly oscillates as' K, 'z‘; i._, 7 + Therefore, it is wise to desl
with the phase fupctions having an apparent physical meaning for all

T 2 ¢ end defined as solutipns of correct and simple problems,
These phase functicns sre, for lnstance, CS_ /18’19/, S and O
/20/, and C and 3 /21/. o

Bencze and Chandler/15/ have uged (16), (17) and the limit
(deO) forms of AE's (20) to derive from the known/4’5/ equations
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’ - : 2
§iq =K1V, (Fecosb, g + G sind; o), 250, (26a)

>

e g (K, 0= 0 (261)

the vquations
aeqg = Vo (fy - % a 9o )2 , x>0, (2Te)
Qe q (0)=0 (278)

for QC’QCZ)(‘i’?) and then to find the asymptotics of a; a(t) aa
¥ —+» oo explicitly. ?

By integrating this asymptotica one gets (13) when &= pS§S .
Although PBencze and Chendler 18/ have pointed out that their main
regult (iac s(cO)l: oc) has been conjeciured in/5/, we refer to
the original’ abikov'a paper to formulate a useful criterion.

By employing (20) and assuming for t{.‘ (16) AB

@
- 2. ¥ 2n (28)
L, a (K, 2= K Cop EGK Aa,n('z’ hop) ,

Bahikov/‘I v has reduced the problen

/

) tca=~n<'4va(F'+tcaG)2, vy 0, (29a)

p o (K, 0)=0 (290)

to the recurrence equ&tio'ns for A , FL=0,1,... By analysis of
these equations written aas 'Z’>>R ? one can easily prove that
[Aam (o=, 0)] <o if and only if Va meeta (4b) for all
ne<m+q - Due to this Babikov's criterion and the idenvity
aC,PS (ee)= A 8,0 (= () that follows from {17) and (26-29),
one has to keep in wmind that the fact ] ac ps (oo)] = oo has
also been conjectured in *

Clearly, when solving (26) or (29) for all ¥>{, one may, by
enalysis of the ratio 5c,a (K,'C)/CSE aCK,o"),get a detailed infor-
mation akout contributions from various parts of V to the phase
shift Sc o - It is just the remson, why for treatment of the 7td -
scatterin’g within the problem (14) we s/ have numerically integra-
ted ega. (26) rewritten in terms of the P= KT variable. As we
have found, the td -phase shifts CSE. and é} pPS are formed
mainly in the interval C08 'Zc, QTC)both’limits of"which are energy-
-dependent since 'Z'c = :[/K‘?R;the relative accuracy of the approxi-
metions 5(',6! (K,o0)= é‘c)a (K,/IS"ZC) is 107%; when VS =0
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the solution Upn of the problem (14) with \/ (15) may be appro-
Ximeted by its agymptotica

“cp (K,7) = Pcy,g)msgcp(m + G(_p,g)sin.é} (k) (30)

or {t4ec) only for 2)22 or T» fﬂtc , respectively,
Also we have calculated the nonceclllating parts

S (K> = 92Kk™2sin? S, 00,wneve @=P,pS of the 3*d -

croes gections 6" CRY = 4E K™ 25“‘125 (K} and proved that, due
to the fact 5(! 52.3 €0 a8 K-> 0 y the cross section 62. s
hes & deep &nd sherp minimum. A we have pointed out, this effect is,
in essence, generated by interplay of V and V in the Jr'of -
scattering end has therefore the game neture as the Radsauer effectjz/

The above results of refs.’/t1+18,19/ show that eqs. (26-29) are
well adopted for analytlcal and numerical treatments of 'the contribu-—
tions from Vb (15) to the scsttering length (17), phase shifts and
cross sections of elastic collimions. However, tc get the solution
of the problem (14) within egs. (26) or (29}, it is necegsary to golve
these equationa, evaluate the corresponding amplitude functions/4’5/
apd only then one can construct & . Therefore, it is more practicsl
to ugse another version of the varisble phase approach, namely, & verw
aion in which (£ and é% a(ﬁ)may be found simultanecusly after solv-
ing a simple linesar system for two phage functlons, for instance,

es,sn /20/ or C, S /21/

The most sound Bencze et sl./ch results are the following.
First, the suggestion to use ¢S and SN for a high sccuracy calcu=
lation of the regular tlca and irregular UEa solutions of eq.(14e)
with V= Vca » @=P,S pS, and K=+ . We remind thet, follow1ng/4
Bencze et al, represented the function LlCét asg

= (es(Frel)+sn(C§)) (313
found a complete set of the equations
5" = Vy Upg €CG) , sn'=-Vy Upy (FIKC), 250, (320)
CSC(K, M= 1 , sn(k,0)=70 (32b)
that uniquely define S and SY1 , and showed that
tan 8, o (x)=-K C%ny lim (snixDr/escrn)os)

oo
Second, the formula

tan dga (k)= Byg (K,00)/(1+ By, (k,0, o°)) (34a)
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where T
= -1 )
Bna(K,'Zo,'I)= K é\{zwuca(x,i)[(;(u,og gn,z“ (34b)
0 -F(xt, 5y Opn 4 1dt,
~inat has been proved by fthe known method of the generél theory” for

the potential scattering/‘?g/. Third, developing the kpown idea (see,

-11,30/ ., uge decomposition (5b) instead of (5a)
and exploit the corresponding effective range-function

for instance, refs.

{
p;s
~ /30/
where C and h are expressged in terms of certain integrels
but, in general, are unknown explicitly. And finally, the proof that
the modified scattering length aCP g frow (35) is egqual to
.

. - ~2 i - -1 2
K, (x2=xC cmcotr‘)‘%smwh@) Qg o K Tep,s/ R+

Cp,s E- Lim tan 5(‘.Pscx)/:< C(253=-&'m tand, Pscx)/K C?g) (36

_ . k=0 ? K-+0 ’

ig finite, hes & physical meaning and may be eaasily evaluated by exte
rapolation of ian(S; PS(K) to K= @ or by direct solution of eg.
(168) with K=0 .

Undoubtedly, it is urgent to 'Edd the Bencze et al. theory by em
efficient method for evaluating C ’T}_ and ZC Sentering into
(35) and {(36) and find the boundary conditions unique'ly defining ¢S
and SN for ?féa. In the present work we are compelled to restrict
ourselves to presenting these conditions. So, we write 'U‘ca«- Uca,
where Uca_is defined by (31}, spd get {32a). Next, comparing the esym-
ptotice of Uca_as % - () with the required form (‘IJE'Q',:O(Z-:!)) we find,
by iterating (32a), that

T

es ~ Coop (V) C.cht,gidi, sn—1, ¥,>7 =007

o
1 72V we developed & version slightly different from (31=33). In
this version && obeing (14) readSss

Ueg = Nc,auca.= Nc)a(cF’+SG) ’ o8

the phese functions C and S related with # from (16), (29} and
with €S end Sh from (31-34) by relations £=S/C » C=CS »
S=K szg)sn’ gatisfy the equatlons :

c

L K'i Va Uca G’ , S’:_K—i \/a lJCaF; 2>0)(39E)
cek,00=1, sk, =0, (39b)
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and the phsse ghift Jé.a ¢(K) and the norm factor NC (K} from (38)
are defined by limits as ¢ -»oe of the correspondifg funotions:

Oea(k 2)=arctan(Sck,0)/Cck, 2)), (40)
N g (KT = cos5 a (KT /eCKr, e . (41)

Qur treatment of system (39) with K-+ and & = P,S5,PS  was
based on the Babikovds | idee to use AE's (20) end on the Levy snd
Keller’,s/31/ idea %o employ the iteration method 28/. .

Below we generalise gome resulta of the work/21/ discuased by
using the complete AE's (20) and AE's: '

oo
2
Z‘ Kan ) s=xC%p X k*"g (mu2)
n
n=0 n=0
inatead of the truncated ones. So, inmerting (20) and (42) into (39),
(39) we get the analog of the first AE of (20): :

2

= kCap N, 5 «on U ces (43a)
: n= 0
where
= > Cc + 8 ) (43b)
Fem=n pfm Bgm

and ¢ and Sh obey the recurrence equations

2 Uggm, -V, Z,' Uff , >0, (4e)

a

f+m= Frm=n
cnw):é' , S, =0, n=04,., (v
and Nc,a expands as /21/
(0= Z 2 N( D AN w0, e
n=g c,a
where N n=0, 1' 2 are finite constante and - A N =0(K6), ,
G a y 1673 C,$
but AN, e, p.s A N = 0(K ). '

In the regioh ¥ 3 ‘chﬁle AE'® (20), {42) and (43) converge
too slowly. Therefore, for approximaetion of ,S and {{ in this
region we have uged in ‘. the functions C(m), Scm) and “(m)ori-'
ginating from an mth-—iteration of aystem (39). We have got the con-
dition on VP (15), Qpg(13) ana K

>
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g= (4/3RTE) max | 3 a2V, (46)
lagg/ 2p +0(KR)2|} < 1/2

that ensures the uniform convergehce of these iterations in the re-
gion T 'ZP apd the validity of the representation

tan§, p(K) = tan 5;)4;(&»)[ 1+ 0(B ff;)(x,zp,oa))] (47a)

where K—+(,

1
ian5c(4; (K%)= B:;)(K,‘zp,‘z)/[i+ B’ )(K,‘ZP,‘E:)] (47b)

2P

4y ) _

apd Bh is given by (34b) when “C‘P ia replaced byF. We have

ghown that, due to (16), (17), (33), (40) and (42), the acattering

length ac’a, a=p,$,psand the effective radius PZC,S from (&)
are the limits aa T —o= of the corresponding fupctionss

Qp o (2Y==5,(22/Cp (2 (48)

) (49)
T (%)= 2R/3+ 2lc,cox 31(”/%,5:;‘"”]/ S, ),

Alpo we have proved that LEA (7a) follows from (47}, the function

Cl.C’Ps(Zo\(‘tT) represented as ratio (48) has asymptotics (T9),eand

therefore,diverges as T, > @< whereas the effective radius?i: 5(2'03

(49) corresponding to the potential V. ()@t ~7T)tends to »P
2R/3 as 70"'""—"‘3- ps ° o)

Undoubtedly, the Kcz_behaviour declared for B“P (K,’zo,'zc) in
(470) is a groge mistake of our work’21/. In fact, using for F the
appropriate AE's 25/ gnd applying the stationery phase method/32€
one cap easily be convinced that Bgi) (K,'Zo,'l’c) =K 46,3) wnen

K-+ and Tp < 'Zc . Portunately, this mistake, as we have
established by a careful revision, does not alter the main results we
have obtained in /21/, discussed before and shall uge in the following.
7-21/ convineingly show that the variable
phase approach is a well adopted method for exploring the problem (14)
with\‘/?' (15) and K- { . Another sfficient method is the WEB-app-
roach 33/, becauge it also has an apparent physical interpretation
and aliows. one to get msome LEA explicitly.

These facts led us/az/ and, as we believe, also L'vov/23/ to
investipate the problem (14) within the first order of the WKB-app-
yoach, We and L'vov reproved (7a)} apd (24} for a@=4% and found, in-
essence, the WKB-approximetion 6—-:'!( (K,'t) for the phase Tunction
(SE p (K, ) from (16} and (25)) This epproximatiop reads as

3

The results of papers
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wWKB .
SCP (K,Z) = @, (K, %) = (ot KS745R?) (1-2)V2 . (50)
’ (322/8 + £/2 + 1)
with (f, (24a) and ¥ = ¢/ Zo >4 . Woen 7~ s the WKB-approxima-
tion ({,(,”KB) for (L beconmes :i.nc:or:c‘ev::1:/33 ,therefore,in/22/ we
have constructed . L(c s =8

- as .
Ueps =Nuls = N (F'cosgc,s(m-rq‘ 3‘”5;,5“"), 27 (518)

; {518)
Ueps = Uep cosgcp’S(x)arac‘PSm (%D,gk‘), (25

Replacing F', G,’ L{CPandKBZf&P by their found WKB-forms, we got the
WKB-approximationa dw for U (51a) and C(C S (51b) and then

cpS [ + 3
from the usual/u ccndit@on u'g"g Pe Cfé Q‘t_,)we found the WKB-appro-
ximations NWKB and & WKB P for = A/ and ep, g from (51).
of refs./ 125713/ put uging fhe approximstion

R (2. CPsS
Next, exploiting the idea
x S.WKB WKB .
by - + instead of (22) we have treated the
€, pSs 6P Cp-S . wK N
threshold betiaviour of fhe functions AC s KD approximating the
scattering length functions AC‘ S(K)’ = - K; ps (KD, where
c. ps 18 defined by (10), for ,ﬁae ascattering of’p,d,bH end YLe
by déute;ons and for the .‘.'r‘f"'d, %+ 3H mnda  H+9He -ascattering. We
have made thieg to estimate the upper bounds of energy intervals, where,
due to VP {15), the functions A: g (k) are nonlinear functions of
energy and where, for this reason,” V ahould be taken into account
in the theoretical investigations of the above collisions.
Deriving in/22/ the formula for 5 w S we heve, without the
3
slightest grounds, dropped some factors. For the collisions we have
congidered they sre very close to unity. Howeveﬁ, ?ow uging the func-
. s L Fe2 -
tione pn(}("zp)) 9(0, ?P\Emd Q(O’,ZP) found in explicitly, we

present the correct result N

farn 6‘:;’:? (xy=-kexpegny-lay R + (52)

's Fd
2p (ac,s ~Tp) PY 1/ 1P + Capg-7p) Py 1,
to get the WKB-approximationﬁ
a X8 =- Lim (tan 5;;‘“5 (> /K Cy) = exp (-20)-
2 K= > , ,
[QC’S+ ?P (QC,S—'ZP) (3/3"@ )/(i:’ (aC,S—TP). (53)
(g7g+ @) ]
for the scattering length @ep,g(36) and show that IQWKB | <o
Aa we pointed out in /19/, A WKSS x AC g for the”  Jtd -
scattering. Preparing the present work we ha\?g verified that
W‘BQ A 21) for the pd -gcattering. Although these facts show
tg’aezs the%é-—formalism of ref.lzz/seems to be correct we must add it

in

I
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/337,

by the known conditign

Pek,e> = (K2/64) § p‘féf{) |p'ex, - (54a)
% -slnpck, ) ldt < fndsz,
where
p2cK, ¥y = (K2~ Vcct)—vpcr))/K‘/, (54v)

ensuring the validity of the inequalities .

bzek, 27 zWKBeiws —11 < 4
where Z = uCP’ ?ch and 2'>?.'0> 0.

Completing this part of review we wigh to point out some inte-
resting details. The exact representation (34a) for tancfz. ig re-
duced %to (47b), where Z= e= , by aepproximating acp’.tF'. When (46)
ig valid, the denominator of the fraction {47b) maybe approximated
by unity. Then,one gets formula (23) which is reduced to (24a) or (7a)
By using the WKB—asymptoticslzle'Q (t/pc)“ 2 pith Pe (25¢), Because
of these connections between the results of dif:t“erent workslg’w’zo’z”,
ane ghould expect that for calculating of 6; P(K) the approximation
(47b) is more accurate than (23) and (24 a).’

2.2. The p(flarization effects in the nuclecsybthesis reactionsa

Since 1986 when. Belyaev et al./ 3%/ predicted that the pd -po-
tential VP (15) violates the p(dy)3He-reaction uniterity, the role
of a polarization potential in the nucleosynthesis reactions is inten-

sively treated. To demonstrate how understapding of this role has
developed with time, we shortly review all the relevant papers/21"23’
34-47/ in that order in which they have been published.

The extraordinary results of paper 34 , in particulaer, the proof
that V. (15) causes the divergence of the Pd ~reaction cross sec-
tion and its factor S (in our notation 6"'me snd ‘SCP )} made
us to present in /e2/ the WKB-estimation DWKB for the contribution

Dexy = SCPS(K)/SCS(K) -1 (55)
from the pd -polarization potential (15) with o =0.7 fm3/3/ and
Tn=4 fm to SC 4 Ag we have show:‘ka‘_D is & smooth continuous
function of the pd-—energy ang D --,,-;‘IO—3 for 04 E £ 6 keV, Hence,
the factors SC S and ‘SCP are also continuons and finite functions
in the vicinity of E =0, which contradicts to the above result <
‘SC (O)=oo of rer,/34,
PLater ,in/35'36/ it was predicted thatf‘she pg -reaction cross
gecilon fé;e had & very large ( 6'2.’: /6;.2 e"‘-' 4030) and
pharp maximum caused by VP (15).

14



The next work was the L'vov&'preprint/23/. Using elements of the
WEB-approach end perturbation theory in Vp {15}, L'vov constructed the
pd -gcattering funecticon ucps within the problem (14). Unfortunate-
1y, to estimate D (55), he replaced the obtaiped (A!CPS only by two
terws of its asymptotics as € — ¢ . This approximation is %oo poor,
becauvse the contribution from the region ¥ < 'Zd %« 4 fm, where
?."d ig the deuteron size, to SCS’ .S sla smaller than that from the
region ¥ > ?.'d . Nevertheless, L'vov got ])-..10 3 ard, hence, he confir-
med our rex;ul’s;/22 « Further, in 7 it was predicted that the croas

sectlon 6‘;.’” of the 3H(dn) Pe—reactlon bad a narrow maximum
(6““;': / 6"’-”" % 400) produced by the o >H -polarization poten~
tial.

Note, in the rapporteur report/BB/ the results of paperelB4 =31/
have been gummerized without mentiorn of L'vov3/23/ and Levashevb 39/
criticism. In this connection we must stress that L'vov 13 the first
who has explained that the gross migtake of papers/34 35 is the
groundless replacement of U, cp by acs (30) for all ¥ =0 and K~0.

Later, this mistake common to worka/34 37/ was pointed out by Le-
vaghev in theses/39/and then wag discussed in detail in a series of his
papers\/40'43/ actually repeating easch other., According to the standard
theory for nuclecosynthesis :1:'eeuc1::'|.orlaa/":'8 s Levashev hes conjectured
that the PP ~reaction factors ‘S(_‘S and ‘SCPS are proportional to
the square of the corresponding matnx element

Apq ¥V = (8% %] k3 (3 (g)) Sudm @ (KA, (56)
where cz S,PS and, “d is the dei?teron function. Then, ke re-
placed the PP -seattering function u,_.ps by the function (-(. eps con-
gtructed by him within the firat Born approximation over the PP-
polarlzatlon potential. As a result of this replacement, he foundA
and :D instesd of A cps (56} and D (55}. Hence, if one formulates
the main Levashev result more correctly, this result means that the
contribution DB from VP (15) to -SC?JS is neglegible because :DB is
determined by the value of V on the boundary of nuclear forces.

Although Levashev's treatment is more complete than that carried
out in/22,23 44"46/, and for the pd_ -reaction his estimation :DB"1O'3
of P (55) agrees with eaarl:xer'/22 3/ egtimations, we sre compelled
to give two more critical remarke. Firat, Levashev has estimated only
the part :DB of the total contrlhutlonD (55), nemely it iz (see
ref. /21/)the part linesr in the parameterd/R'Z + Second, mathemna-
tically, bis construction of the function U.CB g 1is formal. Indeed,
he, instesd of proving that “c%s‘ UCPS for all ¥ > ¢ , has un-
guccessfully referred to a numerical ev1dence/ 16,19/ of the fact that
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6}? from (23) well approximates the phase shift 5&

. Obyi-
ously, from this fact one may only conclude that “Cp ’zpacajo for
large enougk ¥ , namely /19/, for ¥ > Z'ZC .

Before the journal versions/41’42/ of preprint/40/ appeared,

Bencze presented in 4 an elegant apnd physically spparent method to
estimate I (55). It should be stressed. that this method based on the
S-matrix theory is more general tnan that developed in/21-23’34_43’
45-47/ Unfortunately, the final Bencze's formule {eq.(14) in/44/)
meaning that D (55) equals (tan 6'C P)Z is incorrent. As Levashev

43 noted, when this formula was derived one term was lost. Never—
theless, this regrattable fact does pot alter the maib Bencze's re-
sult showing the electric polarizability of puclei to have a negle—
gible effect on the inelaatic total cross sections of super-low-ener-

gy reactions involving deuterons. -
Now we give the critical remarka common to works/22’23'39 44/.

Although, in these papers various spproximation methods are employed,
none of the authors have estimated the ariging residual terms reli-
ably and none have ipdicated the energy region, where employed appro-
ximations are correct within a given accuracy. Further, the resulis
obtained in /22,23,39-44/ ¢, T (55) ere sctually only estimations of
]) ip the order of magnitude. Note also, all the authore of the
ahove works concentrated on these estimations rather than on the treat-
ment of LEA for the factors SCPS' '

The above defects led us to comsiruct in /21,45,46/ the mathe-
matically rigorous and complete enough theory for the pF)—reaction
including the PP -polarization interaction (15).

In 145/ we exploited (3t-32) and (55,56) and used the RSC-poten-
sial 749 as V,the RSC-deuteron function Uy and VP {15) with
o =2-10~2 w33/ %nd %= 4 fw. hs @ result of a series of high
accuracy calculations, for D (55) we eatablished that I)(O):t1o'6

and DCEY/D(0)x1.02 for E =6 kev.

Working again in the fremework of egqs,{31-32 ¢ proved i
thesig 746/ that > q 32,55), we proved in

n )
= + (K K"’D
i Negr= 2 kM Ny al\ g0, x>0, 1)
where /\ are constants independent of X =85 or a=- pS whereas

A = 0cxé a AAcps = 0(x 167
ATAW- (x6) =rd Afiepg = K

In a subsequent preprint/21/ we explored the truncated system

(44) and AE (43) with FJ (£45) in detail end suggested a reliable me-
thod to calculate the conatants of LEA (12,45,57) without energy in-
terpolation. By this method, that, in essence, is based on (38-45,
55-57), we carried out a detalled analytical and numericsl analysis
of Npg(56), 124 (57) sna D (55).
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In particular, for the PP -model used earlier in /4s/ we have got
that:Dst‘lO_fD hes a broad maximum at energyE =E 2 40C keV and
slowly falls with growing E in the region E)E + Also,we have
proved thet the contribution from the tail V, @('Z—Zc)of VP {(15) %o

AC 5(56) has the K"l ‘~threshould behaviour and therefore is
not dominant as compared with that from the part V| @(ZC"Z) .

To complete thieg part of review, we should uwention the recent
work/47/. In this work the knownm’s first Born approximation an
for tC (16) obeying eqs. (29) has_been used to comstruct the Ffunec-
tion [,LCP approximating the P?Be -acattering function U'C being
g solution of the correasponding two-body probkem (14), As a fifal re-
ault, it kas been shown that the first Born approximation D of
the contribution ). {55) from the P, BE—polérizat'ion potential (15)
to the factor SCP of the ?BG(P,X) B-resction is about 2.5+1073,

2.3. Regume

First,we recall the main results of works we have reviewed, The
result lac 3|=O° conjectured in 75,911/ 4n4 the fact that electric
polarizabil’ity of nuclei has a negligible effect cn the ruclecaynthe-
8is reacilons are supported by various anglytical and numerical evi-
dence. The finite gcattering length ac S having the physical mean-
ing is defined by (36). Asymptotics (7a) found in 79/ actually by
inspection of the first Born approximation:fc S for the phase func-
tion C,ps from {29), may be evaluated within’various approximations
presented above as (24), (47) and (50). The upper bounds of energy
intervala, where some nuclear-nuclear and piop-nuclear elastic colli-
gions are described within the problem (14) meinly by the tail VC
of VC S(i) , 8re estimated. It is shown thet the polarization effect
analogous to Remsauer's effect should be expected in elastic colli-
sions, if they may be considered within the two-body approximation
(14) and if 62}3'5;‘8(0 as K+ 0 .

Now, we focus our attention on two facts. S0, the main contribu-
tion frouw V 5 to the phase ahift 5& and the gorresponuding
elagtic cross section (. is caused E’y the tail V 9(2- Z ) of

V when V. > . Howevér, the main contribution from V tg the
norm factor s(4.5) of the scattering function (Lc S (38) and to
the factors SC’P of the nucleosynthesis reaction ig produced by the
other part of P 74 Jhamely by the part vV @(Zi Z ), where ZN is
of the order of magnitude of the nuclear size. Hence, the region,
where V acts effectively and therefore cannot be replaced by iden-
tical gero, depends essentially on the kind of process and a function

of interest.
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Fipelly, we must stress that all the above results have been
found within the effectively two-body epproximetion. However, there
is no criterion ensuring that an arbitrary few-body observable may
be egtablished within this approximation with a desirable accuraecy.
As it follows from all the review and essentimlly from this remark,
the modern theory of low-energy potential scattering and the theory
for nuclear-polarizability effects on the super-low-energy nuclear-
polarizability effects on the muper-low-energy nuclear cellisiopns are
incomplete and there are many interesting apd unsolved problems.

3. Four problems apd possible methods to solve them

Below we formulate four problems of low-energy potentisl scat-
tering theory, give some recipes to solve them and explaip why a comp-
lete solution of these problems is urgent for both the theoretical
and experimental treatment of interplay of short- and long-range for=-

ces in gquantum systens.

Ag. is known 1/, all the functions characterising the collisions
of quaptum mechanical objects are expressed through & regular or an
irregular wave function of these objects. Hence, 1) construction of
the LEE's for regulsr (u,ca) and irregular (?f&a) golutions of eq.
(48) wite V=V +Vg | V>0 end a=p,s,p5is the key-prodlen
for construction cf the LEE;E,for the phase shifts E;C,C! , elastic

6241 and inelastic Crén cross sectiona and so forth. We sug-
gest to solve thig problem within egs. (38-45) as follows. First, in
the regions T< Tp, T~¥o and 7 >502/C one has to represent [and

(G @s AE's (20), ss the olverts’

AEts containing the Airey
/8/

and as the WKB-series /25’33/, respectively. Second, one
has find the sppropriete AE's for the phese functions € and § fto
geparate the varisbles K and 7 . Aod finally, it is necessasry to
reduce in this way the original problem to the sclution of K -inde-—
pendent systemn.

It wes just the recipe follewing which we got AE  (41). Now, we
derive similar AE for U&Cl obeying (14a) end the boundary conditions:

Y = O™ , v, (582
~ cos(p-nln2p+&.5d , p=oo. (8

functions

Yea

Due to (14c} and (58b), Wronskian/EB/ for {{ ana ¥ is identical-
ly equal te K . Hence, we may write zf'Cl as
v = NL o = N (ecF+s@) (59)
ca c,a c,a
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with NC @ being the norm factor ofuc (38). Next, replacing ({ 1io
{14a) by’ ¥ (59) and using (58) we get for ¢ apnd S again system
{39a) vut with the boundary conditions

1 _
cekey~ k-1 é Va({.)(;z(xi,p)df, SCKD=>1, 252+ 0, (60)

(/]
that follow also from (37) apnd the relations C=(CS and 5=KC2.SY1-
Now, irserting F and G ag AE's (20) and € s=nd 8§ &8s the
aasuned AE's )

. 2yv-1 5= _2n =
c=(kC)T ke ey, 5= X ks 2y 6D
n=p h=Q
into {39a) we get the recurrence egs. (44) which, owing to (60) and
(61), should be added with the following boundary conditiouns

A ‘
~ 2 - 62
€ (%) é Va (t)gn_(i)dt s S, (0 5n,0 , 7,5, T+ (62)
0
As & next step, we substitute AE's (20) and (61} into (59) to write
the searched AE as

oy =(N“ ey ! f K2 2y (638)
ca c,a n=p n ’

where NC has LEA (45) and

A
0, = 2. (Cpfn* Sp Gm) :
f+m=n
Sipce the polarization effects arise in the region of very low

energies usually inaccessible for direct experimeptal treatments,
experimental deta should be extrapolated into that region. To this
end, it is necessary to know,in particular, the LEE's for the cross
gecticns GE,P > %,PS Aand GEP,S . Due to the formulae ,
- N 2 . — L -2 - :
LA Cym K% (sznéz.,a), a=p,ps; 6;BS=(€!JLK )(sméz.p,s),
the construction of these LEE's is actually reduced to the solution
of the following importaent problem that we forumulste as 2) construe-
tion of LEE's for the phase shifts Sc , 5(.‘ 5 8nd8('. LS "
We do not know s simple method to build tke’ complete LEE's for
(SC and . As we believe, the first few terms of these LEE's
may’ge found éxplicitly within an W=~ -=order of the WKB-approach or
by a careful anasiysis of LEA for the functions C(m) and 5("’) ob-
teined by an mf- -iteraticn of the system (39) or by employing %the
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new metbodlsj/ for evaluating the phase shifts. A relisble method to

fipd AE for cp, s is based on the known 1dea/4 5,20/ which allows
.

us to write the solution of the problem (14) a=s

= + 8 64

Ueps = Neps (U, Uep ) (64)

to get the system (39) in which Q@ =35 and F' (; stands for
a% » Z% , respectively, and to introduce 6-P:S and cp Sby analogy

with (40) and (41}, i.e. as the limit at T+ o= of the ‘correspond—

ing funections

8. s (K,2) = @xetan (S(KY/CCK,TY) . (65)

cp,
NCPS(K,2)=(COS(5' J(KT/Ck Ty (65)
Upon substitution L( (43) (63) and

CP

— 25 2n (67)

= k*e o s=k(N. C) 22 K5, (%)
n=¢ n ’ C’P n=0

inte the system for € and § described above we have that Crlend

Sh. from (67) obey the system (44) in which &= § apd

Up= X (U +s U )

f-t-m n mcp mcp
where {/ and U, are the functions {, (430) amd & (630)
mcp mef n m
from AE's (43a) and (o3a) for U, end Z% , respectively.

Now we substitute £ and S as 4E'a (67) into (45) and get
the searched AE

tan §. (K)=K(NCPC)ZZ K‘?“Ah (69)
3 n—o

cp,s .

Here We do not prove that |An| { o2 for all n= 0, ’l,__, , if and
only if Vg obeys {4b) becsuse this is tedious rather than interest-
ing.

Note, problems 1) end 2) are mathematical zrather than physical
ones, while the following problem, i.e.
3} 8 correct definition of the action radius for potential V. {15,
hag & more general and urgent physical mignificance. Indeed, this
problem arises at the origin of treatment, when one wants, on the ba-
8is of physical intuition, to qualitstively predict the expected ef-
fects caused by \/ (15) and to compare these effscts with others si-
milar in nature but cauged by \/ obeying (4b). Problem 3) arises
again when all the desirable formhlae are derived, and one wants to
use them for analytical and numerical treatmenis of the polarization
effects. The point is the following. The most part of analytical re-
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lationg are simplified by letting Vp=_=0 for any 7= B s Where

B o< 1is an appropriate radius. Moreover, in practice, the mcst
part of eguations, relationa, etc. contelning \G; may be numerically
solved only on the intexval 0<% £ B , where B is large
enough but finite. For %these well-known remssons it is necessary to
correctly define the radius B which, in essence, is an upper bound
of the distance range, where V, acts effectively.

In the physical literature/1’6’7/‘this bound is usually called
the action radius meaning a point EB on the T -axis on the right
of which one can let V =0 . Although, the conception of action ra-
diug seems to be intuitively clear, it should be specified in each
particulaf*problem. In the opposite cage, l.e. when one reliea only
on his own intuition rather than on & rigorous proof, the errors and
unphysical conclusions seem to be iIpevitable. Ag an example highly
illuminating in this respect, we refexr to works/35"39/, where it hasg
been groundless asgumed that the acticn radius oﬂJ(15), as well as
the sction radius of V% {4b), is energy-independent and comparable
with the deuteron size.

In computational mathematics’?2/ the action radius R of the
function V. is an upper limit of the interval 0<2s B cn which
the problem is solved numerically. This limit is chosen from the con-
dition that the ealculated function must be close, to a reasonable
extent, %tc an exact solution of the treated problem. In the asympto-
tical methods for the theory of ordinary differential equations/32'33/
the action radius E5 hes & meaning similar to the one menticned
above and is defined as a lower limit of the interval B £ % <o
where a considered function may be, again in & reascnable meaning,
replaced by its asyupiotics as 2—=>oe . These iwo mathematical methods
for finding ES will be developed in the next section in which we
report the results of our current treatments of problem 3). We helie-
va, these results will be useful also for solving the problem that is
is more general than the problem  3) and reads &8s

4) a correct definition of the action radius of an arbitrary two-body
potential in few-body problems.

To give ap intereating fact illustreting how urgent is this
problem, we address to the three-body problem with the two-body poten-
tial »g satisfying (4). Let { 3141 a be an appropriate potential
harmopic basis 7 + In general, the matrix elements

Voranen =,S Yy 1! Y
fall not faster than_p" when the hyperradius p tends to infinity
/54/. Hence, V% ugually called a short-range potential/1’6’7/ beco=-
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mes in the above three-body problem the potential usually called a
long-range on:u=,/1’6’7 « Clearly, to avoid this discrepancy, the concep~
tion of the short- or lopg-range potential should be defined almo
with reapect 4o the considared few-body problem,.

4. The action radiue of the polarization potential

Let ue start with a gedanken experiment. Let us forget thit V
and V obey {(2-4) apnd amaume that we know only the first, i.e. lead-—-
ing, terms in LEA (7) apnd (B), and we do not known the threshold beha-
viour ofAN, and AN, p, @=S,PS , in (45) snd (57). Exploiting
obly %his pdor information we try %o solve the following inverse prob-
lem: to eastablish the bebaviour of Vp and VS at large ¥ . H%)U,
then applying the Babikovicriterion, using (24) and the known, by aa-
gumption, leading terwms of LEA (7a) and (B) we unambiguoumly conclude
that V,, =nd V satiafy (2), (3) and V obeys (4b), whers n=41 .
When V <0 , the leading terws of LEA (7b) and (8) have a similar

K —dependence. Hence, using sgain the Babikov¥criteriop we may only
ghow that V \/ = 0(2 Yas -+ e . Note, in both the cases
( V 50 or V < 0 ) we are not able to prove relations (4b) for
nyq . Next, from LEA (45) and (57) with omitted terms ANca_andnl\
we ceannot show that VP apd V have different aaymptotics as
Zvoo .

Aa followa from our experiﬁ:ent the above inverase problem capnod
ve completely solved before solving problems 1) apd 2), and the con-
ception of a long- or short-range potentlal, usually used for V and

VS , reapectively, should be defined with respect to the problem of
interest. One can say that in the studied problem the potertial V ias
of & more long-range nature than the potential V' only if it is pro--
ved that namely in this problem the action radii B and B’ of V and

\/' obey the inequality B) B’ « Below, by éolving the problem 3), we
wish to demonstrate the general astrategy for findipg the action radi-
us of an srbitrary potential.

We define the action radius B of V {15) for a function A
as the solution B B(A E {Xi) of the inequality

d (A, B)E\A(B{JE)/A(M{JD-{HE (70)

with a fixed £€{0, {[) apd a nunber {53 of all the poasible parame=
ters arlslng in the probtlem (14).
& 8( b
WKB we consider: the phase functions ) (26), c, (47v),
and Sch (50),the soluticns aCCZ (K, z, B).,™ a=p, ps , of the
problem”(14) when VP is a cut-off at ‘Z- B , the norm factor

NC PS(K By(41) of CPS(K’?’ B)and the matrix element ACPS K, B)
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defined as the integral (56) in which (L  is replaced byil. S(K,'C,B).
We stress that in each case A,d, ,E and relation (70) wgll have
an apperent meaning. Indeed, A(K,B) , by definition, ise

A= A(K,oa)when Vp(‘IE) is replaced by V/ H(B-¢), and if B sa-
tiasfies (70), then A(K,B) approximates ' A(KYwithin a relative
accuracy d, smaller thap @ required relative accurscy & .

In practice, A(K,B) ig alweys calculated instead of A(K,oa)and

B is determined so that a required M gignificant digite in the
numbera A(K,B) and A(K,B') are the same for any B')B . To find B
ag a function ofM, one calculatesa %the sequence { A(K, B‘:)j,’"_i s COT=
responding %o the sequence { VP a(B;- ‘t)} iN-i with B, < ‘52(.__58
Then,one chooses from {B‘:’j:‘:i a growing subsequence {Bc, },NO
with the property that for each M=41,..., No”i the numbers HA (K-18 )
anc ACK, Bf;m+1) nave the same M pignificant digits. When that ‘m
gubdequence is foupd, ineq.{(70) is reduced to the ipequality

JdCA B Y=1Ak,B- )/ Ak B ) ez -0 e e (4,10, D
™ ] tp ? ty ‘M 4 {y

thet is valid for all N='1,...,NO"1 . Thus, one gets the solution
B(A,E’{J}) = BEH of ineq. (71) for & =3€£-10-M and fixed
parameters {a’} including K . M

So, the practical recipe to find B ig simple enocugh. We have
used it in our numerical enalysis,the results of which are reported
below. By complete analogy with our treatment 719/ o5 the T -scat~
tering we explored numerically the Tt.'_d, -gcattering within problems
(14) and (26). The resulis obtained for the %~ -pnase functionsa;:
and 5;_:’ S in particular, those listed in Tables 1 and 2 show the P
following. The phase shift o forms mainly on the intexrval
(r "t +JR) and rapidly decreages with growing parameter ZP of VP (15).
The error d(é; ,B)(?O) becomes smaller than unity when B> 2R+ ?fp.
411 the bounds mentioned above very slightly depend on K if E<0
keV and 0.1R< 75 < 10R .

The Tesults listed in Table 2 also demonstrate that for VC <0
and VSEO the limit (11} defining th_e acattering length ac p ig -
finite in accordapce with (7b). ’

The facts recalled ipm Subsection 2.1 for the fh’fd, -acattering
(V.>0 ) and those given above for the Fi"dl -scettering (VC(O),
ciearly prove that potential V (15) is of a more long-range nature
when VC>0 than in the case Vc<0. More precisely this statement
is clarified by the numerically obtaired formulae
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Table 1
P(K,'t) of {26) as a function of
>

E(keV) and ¥'= t /R when the paremeters of VP(15) are: o.=0.7 fm3
and r. = R=104 fm. A1l the velues of S-C p (K,T) are multiplied
Ll

The N"d -phase function 5::

by 1011P
E 0.1 1 10
¥
1.04 1216 1182 908
1.08 2287 2216 1685
1.2 4813 4312 3402
1.4 7462 7183 4947
1.6 8971 85g2 5621
1.8 9846 9388 5886
2.0 10356 9837 5976 .
4,0 11033 10343 6213
6.0 11075 10440 6272
10.0 11161 10503 6295
15.0 11165 10512 6300
30.0 11173 10518 €308
Table 2

The %"d -phese shity 8 5(K)= &, ; (K, Tp+30R)  asae
function of E(keV) and the ,pa,rameter ’ tp=gR of VP (15) when

ol =0.7 fm3. The values of 8;_. p(K) are multiplied by 1010, 1011

and 1014 for 8’=O.1,1,10, resp;ctively.
% 0.1 1 10
E

7074 69845 11249 12449
10~ 69845 11249 12447
1072 69841 11242 12372
1077 69748 11173 11711
1.0 69572 10518 11469
10.0 69387 6308 6557
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(03+06e"3)%, , V. >0, (7za)

B(éz., p(K2,E,{K,59nV, 2 3)~ 5
06%,-02R+0.5R ™% V. <0. 2m)
It is velid for £= 10°M, M=4,.,5; 0.1Rs7 ¢ 10R and 0.1 E
L 10 keV and shows that for the éalculation of the ﬂftd-phase ghifta
with the error d(&c ,B)(TO) gatisfying (71) one has %o cut off VP
at point 7= B whicH essentially depends on £ and {X?, .
Since for the JI¥¢l -scattering =0.079 fa /9% ‘o =0.7 fm
/3/ ana ¥p% 4 fm the condition (45) ig fulfilled for ¥n3 0.1 R and
E € 10 keV, and therefore in this region e (K"t’) of (26) is very
close to é\é?) from (47b). Indeed, as we founapnumerically,
[€H) -9
18¢ K, 23/ 0 qew =11 < 4077 (73)

wnere €> T € [0.1R, t0R] , E£ 10 kev,
1Further, from (71) we get that the action radius of VP for
6( )(K,oo) is well approximated by the formula

c,p
B(Sc(?“‘f"),E,{K,%>0,?P3):(a3+o,55-113)zc (74)

when €, 7, and E  are the seme as in (72).

Clearly, due te (73), the right~band sides of (72a8) and (74)
must be the same, and the functionel form of relation (74) is caused
by the explicit formulae (34b) and (47b), i.e.,finally by the struc-
fure of the Coulomb functicns. Hence, for ap arbitrary two-body prob-
lem (14) one has the relations (72a) and (74a), if CL obeys (46).
This weans that for the problem (14) the relations {46), (72a) and
(742} are sutomodel, and g,d/?‘zR, R ana ’Bc are autcmodel para-
meters. They have an automodel meaning enalogoug, for instance, to
that the Reinolds parameter has 3 .

Next, in the.framework of eqa. (38-43) we have calculated the
E;equer)ceslr{(,.’_ci (K. B—)}N of the ¥ d -gcattering functions

- P L t=1 X x N

-correasponding 'to the sequences of the potentlals*{vp@(BL--'Z)} aq "
Having sclved inegs. (71) for A: Ctp and B we have toulid
that the relations

B(ucpcx,'u,\e,{K,sgnVC,?p'i)= B(&, ncx,€,ix, 597V}, 7p3) )

+
are valid, when £, ¥ and £/ are the same as in (72) end Z< BN'
We have got also+that to calculate the functions 6(.6' on the inter-
vals 0 £ 7 & B_ within the accuracy of six significant digits,

one should set NB;-:50 (7 and BN---.ZP+50R_As follows from (72),(75),
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to calculate the ﬁid-scattering functipnns with the error (70}, one
nas to cut off V. (15) at the corresponding points B¥ aepending
on & , {K, sgnv ,Zp} snalogously_to B (72) for 5;. p(K). Clearly,
this statement is sutomodel when (4v) ip valid. ’

As & next example, we explored the PP -reaction within the mo-
del and method described in 21/. Upon a series of calculations cer-
ried out within eqs. (38-45) and (56,57) weNfound the sequences

{ Nc PS(K,B;)}.N_ and { ACPS (K,B‘:)} i=q4 Tor NC,PS (41) and
the funttion _Ac‘*s(K,B)defined earlier. Letting A:NC ps apd then
A= ACPS in (70) we establiahed that the formulae ?

~ -3y o275

B(NC’PS,a,{«,'cp’s)= BCA, .., €, 1K 253 )= 1340 RETT(76)
well approximate the action radiue of vp(15) for NC ps and ACPS
when £< 0.1 , E € 10 keV and 'cP= 4 fum. ’
Note, due %o (728) and (7§), ,the action radius of V for the pp-
reaction cross section O"mef very slightly depends on E and is
gmaller than the ection radius of VP for the pp-scattering cross
" gection 6-6, g ¢

Unfortunately, the demonstrated numerical method for evaluating
the action radius B ofV {15) ia not constructive because B nay
be obtained from (71) only after calculsting a function A of inte-
rest and because to gel B as a function of K , it is necessary
to calculate A for various K . These circumstances are actually
the main defect of the numerical method for findipg B .

Another method to get [ for the studied function A(K,'Z) is
an analytical method. It is based on the knowledge of single (any K
and Z—+o<= ) or double ( K~ and T is iarge enough btut fixed,
or K 1is small enough but fixed and Z—+ o= ) asyaptotics of A(K’Z).
To demonstrate this method, we give below two examples.

Let in (70} A be tne Yt -function 3:’“ (K,%) {50), then the
sction radius of Vp(‘IBJ for the J*d -phase shift e.p (K) reads as

wKkB 13 T s
B (8. e, €, {x\p03)sl6e/sy T2 20686 e T

Since for E £10 keV and 'tp>,o.1R the copdition {(54a) is fulfilled,
we have 3& (K¥x SC KB(K) , therefore,for that 'Cp and ener-
gies B (77) haa the same functional form as the second and largest
term of the sum (72a). Hence, the first term, i.e. C.3 'ZC , deacribes
approximately the contribution from V @('Z’C—'Z) to the action ra-
dius B (72a). Evidently (54a) and (77) ere the automodel relations
for similar reasons as for (46), {72) and (74).

cps”
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Now, let in (70) A be the function NCPS €0,1)(41) which,
owing te (7a), (41} and (45), is egual to :I/C (Z) . Using the ssymp-
totica of C {Z) 8s T >oo found in s one can easily solve (70)
for B and analytically find the:actien radius,

B(N £ iktad) » £ e 2= Reds10R3YS ¢85 (19)
C,PS: > - p g

of V (15) for norm factor N S of a (38) in the case V >0
end K=( . It should be stressed that the expllclt formuls (78) ac-
tually gives the major estimate of B which is valid also for a non=-
-zero but low enough energy when the relative accuracy for the appro-
ximation NC P (K, e)y= M &.ps (03)13 gmaller than & for any ¢ .
Note, alsc that for p-—colllslons (78) agrees with {(70) and 5 from
(78) is an automodel parameter. .

So the analytical method allows determination of the action ra-—
divs B of VP (15) without caleulation of the sequence {A(K,B£)3 el
reguired in the numerical method. However, the analytical method, as
well ae the numerical one, tes cone defect., Indeed, the eXact lower
ligit % of the -interval T > Z , Where the explored funciion A
may be replaced by its trunceted AE as ¥ —=eoo , is usually unkrnown.
Hence, by the gnalytical method one can actually find the major esti-
mate of B , i.e. B asatisfying ineq. (70) rather than eq.(70).

The regume of our numerical and shalytical treatments is: the
lower bound B of the interval B < % £ oo | where Vp (15) may be
replaced by identical zero, is, in geuneral, the function B= B(A £ {x})
depending on the studied funetion A , relative asccuracy £ requi-.
red for evaluetlon of A y, collision energy, 59&\/6 and parameters
of V .

) We propose %o use this bound which should be always defined with
regspect te the explored function A and which may be in principle
found from (70} and (71), as the action radius of VP (i15) at given
G,K,Sgﬂvc,d.,tpand R . Poysically end mathematically, @ similar de~
finition of the action radius seecms %o be correct for an arbitrary
pectential. Using this definition ope again has to keep in amind that
the action radius should be defined with respect to @ problem in ques-
tion and may esgentially depend on some other pasrameters,

5., Summary and prospects

Let us recall our main results. In Sec. 2 we indicated earlier
unnoted wnistakes and 1naccurate peints which we found in the quoted
papers;/14 15,17,21-23,40-44/ and we ghowed how the methods of papers
17,2023/ may be Ilmproved and developed. In Sec. 3 we formulated four
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important problems and suggested some ideas to solve them. In Sec. 4
we presented our numerical and analytical resulis of treatment of the
probliem 3), proposed a correct definition of the gaetion radius of the
polarization potential, and demonstrated two methods to find this ra-
diug. As we stressed, both these methods have defects. This fact and
the remark given at the end of Sec. 3 show that the problem 4), i.e.
the correct defipition of the action radius of en arbitrary potential
in few—body problems is an interesting and important problem which we
guggest to carefully explore slong the line indicated in Sec. 3.

Now we list mome facts in favour of the formulae (38-53, 57-59,
72m78), we heve obtained, being useful for future analytical apd pbu~
merical investigations of the low-energy nuclesr collisions. First,
all these formulae may be eaaily generalized to the case when V (1)
ig V= Vc + Va-'- VS , where VS obeys (4) and V gatisfies
(4a), but hae the asymptotics V = O(Z'a) axx, Z‘-'roOSecond, as
we have shown, when the systea (44a) under conditions (44b) or (62)
is solved, one may: construct the AE's (43) apd (63) for regular and
irregular soiutions of eq. (14a), find the coefficientes d . (o=)48)
and T 5(0°)(49) in LEE's (8) aud (12), and also get the coefficients
,Acn p I0 the LEE's (57) and (v9), Third, it is very impor-
tant that eqas. (38-45,45,49,57-69) allow us to calculate all these
coefficients with a high accuracy and without interpolation to a zero
energy because the key-eqs. (44) are very simple for a numerical so-
lution and are K -ipdependent. Fourth, egs. (38-49) and (56,57) may
be generalized to the case of noncentiral potential \JS containing
spin-orbital and tensor terms. To perform this geperalization one must
separate all the discrete, i.e. spin and isospin variaebles and then
derive the matrix analogs to egs. (38-49) and (56,57).

In the framework of derived equations one can, for instance,
guccesafully investigate the LEA for the factors S (E) of astrophy-
sically important’ 4% reactions JH (e XD e and 2He (d 0 Be
and reliably find the first few terms of these LEA without energy in-
terpolation. 'In this connection we must point that the idea to uge
the first terms of AE's (20) for the calculation of the factors S 43
at E=0 wes first realized in /37/ within the two-body Schrddinger
equation describing d.sHe and o H ~gcattering. Recently this idea
has been employed in 158/ to calculate these factors aiso at E =0
within the algebraic veraion of the rescnanting group approach desc-
rived in 729/,

Fifth, since for the nuclear collisions the ratio ci./‘t‘2 R is
always small enough 3/, the approximate formulae (72-78) are automodel
and way be used for s reliable definitiop of the upper limits of in-
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tegratien of varicus equations containing Vh {15) and originating
from the problem (14).

' In -conclusion note that the scheme we have followed to derive
AE's (43,63,69) and formulaec (72-78)} look promising for the sclving
the (3-—= 3) low-energy scattering problem written within the poten-
tial harmonic approach. The results of these constructions form the
contents of the subsequent paper.
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