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L Introduction 

Low-lying states in odd-odd nuclei have been extensively 

investigated for a long time, both empirically and theoretic~lly 

[1-22]. The main attention has been paid to the Gallagher

Moszkowski splitting (1} and Newby shift [2] which are directly 

connected with neutron-proton interaction and provide a good 

possibility for its investigation. In most of the papers the 

neutron-proton inter~ction was introduced as some effective 

forces with parameters fitted in accordanCe with the available 

experimental data (see, for example, [5]). In [6,10-14] the Co

riolis mixing was involved that improved considerably the des

cription of low-lying states in deformed odd-odd nuclei. Recent

ly, a successful attempt has been made to derive the microsco

pic description of odd-odd nuclei within the rotor-plus-two

quasiparticle approach, where the single-p~rticle states, static 

equilibrium core properties, and the residual neutron-proton in

teraction were determined from the same nucleon-nucleon interac-

tion [9]. 
As a rule, the·coupling of external nucleons with even-even 

core vibrations was neglected. On the other hand, this coupling 

leads to the appearance in low-lying states of odd-odd nuclei of 

vibrational admixtures (4], which may be very important, especi

ally, for the description of Ell (MA') -transitions. A. similar ef

fect was clearly demonstrated in ~umeroua calculations within 

the Q.PM [25-28] of E~- transition rates in odd deformed nuclei 

[27-30]. The importance of vibrational admixtures in t,he at&tea 

of odd-odd nuclei bas been alsO confirmed in some phenomenologic

al models [18-21]. It should be note~ that just vibrational ad

mixtures are mainly responsible for tbe well known attenuation of 

Coriolia interaction matrix elements [29,30]. 
The up-to-day status of investigations of low-lying states in 

deformed odd-odd nuclei clearly requires the construction of a 

general microscopic approach, which would include consistently 

the neutron._proton interaction and the
1 coupling -,.ith rotational 

and vibrational core excitations 'in the framework of' a common 

microscopic scheme and, on the other hand, would be able to 

describe the properties of even-even, Odd-A and odd-odd nuclei on · 
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the same microscopic footing. Up to now, such a microscopic 

approach is absent butit can be derived on the basisof the QPM 

(4] in the same way as for odd nuclei [29]. The QPM seems to be 

the most suitable for this aim since just this model has been 

successfully applied for the description of. low-lying states in 

a wide region of even-even and odd nuclei [25-29,31]. In [29,30] 
the Coriolis interaction was included into the QPM. ·Some cases 

of interest were brought to the light. In particular, it has 

been shown that in odd Eu-T9 isotopes only the simultaneous use 

of Coriolis and quasiparticle-phonon interactions enables us to 

describe the anomalous behaviour of El-tranaitions [29]. 
The aim of this I?eper is the formulation, on the QPM bas~[ 41 

of the general microscopic approach for the description of low-

lying states in odd-odd deformed nuclei. This approach will inc

lude the coupling of external nucleons with even-even core vibra

tions due to the quasiparticle-phonon interaction, the rotational 

excitations as well as the Coriolia mixing, and the interaction 

between external proton and neutron, which results in the 

Gallagher-Moszkowaki splitting and the Newby shift. It should be 

noted that the latter appears in our approach as a part of resi

dual forces, omitted earlier in the QPM [4). In addition to the 

QPM version [4]
1
we take into account the mixing or neutron-proton 

configurations due to the quasiparticle-phonon interaction. The 

particle-particle (pairing) and isovector parts of this interac

tion are also included. 
In Sec •. 2 1the rotational part of the approach is outlined. 

In Sec. a, the intrinsic Hamiltonian is considered and the corres

ponding part of neutron-proton interaction leading to the 

Gallagher-Moszkowski splitting and Newby shift is extracted. In 

Sec. 4,the secular equation for excitation en~rgies and the exp

ressions for the wave function coefficients of nonrotational 

states are derived. In sec. 51 the Gallagher-Moszkowski splitting 

and Newby shift are considered. The expressions for EA ( M:1) 

transition rates are presented in Sec. 6. A short discussion and 

main conclusions are given in Sec. 7. In Appendices A end B the 

matrix elements of tQe rotatiobal Hamiltonian and some expressions 

for intrinsic excitations ere pre3ented, respectively. 
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2. The rotational excitations 

The Hamiltonian of our approach is written as a sum of in
trinsic and rotational parts: 

1-/ = f-1 intr + H ret (1) 

The HtrdY will be considered in Sec. 3. rhe rotational part of 
the hamiltonian (l) includes the rotation of the nucleus aa a 

~hole, the Coriolis interaction and the centrifugal term: 

(2) 

where 

(3.1) 

(3.2) 

H ~ 
J 

(3.3) 

' In (3) rp is moment of inertia of the odd-odd nucl:.._ua; I 3 

and j 3 ere oper8.tors of projection of the total (I) and in

trinsic (j = J: + J;) angulnr momentum into nuclear symmet-

I + .... 
ry axis, respectively; -:- and J- the corresponding momentum 

shift operators. 

The wave function of the state of odd-odd nucleus has the 

form 

!IlTM.P) 0 Eg::!IrrMKv/, (4) 

where g Iy are the Coriolia mixing coefficients; M and K are 
VK 

the angul'ar momentum projections in laboratory and intrinsic 

systems, respectively; 9 and v are the additional quantum 

numbero,Further [32], 

!IrrMKv>=V2r+1 '(~.t +(-1/+K_zJI R )lf. (K') (5) 
/6rt2.(1-+£~:;.,o) MK. M-K t V ,; 

where lfv (K lr) is the eigenvector of Hintr; Ri is the oper-
ator of rotation bY angle Ti arbund the second intrinsic axis. 

The matrix elements of different parts of the Hamiltonian 
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between the states (5) are presented in Appendix A. We don't 
give the derivati~n of them as it can be foUnd in (6,9]. Note 
that instead of single-particle matrix elements 
<"'U;::/1<"> and <p'lj;fp> , as in [6,9], the expreoeione 

in Appendix A contain the matrix elements ( tp'll,(K' 11
) J j + /I..J!u (K rr) '> 

where the intrinsic wave function \fv CK It) includes t.,·o-quasi
particle (neutron-proton) as well as. two-quasipart~cle ® pho
non components. The latter are of vibrational type. They lead to 
decreasing of the amplitude of main two-quasiparticle component 
in "''v (KTt) and, as a result, to attenuation of the Coriolie 
matrix elements~ observed experimentally [29 130]. Thus, in the 
framework of our approach the attenuation effect is described in a 
natural way on the miCroscopic footing. 

3. The intrinsic Hamiltonian and neutron-proton interaction 

In accordaree with [ 25,26 1 33] ·the intrinsic part of the Hamil
tonian (1), is written as 

where H i~tr = l-Isp -t H pai~ + Hmm, 

Hsp=[.~ (E~-:l.-)a;aq 
'<" .9eT . 

is a single-particle potential, 

Hpoir =- L G-T L::' a; .. a;_ Cl9·-0~·+ 
- .. 9q',;.., 

ia the monopole pairing and 

H ~-~/.,, ( ... '~!..rT'£1'>"') Ql"2Qr~·• 
mrn ~2. ~ L a..o ~ ?"' A-;M 

~ 'tT' : 

(6) 

(7) 

(8) 

(9) 

is the multipole isoscalar and isovector interaction with multi
pole operat.or 

Q (Tl ') I , > - + 
•iH "' L c)e -IC .;; < i IF "'I q, > Q .;- Cl;; 1)- ..... ..... ~, 2.).1 . ..,,. 7Z. • 

q,.q,E-'r 
(10) 

In (7)-(lO)we used the :following notation: r -·means neutron and 
proton systems for which t" = -1 and.+l, respectively; ~' is 
the particle ceeation operator for single-particle otate ~ ; 
~ = q' , K = KcS , }<·.I'<~ , K'l>O, .J1< :;.o ; 6 ··:!: 1 cheracterises 

the symmetry with respect to time reversAl. operation; fer is single
particle energy; G-'l" and A-r are pairing strength constant ·a11.d. 
chemical potential; 2 c:/"'J and ;!( 4r~> are the aultipole 
iaoscalar and isovector etrength c.enstante, respectively; 
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<IJ, If 'Y'fq< > is the single-particle matrix element for the 
operator 

f'>:?'= R<rl{ YY'+(-1)--"Y,/'} {1+~,,)-' (11) 

with unspecified radial dependence R(r) 
~fter the Bogoliubov transformation and using the RP~ equa

tions for one-phonon excitations of even-even core, the intrin-. 
sic iiamiltonian (6) can be transformed to the form [25,26,33]: 

(12) 

where 

~ 1 -" ''llx'!+xr +, '<•Q- L.J9 8(990)-~ L., Q~(j9~ 
9 •fo "' -r V":fJ":ft 

(13.1) 

generates qua~iparticle excitations and phonon excitations of a 
doubly-even core, 

HQB=-~[{(Q;+Q_§)ll ~~,Biq,q,j?)+hc] (13.2) 
~ 't 'lrCJl;1" 

is the quasiparticle-phonon interaction which will be shown to 
mix neutron-proton and neutron-proton® phonon con:figurations in the 
wave function of odd-odd nucleus, 

H.... , 'r l r , , J '{r ""' + "'. l } Qi; =VI: ~ \T~ uq, %, uq, -?rq, L., ~,q, Q,., + 'Pq,;,o.,., 8(~q,oJ+h. c: . 
Cft9tE't l (13.3} 

is the pairing quasiparticle-phonon interaction and 

H - ; [ [C cy.l , ,. li) r'~'£3" o 
BS- -z: , l 0 +TT :X/" JL T y,q, 7;9; ~,., ~;,; V{9,,}) g(r;r;j<) 03 •4 ) 

~ tt· fJ,((l..f::'r 

cr:q;e.' 
is the interaction which will be shown to be responsible ~or the 
Gallagher-Moszkowaki splitting and Newby ahift. In (13.1}-{13.4) 
the :following notation is used: 

(14) 

is the creation peru tor ct~ or:e-pt:onon state §:: f!6 ~ ~u,·6, 
is t.ht_· number C'f' the p~onon with gh:E'n ~ ond 



Here, ./.. ~ is the quasiparticle creation operator; 

u,,q~,=-U,,'h,l•a,,ufz I 1r,.fql= Uq, Uql. -'lrr,,'lr-,2. J wh~re u, and 
are the Bogoliubov transformation coefficients; 

(15.1) 

(15.2) 

f,~i.. is the single-particle 

matrix elements or operator <11 >; e4",,l = i- 2 S6, t 66, i rhe 

expressions :for the functions )( ~ Y 9- and ' f:1 ' are 
't" 1 "T "',i.t 

given in Appendix B. 
It is easy to see that if we consider the general case of 

neutron-proton interaction \l~f which is proposed to be 

hermitian and invariant under time reversal 

V tot 
"f 

(16) 

then after the Bogoliubov transformation this interaction can 
be expressed as a sum or .t.+J.. 

1 
J..+.l.•, J.+,I.+.J..J.. 

1 
a~.•.t+..;+.( 

and ,L+.J..J_+,t, type terms and of their h .. c. counterparts 

(in (16) labele ...- and S mean proton and neutron particle 

(~uasiparticle) states, respectively). It is clear that all the 

terJU of the sum
1 
ex~ept J. +.1.. J.. +-.I. tYJ?e term having the. t'orm 

V"P ~ f- 1;. < Fil V.., I r·~· >{( u,u,.IA.US· + lr, 1r,. 'Iss lr.·)l; J,, J; "r' -
~-· . (l?) 
>S )6 + I + ] - J1r,1r,.u,u •. +u,u,.tr,1r,. ,6,.l._;.c._;:•J;;.I.,·, 

will contribute to (13.1)-(13.3) ·parts of' the Hamiltonian (12), 

while the tera (17), the diagonal (r.: r' I $ = $ 1
) matriX ele

~DtB of' which are uaed to de&eribe·the Gallaaher-Moszkowski 

splitting and the Newby shift (aee, t'or example, [9]), will con

tribute to the n-p part or tbe H1,. <l3.4l. The n-p. part 

of the Hsa and 1:1-p interaction (17) have th_e same quasipar

ticle structure and the aame physical origin. Theret'ore, the 

neutron-proton interaction of intereat is -not introdUced in our 

• &iJproach from outside, but appears aa the inherent part of' the 
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microscopic Ha.niltonian (6). It should be not·ed that the inter-
action H 13 ~ (as well as the interaction HQ:~I" } is used 
to be omitted in the QPU calculations. For the interaction (17) 
is more general .than the h-p part of' the Has (the former 
may contain different types of.residual interaction, while the 
latter ia written only f'or separable multipple forces), we wiil 
use V.,p (17) in the following consideration instead of the His· 

4. !he main equations for tt.e intrinsic excitations 

The intrinsic wave function is given ae 

fl
-+ ___ 1 ,;,_• ,!._+ ( ( r r \(19.1) 
y(>r~)oy 1 , , ; r-c;: +i<' K 1-(1+d')5, 0 " 6,.1 o, .,J o +oK,o s r, ' , os, J 

k'·=(1+6 (1-,l )-1;, (19.2) 
'./" l(.,,o ;,.u,o) J 

l > is the vacuum for quaaipart icle and phonon operators 
(.,(~I> ::. Q i{ ) := 0) 

1 
V · is the number of intrinsic ~tate with 

given I{.,JT • Note that for f<.,.::.o the t'uncticin lflvd'.(K,}~') in-
cl~dee the eigenvalue ( .. = !1 of the operator R~ and fulfils 
the condition (A2) (eee Appendix .a) •. 

Let us consider the selection conditions l Ks±Kt j::.ko 
and II< ±_,.w I= Ko to be embedded into the amplitudes C.~~· 
and l:l"';r.. , reSpectively. Then, the normalizatiqn eondition .,, 
for the wave function (18) is 

. C Vlf• The ampl1tudes s~ · and 
ational method with keeping the 

where amplitudes &nd 

(20) 

<)v~· ean be obtained by vari
><fl-

condition (20)! 

(21) 

are the variational vari-
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ablea and Lagrange multiplier ?vr~ 

gy of the state (18). 

means the excitation ener-

Using the expectation value·, of 

= [ (c~;·),(E,+Ec) + [ (.D,~~l'CEs+Vw~ )-
sr SrfJ 

we will have from (21) the system of equations ror the amplitudes 

and J.J Vd'o : 

''8 

+ L 2):;:. ( <: rs I Vnp lr's'>,.yr+ < r's'l V.P I rs~y1) = 0. 
s.'r'~¥' d "" "' 

(the expressions for r,.~. and diaeOnal..eaae o-r (,.sfv,.,J,.~? ,can 

be found in Appendix B). ~l 

If we neglect the nondiagf')nal matrix elements < V S I v,.., I V's' ~r.r 
of ~-p interaction equations (23.1)7(23.2) are simplified 

and can be rewritten as 

(24) 
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Expressions (24)-(26) give more general description of 
intrinsiC states of odd-odd nuclei then the previous variant of 
the QPM in [4]. In addition to [4] they include the interaction 
\l~p , the isovector as well as the isoscalar parts of multipole 

forces (9), the par~icle-particle contribution (see the s~cond 
term in (B?)) to quasiparticle-phonon interaction, the mixing of 
n-p co~figurations due to the quasiparticle-phonon interaction. 

In rinal expressions (24)-(26)1 the nondiagonal matrix ele
ments of n-p interaction are neglected for the sake of simpli
city. This approximation,in spite of ita wide application,can 
not be considered as substantiated. Indeed, values of nondiagonal 
matrix elements can be of the same order of magnitude as diagonal 
ones. It is easy to see also from (23.1)-(23.2) that nondiagonal 
nAp matrix elements result in an additional mixing of )'\- P eon

figurations in odd-odd nuclei. So, the role of nondiagonal n-p 
matrix elements needs further careful investigation. 

5. Gallagher-Moszkowaki splitting and Newby shift 
It is easy to show that the Gallagher-Moszkowski splitting 

and the Newby shift are embodied in the equations for the int
rinsic excitations, derived in Sec. 4. To be sure or thisJlet us 
consider the simple case when the long-range 
except f'dr Vnp , is neglected ( 'f!~_,rr,-= 0) 
and (26) one can write 

residual interaetion, 
• Then,from (17)., (.810) 

~ 7yr.= E, •E, +<rs/ V,p/rs>.r,=- SK,o·Yo< r+s-IV.
1

/r-s+;> +-

c { 'U' ' 'J I'' ' '''l +oK,•r,K, <r•S'IV.1 fr•s•>(IA, ,+o,l-, -<r•s-jV.1 if•P ,,Li,+U,l-,(f 

- 8~<,-<,,,<J <r·s-IV,,f r•s-) (U~ u,'+z,.:V;)-'<r•s•l V.,11r+s•> (1r;u,'+ U,'1r,'Jf27 ) 
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Keeping the condition ;(.= (-n I (see Appendix A) we f'inally 

obtain the well-known expression ~or the Gallagher-Moszkowski 

splitting energy, corresponding to the case of independent qua

eip&rticles [6, 9]: 

The last term in (28) is responsible for the Newby shift: 

(29) 

6. E(M)A transitions 

The reduced transition prob&bilitiee for electric (X-= E) 

and magnetic (x.=M) transitions o-f multipolarity A between 

the states 'ITT Mp > and I r'TTM•,p' > described by the wave 

functions (4) ie [32] 

rr: #J71 

J3(x;,,Ip-->I p')= 

r r"[ ' 
= I 2: g v~. ev.:~f{IK,~ 1<;-K,II '<) < lfv'K; (K; •; I J/.( r~v·",~•)IIP,.lrK."J>+ 

":·~·. • (30) 

'·'~H) I•"'(r-K.~ K;+K.JI'~:;J< If.· rK;"l 1 JU 'rx-~.r ~e.+K.JJ'fv rK,"J> J I~ 
In the intrinsic ayetem,the operator of 

can be written i~ the case X.:.£ as~ (33] 

,fl(rn,jl 0 
.( p~re) 1r; + c; L~E) ( o; +Q_§) + 

+ [ P.frl (u~.u,.-'lr"'t.,,)B(~,q._,.,;l, 
'1..-l:ft. 9,9l 

where 

and in the case -1 &s 

10 

X" A- transition 

(31) 

(32) 



where 

are 
and 

n 

(34) 

(35) 

tt.e magnetic counte~"'PBrts of electrical-type operators (IS.-4) 
(15".2) and f.~(X) is the single-particle matrix element or 'In!. 
transition. Since in oUr approach the long-r~nge residual 

interaction is restricted to multipole forces only (and does not 
inclu~e the epin-multipole :forces),_ the v~brations_ of doubly-even 
core are described by phonons (10) of electric type • .n.s s re
sult, the contribution cf core polarization to the· .JU'(xA;)c&n 
be expressed in terms of phonon operators only for the }(::. E :;:ase 
(see the seeond term in (31), where L C:' is the ioatrix element 
of E~ transition between ground state and one-phonon state ~ 
in doubly-even core). The. corresponding contribution for )(.:. M 
case is written in terms of two-quasiparticle operators (34). 

Using (31) and (33) we can obtain the expressions for intrin
sic matrix elements o~ transition operators: 

I I 



where, opposite to (32), the quantity 

(37) 

and in the right-hand side of (36} the upper and lower signa are 

valid 'for x=G and X=M, respectively. Further, 

K"' *O I K:.,' = 0 
(38) 

(39) 

It should be noted that the ehi~t operator of intrinsic angular 

momentum j T belongs to the magnetic type ·operator with -;yw =11 

and, therefore, ita matrix element presented in (A4), (AS) and 

(A6) ean be determined by (36) for X;; M • 

? • Summary 

The microscopic approach ~or description of low-lying 

states in odd-odd deformed nuclei is proposed. The approach is 

derived as a unif,ieation of the QPM [4} and the models where the 

rotational degrees of freedom as well as the Coriolis mixing and 

effeetive n-p interaction are included [6 1 29,30]. As a result, 

the approach takes into account the most important effects (n-p 

interaction between external nucleons and coupling with rota

tional and vibrational degrees of freedom of doubly even core) 

which are necessary for description of excitation energies as 

well as £?t (MA\ -transitions in odd-odd deformed nuclei. It 

should be noted that the effects listed above are treated on the 

same microscopic footing. In ~articular, the h-p ~nteraction 
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responsible "for the Gallagl,er-!Joszkowski splitting and tt.e Newby 
shift is shown to be a part of residual interaction which has 
been neglected earlier in the QPM. 

Some coi:ll:'.ents on t.l-.e approach have to be done. Firstly, the 
Pauli principle has to be allowed: f'or. For this aim, the corres
ponding formulae for odd deformed nuclei [26 J can be quite easy 
rewritten for the case of odd-odd nuclei. Qn the other hand, in 
refs. {3!::,36) it has been shown that the Pauli principle has to 
be taken into account simultaneously with coupling with multipho
non configurations since both these effects are of the same order 
and act opposite to each other. For the embeOding of the latter 
effect would lead to tremendous complication of the approach, we 
did not allowed for both these effects and limited ourselves to 
the use of the simple procedure proposed in (25] for odd nuclei 
for indication of the most crucial violations of the Pauli prin
ciple. Secondly, two other modifications of the approach are very 
desi!"able: the exact exclusion of the "spurious" etatea caused by 
nonconservation of the particle number in an odd-odd ~ucleus (for 
an even-even core tt·,is problem is solved correctly ( 2.S])J and inc
luding the spin-multipole residual forces into consideration 
which may improve considerably the description of MA -transitio!'ls .• 
Both the modi~ications are now in progress. 
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Appendix A. trix elements of the Hamiltonian 

In order to o tain the amplitudes g I.f 
VK in wave function 

(4) one must diagonalize the matrix of the Hamiltonian (l) in 

the basis o:..· functions II"M Kv> given by (5) 0 The opere:~tor R~ 

in (5), representing the rotation by angle TT around the second 

axis,changes the sign of K for the intr:insic stbte lflv (KiT). 

rhe special care has to be given to the K = 0 case "for which 

we heve [32]; 
(Al) 

where '( = !1 and there is the condition 

So, for K=O the intrinsic function 'f'vr(K;O) is the 

eigenvector o'f the operator R, with eigenvAlue 3" • Theref'ore, 

in the paper, where it is needed, we ascribe the additional 

index y to the intrinsic function. Following {;,.2) the rota-

tional band baeed.o:a the intrinsic state l.?'vr=+t (l<=ol can 

involve only the states with even values of' I , while band baaed 

on I..Vv y"' •1 ( K = o) can have only odd values o.f I 

rhe matrix elements of total hamiltonian H in :the bHeie o"f 

functions (5) are as "follows 

where 
(A3) 

<I;'M,t,v,J HR/I,rr"M,K,v,>=&rM· ,,, IM Kv· t;' {I,(T,+1)-K:} 
~.f"'(Y4J11l.1.21P J 

(A5) 
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(h.6) 

' L [ .( 'l'y,(K,) u·l'l'v, (K;) >< lP,p-~.l I j+ /lflvY.J >+ (A?) 

vi K; 

+ <'l'v, (k,) lj+{ 'fv, (K,) > < lf'v,lt;) I j+f 'f'v, ( K.) >]. 

IS. 



.:..ppendix B. Notation for the intrinsic Hamiltonian 

rhe f'uncticns used in Sec. 3 are derived within the ~PM f'or 
the case when isoscalar ar,d ispvector forces are token into 
account: 

= (i+~,oJL 
r,q""" 

where £ q1rr'" = E~1 + ['ft.. is 
q,.q't. 

1 
w

9 
is the phonon 

can be found in [25,33 ]. 
Further, 

r (B2) 

( 133) 

(84) 

the energy of two-quasiparticle state 
energy. Expressions for r: UT end a.: ., 

(85) 

are nOrmalized ae 

(86) 

](, 



¥-'here 

(BS) 

I K~,- K~, I ')'! 
. (B9) 

The transition single-particle matrix elements J5,f;, ()() and 
Pf;, f .x) have the same form as (88) and (B9)'~ respectively, 

with the correepon~ing substitution o~ the operator ot X~ 
transition. 

In the dia'gonal caee (r-=r' 1 s-=-s') 8"= &"') the matrix 
element of _n-p interaction <rsj\/nplr-'s')/"K'Y' ie written ae 

of)(a.±s:tJV.,I~s±>_u,. -<r:;s.±tv.,l~+s±>i-,_. )• 

• 81($+1(,., IK.,~I + 

X 6 . ] 
fk:.s-ACrl,~o 1 

where 

17 
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