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1 o INTRODUCTION 

Suppose we look for a quantum system of A particles in 
~ich the Hamiltonian is changed by time depending parameters 
R (R

1 
(t), R

2
(t) , o o o) o Thus, the evolution of the system bet­

ween times t = 0 and t = T can be understood as a motion .. .. around a clothed path in the parameter space if R(T) ~R(O) 0 

For any fi~ed tim~moment one c~n solve the eigenvalue equati­
on H(x,p;R)Iflv(x,R)~<v(R) lflv(x,R) and these states perform a 
natural basis to expand the exact time depending solution of 
the Schr~dinger equation H .P ~ lfi .P 

Especially,for adiabatic motion the system remains in one of 
the eigenstates, say WM , and during time only a phase appears. 
Berryll/ found out that in addition to the common dynamical T ., 
phase -If< (R(t))dt a geometrical phase may appear and the 

0 /l 
correct wave function after. a period is 

., T ., 
.lfl ( x, R ( T)) ~ exp - i f < dt o exp I (J A 

/l 0 p /l 

.. .. 
dR o 'Jl /l ( x, R (0)) o (1) 

The expression All has formally the property of a vector poten­
tial and is determined by the relation /1,2/ 
.... .... .... .... * .... .... .... 
A si<'P,.(R)IV I .P (R)>~ifdx'i' (x,R)V .p (x,R) (2) /l r i[/l /l .i[ll 

Mathematically/a/ the Berry phase in eqo(1) is an integral .. over the curvature of the parameter space R known as the 
Chern class of the connection. As a direct consequence of the .. vector potential property of~ for the quantjzed ..,.motion in 
the parameter space inst<!;ad.,ot·: the momentum P~ -IV it the co­
variant expression D ll ~ P -A /l appears o ., 

At some points of the parameter spa,ce R the vector poten­
tial has singularities, the so-called diabolic points, and 
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just these points correspond to degeneracies caused by inter­
section~ of levels of the spectrum £v(R).Calculating the pha­
se pAll dR the diabolic points are circumvented. 

Instead of the restricted time-dependent description one. 
may apply some of these ideas to stationary problems tool4.5/. 
Let the Hamiltonian of the system be 

H = -'11 :12m+ H(O) (x,p) + V (R, x) 
R 

and look this time for stationary solutions 

~ ~ 

H.,U (R,x) =E <,{! (R,x). 
K · K K 

Expanding the eigenfunctions into a complete set of adiabatic 
functions 

-+ K-~' 4 

<,/1 (R,x) =~ ¢ (R) .p (R,x) 
K V V V 

with 

CH<0l+V).,u (R,x)=• (R)ifJ (R,x) 
v v v 

/ 
for the collective eigenfunctions 1 we obtain, remaining in an 
ad~abatic approximation only diagonal contributions 

4 --~' 2 _, K K 
{(p-A) /2M+< (R)l¢ =Ev¢ , v v v v 

~ 

where Avis the same vector potential, that appeared in eq.(2). 
In this paper, we look for the application of the general 

idea of the Berry phase to the adiabatic rotation of an A-par­
ticle system (the atomic nucleus for the sake of a concrete 
model, comp. also/8/). The collective parameters are then the 
'Euler angles Q = ¢ , e , x which span the collective space and 
for which we may take the three-dimensional sphere S 3 of R4• 

For adiabatic rotation the internal state ]k> is characte­
rized by the quantum number k of the projection of the total 
angular momentum of the A-particle system on the Slf.ffiffietry axis 
of the deformed nucleus 

Jz[k>=k!k>. 

We apply the method of generator coordinates 171 to describe 
rotations in three dimensions. Instead of the Born - Oppenhei­
mer wave function (1) one may choose- oriented deformed sta­
t~s /4, 8. 7/ , defined by 
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(3) 

where R(U) denotes the rotation operator 

' R(U)~exp(-11 ¢)exp(-ll e) exp(-il x), z y z (4) 

and the total wave function is represented by 

1/1 ~JdU¢(U)IU,k>. (5) 

The generator states (3) are not orthogonal and the matrix ele­
ments 

<klh·Rik>~' <kiR(U) lk>~, n (B) k . k k 

(h denotes the s.p. Hamiltonian in second quantization) 

( k - Integer) 

are the analogu~ of the standard Born - Oppenheimer adiabatic 
eigenvalues 'v(R). As we shall see in section 3, applying the 
definition of the vector. potential (2) together with expression 
(3), and performing a projection to the relevant collective 
subspace s2 ·spanned by the points of the unit sphere in R 3, one· 
obtains a vector potential which is singular at the diabolic 
points e ~ 0, e ~ " . We have already noted the analogy between 
the rotation and the behaviour of spin -1/2 particles in a mag­
netic field. Just for the last case Berry /1/ showed that the· 
motion is such, as if it is caused by the action of a magnetic 
monopole situated at the diabolic point. Therefore, also the 
vector potential appearing for the rotation of a top is exact­
ly the same as for a magnetic monopole in R 3 • Now, for the 
magnetic monopole the vector potential contains the charge/8/ 

-t c 1 
A~ g.---- (-y,x,O). 

eh r(r+ z) 

In the case of rotation of a top instead of g.~ there appears 
eh 

the quantity k . As is well-known 191, the string singularities 
of A lead to the topological quantization of the flux ¢ ~ 9 Ad R ~ 
= 4_rrg or, equivalently, of the magnetic charge g. Then, it is 
natural to ask how to formulate the Dirac quantization condi­
tion for the case of rotations. As we will show, the concept 
of Berry~s effective vector potential, ~pplied to rotations, 
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gives a direct way to solve this task. As a result, the para­
meter k gets quantized and hence the spin of the system is 
quantized, too. Especially, to obtain half-integer spin valu­
es, one has to take into account explicitly the well-known 
D2-symmetry of axial symmetric rotations/6/. 

The second section contains some formal relations needed 
to perform the projection from S 3 to S 2. In Sect.3 we derive 
the collective Hamiltonian in 82 and establish useful connec­
tions between the effective vector potential, Berry's phase 
and generator coordinate overlaps. In Sect. 4 the quantization 
is performed. the wave functions for the motion in the field 
of the singular vector potential is obtained, furthermore, the 
wave· function is symmetrized taking care of D2 -invariance, and 
the Dirac quantization condition is obtained. Finally, in the 
last section the results are cqnnected and interesting new re­
lations of the theory of collective rotations to other prob­
lems, like Skyrmion quantization, are discussed. 

2. THE COLLECTIVE SPACE, S3 
4 S2 MAPPING 

For the rotation of a top the three-dimensional sphere s3 

may be chosen as the space of collective coordinates. Really, 

each point x (x
1

, x
2

, x
3

, x
4 

), .! x2 = 1 on s3 is parametri-
. l=t 1 

zed by the three Euler angles ¢, 0 , x through the relations 

<l>+x 
X~=COS( 

2 
) cos .!!. 

. 2 • 
x = sin ( ¢+X ) cos !!... 

2 . 2 2 

( x-<1> ) . e X 
3 

= COS _.:.:_.;_ Sin - , 
2 2 

)(-</> e x = siil (---) sin-. 
4 2 2 

Introducing complex variables Z0 = x 1 + ix 2 
we get the c9mpact form 

Z 
i¢/2 e ix/2 

o=e cos 2 e 

Zl = e-:: i¢/2s1n : eix/2. 

As is well-known/10/ in classical mechanics the motion of 

(6) 

(7) 

the so-called symmetrical top is completely described by three 
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degrees of freedom ¢, e , x and generally for each of them 
there exists one frequency. Contrary to this the third Euler 
angle x is an irrelevant variable in the quantum description. 
In the collective model of Bohr and Mottelson a rotation around the body· s symmetry axis by the angle ~ x causes the appearance 
of a factor exp (1 ~ xJ3), and this factor is just compensated by 
a rotation of therinternal system, leading to exp(-1~xl3 ), pro­vided the condition J 3 =I 3 holds /U/, Therefore instead of sa one may use the two-dimensional sphere S2 (¢,e) as the collec­
tive coordinate space. The mathematical procedure for project­ing from 8 3 to 8 2 is known as the Hopf mapping /2,9/ and may 
be constructed explicity by introducing on S2 the coordinates 
~(~1'~2 ,f3

)by the relations 

~l = 2 ( Xk X 
3 

- x
2

X 
4 ) = sfn 0 COS ¢ , 

~ =2(x
2

x
3

-x
1

x4 )=s1nesin¢, 
(8) 

~ 2 2 2 2 sa = xll. + x2 - x3 - x4 • 

Performing furthermore a stereographic mapping s 2 ~ R 2 (x,y) for 
the complex variable Z=X+iY we obtain, using equations (7) and (8) 

Z= 
~1 + ~2 
1-~ 

3 

zo i¢ e =-- e ctg-
2 

(9) 

It' is interesting to note that this formula is the standard re­
lation in the spinor theory to express a point on 82 by a pair 
of complex numbers z 0 , z

1 . Each transformation of.points on 8 2 
zo corresponds then to a transformation-of the spinor(z ). From ' 1 ; the construction (9) it follows immediately that all points 

which in 83 belong to a x-circle, at the mapping to 82 shrink 
into one point z = z 0 /z1 . Furthermore, ·~ 0 and z1 , considered 

l as functions of x, are double-valued, as follows from equation 
(7). This structure is overtaken on 82 , introducing the two 
so-called sections x = ± ¢ for the corresponding lists. The pos­
sibility of employing the projection x = -¢ fer describing adia­batic rotation has been noted already by Bohr and Mottelson111/. 
In the section x = <P one may represent z 0 , z1 as functions of 
the variable Z=e_xp(1¢)ctge/2 , which is defined on S2 anywher" excluding the north-pole 
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i¢. 8 · z 
z0 = e cos - = ----.::.---,.---

2 c 1 + I z I 2 l 1/2 
(10) 

Similarly, in the section x= -¢ these quantities are repre­

sented as functions of w = z-1 that has a singularity at the 

south-pole of S2 

(11) 

Obviously, the functions z and w are connected by a reflecti­

on at the origin 

Z(11-8, q\+17) =W(-q\,8) • 

This fact plays a role for the symmetrization of the rotor 

wave functions on S2 as we shall see later. The spinors 

builded from z 0 ,z1 in eq.(lO) resp. (11) have a direct dynami­

cal significance, being the eigenstates of the Hamiltonian 

for a spin -1/? particle in a magnetic field B = Bn(t) (n(t) -

unit vector in R 3,/2/). Calculating with the help of this 

spinors the effective vector potential, the singularities 

Just appear for x = ql at the north-pole, resp. for x = -ql at 

the south-pole. 

3. DERIVATION OF THE COLLECTIVE HAMILTOMIAN 

After introducing the collective space we will derive the 

collective Hamiltonian for rotations in S2 applying the ge­

nerator coordinate method /7/. Generator states are introduced 

acting with the rotational operator 
' 

R(U) =exp(-.IJ ql)exp(-iJ 8) exp(-iJ x) 
z y z 

on a deformed A-nucleon state lk> assumed to be an eigen-state 

of the z -component of the total angular momentum J I k> = k 1 k > 
z 
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as has already been stated in sect .1. For the sections X=±¢ 
we obtain the generator states 

(12) 
~ exp ( -!Jz 1>) exp ( -iJ y-e) exp ( + iJ z ¢) I k> 

from which the collective Hamiltonian will be derived by cal­
culating the overlap integrals <UIU'>, dliHI!.l'> and expanding 
them into powers of the collective momentum operators 

. a p =-1-.-, 
¢ a¢ 

up to second order. Applying the rel'at ions 
{±) (±) • . Pe R ~ R ( -J sm ¢ + J cos ¢) 

X y 
(±) (±) (±) p¢R ~ R (-(J.cos¢+Jy sin¢) sin8+Jzcos8)+ R Jz 

and taking into account that <kiJ.Ik>~<kiJy lk > ~ 0 

< n (±J • k 1 Pe 1 n (±J , k > ~ o , 

<!.l 
1
'' • k I P ¢I n (±) , k > ~ k c cos e +1 l , 

' (±) 

"A¢ 

(13) 

(14) 

we have 

(15) 

(16) 

The ·expectation value of the collective moment operator in 
generator states plays a central role in our description. As 
is shown by Berry /1~ the quantities constructed in this way 
for adiabatic motion of quantum systems have the property of 
a vector potential acting in the space of collective variables. 
In· the rotational context this prescription was firstly used 
by Moody and Wilczek /12/. Concerning the vector potential A¢ 
defined by eq. (16), it is interestinr, to denote that the wa­
ve function overlap integrq.l .< oC±>, Q' ±) > that plays a cruci­
al role for the description of collective properties, is di~ 
rectly connected with A¢: Really, in the Gaussian overlap ap­
proximati9n 

(±) , (±) .f 1 . v JJ.' < !.l , !.l > ~ exp ! ! ( ¢ - ¢ ) A_, + - - g ll ll I , 
"' 2 v~ 

(17) 
1 . f ~ ¢. 
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the linear term contains just the vector potential A0 . Former­

ly 171 linear contributions to<a,a' > and <a ,Ha'> have been 

dropped, because in a time-inversion symmetric theor_y they 

disappear. 
Next, let us evaluate the metrical tensor gv~ appearing 

in (17). Applying the definition/7/, we have 

g "Re <a !±l , k 1 p p I a w , k > 
v~ v ~ e 

=Re(<a<±J ,kip p 1a1±1 ,k>-<al±l 
v I' 

. < a<•J , k I p I a c±J. k >I. 
I' 

(+) 
,kip Ia- ,k>. 

v 

~ote that from this definition the contribution 
near expectation values (15), (16) is excluded. 

Using then the relations (14) we obtain 
'.2 . 

gil. = L LK; L~ <kiJ.Z I k>. 
K=l 

where the following 2x2 matrix: 

( 
LL~2

1 LL~2
2 

) ( sin¢ cos¢ ) 

cos ¢ sin 0 - sin¢ sin 0 

from the li-

(18) 

(19) 

was 
ing 

introduced. Furthermore, with the help 
reciprocal matrix [{I' , L K~' Lb = ll b 

of the 'correspond-

a p.a11 a 

Kl' = • (

sin¢ 

cos¢ 

cos¢/ sin 0 ) 

-sin¢/ sin 0 

and introducing the quantities 

Ki 

( ~ E --===::;:=K===-­
v'<kiJ21k> 

K 

we define the effe.ctive mas.s tensor 

.<k IHJ! lk> 

<kiJ;Ik> 

8 

(20) 

(21) 

(22) 



Applying this expression and using 

g = det g = sin 2e <J
2

><J
2
> 

VI' 1 2 

the collective kinetic energy obtains the form 

1 a 
(-,----A ) ; ' ae v v 

c e 
1 

= ¢. e 2 = e. A 
1 

=A 9 • A 
2 

= Ae). 

From equations (19), (20) and (18) we have 

<kiHJ~Ik> 

(23) 

(24) 

where J denotes the Yoccoz - Peierls moment of inertia; fur­
thermore 

and 

Collecting the results we finally obtain following expression 
for the collective Hamiltonian 

= I - ~__:1:.._- _.a_ sin e .1.. + 
sin e ae ae 

(25) 

1 }_!_, 
sin 2 e ·· 2J 

Obviously, the quantity A,p enters into the colle.ctive Hamilto-. 
nian e~actly in the.same way as if on the ~-coordinate is act-
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ing an external vector potential A¢ l~ading to the appearance 
of the covariant derivative D¢=-i a/a¢-A1Jl . Furthermore, 
the quantities A~+) and A~-) are connected by the gauge trans­

formation 

< + > <- > . a -t ( l 
A¢ = A¢ + i U ( ¢) T¢ U ( ¢) , U ( ¢) = exp 2 i k ¢ • 26 

(+) (+) 
Really not A¢ ' but rather A - I sine has the property of the 
¢-component of a. vector-potential, and in spherical coordinates, 

~ ~ 

requiring Adr=A¢d¢ and using x=rsinecos¢, y=rsinOsin¢, 
z = r cos ¢ we get · 

(±) 1 
A =---"--(-y,x,O). k, (r=l). 

r(z±r) 

Now, after using the· identification· 

c 
k=g·-

eh 

(27) 

we have the interesting result that the vecto~ potential, appe­

aring inS 2 as the result of ~he Berry construction, is just 
equal to the vector potential of a magnetic monopole with the 

strength g ~. Then the structure of (26) reflects the well-
eh 

known string singularities if the ± sections of 8 2 are utili­
zed /2/. The Hamiltonian (25) may be expressed with the help 
of unusual angular momentum operators which are known from the 
description of the magnetic monopole/5,12/ 

. . . . (+) 
Lx = i (sin¢ a ;ae+ ctg e cos¢ a/a¢)+ A;;, cos ¢/sine', 

. . . . . (+) 
Ly = i (-cos ¢a;ae + ctge sin ¢il/ il¢) +A¢ sin ¢/sine, (28) 

Lz=-ia/il¢-k. 

The first terms represent, respectively, the usual angular mo­
mentum component describing· the·quantized motion of the posi­
tion of the top or of the particle for the magnetic monopole 
case. The additional terms are due to the field of the ~onopole. 
Classically the quantity 

-+-+-+ ... -+ 
L=rx(p-A) -kr/r, 
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plays the role of the angular momentum and quantization just 
gives eq. (28). Using these expressions, it is not difficult 
to verify directly that the usual commutational relations 
[ 1 1, L i] = i'.tik L0 hold. I~troducing then L

2 
=L

2
, + L ~ + L ~ , 

from equat1on (28) we obta1n 

2 2 
H eon = ( L -. k ) I 2J • 

4. SOLUTION OF THE COLLECTIVE 
EIGENVALUE EQUATION 

(29) 

Let us now investigate the solution of the eigenvalue prob­
lem corresponding to the Hamiltonian (29) 

H eo!; 'F C±J = ( L ( L + 1) - k
2

) .C L 2 - k 2) I 2J 'f C±J_ (30) 

The eigenfunctions 'I'(±) of L 2 and L z are represented as 

'PC±J=T18~~~M.k(O) ·<l>~\(¢)1k>, (31) 

where 

(M' -A C¢±J )
2 

1 a a _...;._ - sin 0 -- - + 
sino ao ao sin2 o 

2 (±) 
+L (L +1) -k I8L,M,k(O) =0. 

(32) 

and 

It is worth noting that eq.(32) contains, due to taking into 
account the vector potential A¢ , an effective potential that 
is exactly known from the classical theory of a symmetrical 
top 1101. Using M ''= M - k we have 

u.rr 
2 (M-kcosO) 

In the classical theory this term determines the periodical 
slope of the top in 0 -direction known as nutation. The expli­
cit solution of equation (32), asan example for A(+)=k(cos0-1) 
is given by (z =cosO) · 
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·F(a{3y; 
1- z 

2 ) • 

)-(M+k)/2( Z+1 

2 

-(M-k)/2 
) . . 

(33) 

where F(a, /3, y, z ) is a solution of the well-knpwn hypergeo­
metrical equation 

-y+(1+a+f3)z ,F .... + 
z(z-1) 

and 

o:=-L+M. 

y~1+M+k. 

af3 
.f''+---·F~o. 

z(z-1) 
(34) 

Since the coefficients a and {3 do not depend on the quantity 
k ,S L, M, k is a polynomial and terminates at L - M ~ n ~ 0 ,1, ... L; 

0, 1, ; explicitly 

(')(+) ~ _1_ (-)(L-M) (M + k)!. 
L,M,k 2L (L+k)!. 

(35) 
dL-M L+k L-k -(M+k)/2 -(M-k)/2 

----[ (1-z) (l+Z) ](1-z) (1+Z) • 
(dz)L-M 

A solution in the form (31) violates the time inversion sym­
metry because it singles out the states [k>. To obtain a sym­
metric description, we introdluce time-inverse internal states 
defining 

- -1 
[k>~Ri [k>, Ri~exp(-iJy") 

(36) 

J [k>~-klk>; 
z 

and introduce the spinor representation 
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lk>=( ~ ). lk>=(~ ). 

The vector potential (16) then obtains the form 

• 
A;f,=k(cosO+l)o-z (37) 

and also the components of the .angular momentum operators (28) 
get Pauli operators, especially 

L = -ia!a¢-ko-. z z 
(38) 

As a conseq>1ence of D2-synnnetry (also R-invariance/H/) it fol­
lows that the total wave function remains unchanged if we per­
form a rotation in the collective spa5e around the y-axi~ by 
180° together with going from I k> to:lk>; hence 

( +) 
1~\.M,k(O) ¢M,k (¢) lk>= 

(+) -
=®L,M,k( 17 -0) ¢M,k (¢+ 17)1k>. 

(39) 

From the definition (16) it follows that 

(+) (-) 
A¢ (17-8) =-A¢ (8), 

therefore, from formula (32) we have the synnnetry relation 

(+) (-) 
®L,M,k ( 17 -0) = ®L,M,-k(O) •, (40) 

and finally, taking account of eq. (40), we get the synnnetri­
zed wave-function of the rotor in g2 

N (+) . lM:'¢ 
'I'LM =-:--=I ®.L M k(O) .e I k> + .j2 • • . 

® (-) (B). iM'¢ -2ik¢ i(M+k)17l-k } 
+ L,M,-k .e ·e e. > • 

(41) 

The factor exp -i2k¢ in the second term guarantees that with 
taking into account (38) the relation Lz 'I'LM = M'I'LM holds. Re­
quiring now that 'I'LM is a unique function of ¢ 

(42) 

from equation '(4V) it follows that exp (-2ik · 211) ·= 1 and there­
fore, we ~btain finally the quantization condition for k. 
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k~O,±l/2,±1, •.• (1i~l). (43) 

By applying the gauge condition (26) the quantization condi­
tion may be represented as well in the form 

(44) 

which is the Dirac quantization condition in the formulation 
of Wu and Yangls/. From the requirement of uniqueness (42) 
it also follows that M' is an integer, and since M = M' ± k 
M and also L are integers or half-integers depending on lt. 
Finally, the factor exp 1 (M+k)" causes the well-known inter­
ference effect in the spectrum. 

5. CONCLUSIONS 

As we have seen, the wave-function ~(+)contains the phase 
(A<;J;ld¢ depending on the angle e. This description, however, 
is not unique on S 2• Alternatively, one may introduce ljJ (-) 
and connected with it the phase fAl;j! d¢, depending on 4"- a . 
To solve this contradiction we have to note that the phases 
fA~) d ¢ appear only in a description that breaks the time in­
version symmetry, otherwise it i:ii always possible to choose 
real ·functions, and also in the overlap expression (17) for 
time inversion. symmetry the linear term would disappear. An 
alternative way is to introduce states violating this symmet­
ry, and afterwards to construct from them symmetrized states. 
Just this is our procedure leading to the total wavefunction 
(41), which depends on the difference of Berry's phases, and 
the requirement of uniqueness gives finally the Dirac condi­
tion. 

Let us denote another formulation which sheds light on 
different aspects. The states I R(±l , k > (12) corresponding 
to the )( = ± cf;· sectors may be connected by the operation 
exp iJ

2 
X• giving a rotation around the (body fixed) z'-axis. 

Furthermore, like for the motion of charged particles in a 
magnetic field/21, it is possible to show that the require-
ment '1'(8, ¢, x+2") ~exp4ik1i·1/!(8,¢,x) is an alterna-
tive way to get the Dirac quantization condition. It is inte­
resting to denote that this procedure corresponds to the path 
integration quantization of rotation, introduced by Schul­
man/13/, in which an. even number of rotations around· the z'­
axis leads to an integer spin while an od.d number of rotations 
gives half-integer values. 
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The main point of our investigation is the application of a new mathematical language to the known task of adiabatic rotation. The advantage of such approach is to establish con­tacts to different questions, which are closely connected with the quantum theory of rotation. Let us denote that the argu­ment A¢ . ¢ entering into the BerrY; phase, may be understood as an effective action L err =A¢· ¢ . In the generator coordi­nate approach this expression is direct. ly connected['zwit~*t)he 
wave function overlap ( 17). Using the quantity s = 0 ,); , zt -zo where z0 and z1 have been introduced by formula (17), the ef-

1 fective Lagrangian l may be repr,esented as i /2tr (u 3 s -l s) 12 
It is interesting to remark that just this structure of L err appears in the quantization of th'e Skyrmion and has its origin in the so-called Wess - Zumino term. Finally, we denote that the nonlinear sigma model in two space dimensions/14/ contains the corresponding·contribution known as the Chern- Simons term due to which there appears the remarkable property of the transmutation of statistics /15/ . 
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