


1. Introduction

Low-lying states in odd-odd nuclei have been extensively
investigated for & long time, both empirically and theoretieally
[l~22]. The mein attention has been paid to the Gallagher-
Moszkowski aplitting [1] and Newby shift [2} which are directly
connected with neutron-proton interaction and provide a good
possibility for ite investigetion. In most of the papers the
neutron-proton interaction was introduced as some effective
forces with parameters fitted in accerdande with the available
experimental data {see, for example, {61). In [6,20-14] the Co-
riolis mixing was involved that improved considerably the des-
eription of low-lying states in deformed odd-odd nuclei. Recent-
ly, & successful attempt has been made to derive the microsco-
pic description of odd-odd nuclei within the rotor-plus-two-
quasiparticle approach, where the single—pprticle states, static
equilibrium core properties, and the reasidugl neutron-proton in-
teraction were determined from the seme nucleon-nucleon intersc~
tion [g],

4is a rule, the coupling of external nucleons with even-even
core vibrations wes neglected. On the other hand, this coupling
leads to the appearance in low-lying states of odd-odd nuclei of
vibrational admixtures [4], which may be very important, especi-
ally, for the description of £A (M2 ~transitions. A similar ef-
fect was clearly demonstrated in numerous calculations within
the QFM [25-28] of E)-trensition rates in odd deformed nuclei
[27-30]. The importance of vibrational sdmixtures in the states
of odd-odd nuclei haes been also confirmed in some phaenomenologic-
al models (18—21}. It should be noted that just vibrational ad-
mixtures are mainly responsible for the well known attenuation of
Coriolis interaction matrix elements [29,30].

The up-to-day status of investigationa of low-lying states in
deformed odd-odd nuclei clearly requires the construction of a
general microacopic approach, which would include consistently
the neutron-proton interaction and the‘coupling with rotational
and vibrational core excitations in the framework of & common
microscopic gcheme and, on the other hand, would be able to
describe the properties of even-even, odd-A and odd-cdd nuclei on .



the same microscopic. footing. Up to now, such a microscopic
approach is absent butit can be derived on the basisof the QFM
{4] in the same way as for odd nuclei [29]. The QPM seems to be
the most suitable for this aim since Just this model has been
succesafully applied for the description of low-lying states in
& wide region of even-even and odd nuclei [25-29,31]. In {29,30]
the Coriclis interaction was included into the QFM. Some cases
of interest were brought to the light., In particular, it has
been shown that in odd Eu-Tb isotopes only the simultaneous use
of Coriolis and quasiparticle-phonon interactions enables us te
describe the snomalcus behaviour of El-transitions [29].

The &im of this paper is the formuletion, on the QPM basisf4],
of the general microscopic approach for the deseription of low-
lying states in odd-odd deformed nuclei, This approach will ine-
lude the coupling of external nucleons with even-—even core vibra-
tions due to the quasiparticle-phonon interaction, the rotational
excitations as well as the Coriolis mixing, asnd the interaction
between external proton and neutron, which resulte in the
Gallegher-Moszkowski aplitting and the Newby shift. It should be
noted that the latter appears in cur approach &s & part of resi-
dual forces, omitted earlier in the QPM {4). In sadition to the
QPM version f4],we take into eccount the mixing of neutroen-proton
configurations due to the quasiparticle-phonon interactien. The
particle-particle (pairing) and isovector parts of this interac-
tion sre also included.

In Sec..2,the rotational part of the approsch is outlined.

In Sec. 3,the intrinsic Haemiltonian is considered and the corres-
ponding part of neutron-proton interaction leading to the
Gellagher-Meszkowski splitting and Newby shift is extracted. In
Sec. 4,the secular egquation for excitation energies and the exp-
ressions for the wave function coefficients of nonrotational
states are derived. In sec. 5,the Gaellagher-Moszkownki splitting
and Newby shift are considered. The expressions for £3i(M3)
transition rates are presented in Sec. 6. A short discuasion and
mein conclusions are given in Sec. 7. In Appendices A 8and B the
matrix elements of tng rotatiohal Hamiltonian and some expressions
for intrinsic excitations are presented, respectively.



2. The rotational excitations

The Hamiltonian of our approach is written a8 a sum of in-
trinsic snd rotational perts:

H:Hmtr"'Hmt. 1

The Fhﬁfr will be considered in Sec. 3. Ihe rotational part of
the Hamiltenian (1) includes the rotation of the nucleua as a
whole, the Coriolis intersction and the centrifugsel term:

Hyoe " Het Hop # H (2)

where
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A
In (3) ® is moment of inertis of the odd-odd nucleus, .I3
and J3 are operatora of projection of the total (I) and in-
trinaic (J = Ju +JP ) angulor momentum into nuclear symmet-
ry axie, respectively; I;T and ji the corresponding momentum
shift operators.
The wave function of the state of odd-odd nucleus has the

form
[1"Mp> = Z PIT™MK YD )

where 6 ? &re the Cor1ol1s nixing coefficients; M and X are
the angular momentum projections in laboratory and intrineie
systems, respectively; ¢ and V are the additionasl quantum
numbers, Further (327,

T - ZI"'" I 4o I+K 5T L}
[T™MKy> \/W) (0,0 H 0T RIS (K

where £, (K") is the eigenvector of Hineps R; is the oper-
ator of rotation by angle T© ardund the second intrinsic axis.
The matrix elements of different parts of the Hamiltonian



between the states (5) are presented in Appendix A. We don't

" give the derivation of them as it can be found in fb‘ 9] Note
that .- instead of single-particle matrix elements
<n' U:fn) and £p' ]J’ [p> , as in [6,9], the expreae:.ons

- in Appendix A contain the matrix elements <y, (K'”} ]J j @, (KTy >
where the intrinsic wave function \J,(K™) ineludes two-quasi-
particlie (neutron-proton) as well as two-quasiparticle @ pho-
non components. The latter are of vibrational type. They leasd to
decreasing of the amplitude of main two-quasiparticle component
in W, (K™) and, as & result, to attenuation of the Coriolis
matrix elements, observed experimentally [29,30]. Thus,in the

. framework of our approach the attenuation effect is described in =
natural way on the microscopic footing.

3. The intrinsic Hemiltonian and neutron-proton interaction

In accordame with [25,26,33]-the intrinsic part of the Hamil-
tonian (1) is written es

Hin'trz Hsp+ Hpu£r+ Hmm ©
Hs, ZZ(E-2 )ay 0z (7)

is a single-part:.cle potentzal,

where

(8)
Hpﬁlr ZG‘ Z aq+aq_a aq'.’.
T 99'er
is the monopole pairing and
. ) () p]
Hum =142 2 (2 rr MJ Q= Qs (9)
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is the multipole isosecalar and isovector interaction with multi-
pole operator .

(T‘ “~, A ~ 4— )
Q '~=Z ‘SE. S <q,!-f'“/"|q,_> a,;‘aaz_ (10)
YET

In (7)-(10)we used the following notation: T - -means neutron and
proton systems for which T = -1 and . +1, respectively; CI; is
the particle ceeation operator for single-particle state § ;
§=29¢ ,K=Kg, M=mE, K30, M3>p ; €=*4 characterises
the symmetry with respect to time reversfl operation; Eq is single-
particle energy; G'r and Ao are pairing strength constant ‘amd
chemical potential; e 3 and 2 ¥ are the multipole
ispscalar and isovector strength constants, respectively;
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<§f|{ P3‘“}5,_'> is the single-particle matrix element for the
cperator

P2 R Vi e Y b (14800 L)

with unspecified radisl dependence KirYy .

after the Boguliubov transformation and using the RPA equa-
tions for one-phonon excitations of even-even core, the intrin—:
sic iimmiltonian (6) cen be transformed to the form (25,26,33]:

- Pm
;‘([VI{T - 'l,_,du-(;) + H(;L’» r F—' 3 (12)

where

#Q ZE Biego) -—Z ZZ g(l/g (13.1)
Aﬂ ¢’ "_‘jS‘}j?
generates quasiparticle excitmtions and phonon excitations of g
doubly-even core,

QE -2 Z{(Q +Q~g)ZZ ‘?19:. B(%qz ‘/")*A C} (13.2)

T qo,eT
is the qu351part1cle phonon interaction whieh will be shown to

mix neutron-proton &nd neutron-proton (¢ phonon configurations in the
wave function of odd~odd nucleus,

;:rh " Z_G ‘g bt L7y )Z{(%?:on (P‘i?;iozni)&i“f")*b'c}
& (13.3)

is the peiring quasiparticle-phonon interaction and

___Zz(xrw ”"")Z 7[7.9 71' Lo, 9,?15(%,),)3(?' ) (12.)

M T ETA
9967
is the interaction which will be shown to be responaible for the
Gellagher-Moszkowaki splitting and Newby shift. In (13.1)-(13.4}
the following notation 1is used: '

i S Twyat. o p? . (14)
Qg 2 %L L/q'qiﬂ(q,qjm) LF’!;% f«]{y,y{jm}}

is the creation ~perater cf one-phonon state gsgg‘?_' AU,
where ¢ is the number cf the phonon with given A and
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~ (15.2)
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-+ + . . .
Here, 5 is the quasiparticle creation operator;

u?rqa.‘ u‘h’hh 31’“7: 11“-‘![‘71 uq, ”ql lb"a‘ 1}‘;,1 ; where Uq and 71"?

are the Bogeliubov transformation coefflclents,

-fq'y' is the single-particle
matrix elements of operator (11); Bgy = 4~ 28,4 86& . The
expressions for the functions ){T , T2 and & re are

s

given in nppendlx B.
It is essy to see that if we consider the general cese of

neutron-proton interaction \/,.,P which ie proposed to be
hermitian and invarient under time reversal

Lty " P + +
V"P —-Z-Z'<YS|\/,,P!"S>O;0;‘%O'§' , {16)
FF

£8

then after the Bogoliubov transforma'tion this interaction can
be expressed as a sum of Y%, AT, ATRTAL , LU
and Jt4 LY type terms and of their h.c. counterparts
{in (16) labels ¢ and § mean proton and neutron particle
(quesiparticle) states, respectively). It is clear that all the

terms of the sum except 7o *d type term having the form
Vip =& 2 <RSIV P (Mol lhy U+ b B RV LS d ol ™
g'sf (17)

= (T MU Uy Uy, )6, 6, L5 Lo 5 4

will contribute to (13.1)-(13.3) parts of the Hemiltonien {12},
while the term (17}, the diagonal (r=r', 5-%5') matrix ele-
ments of which are used to describe the Gallagher-Moszkowaki
splitting end the Newby shift (see, for exanple, [9]), will con-
tribute to the n-p part of the Hlb (13.4). The n-p. part
of the Hgg 8nd hn-p interaction (17) have the seme quasipar-
tiele structure and the aawe physical origin. Therefore, the
neutron-proton interaction of interest is not introdiced inp our
. approach from cotside, but appears as the inherent part of the



microscopic Hamiltonian (6). It should be noted that the inter-
action Fiag (83 well as the interaction |"-lmmr } is used

to be omitted in the QFM calculetions. For the interaetion (17)
is more general than the n-p part of the F g (the former
may contain different types of .residual interaetion, while the
latter is written only for separable multipole forces), we will
use Vpnp (17) in the following consideration insteamd of the Hes.

4. The main equations for the intrinsie excitations

The intrinsic wave funetion is given as

~n v e o e
%go(m,y{éfsrﬂg (SPRA* ka:; )Q J,% f
where :
o) 1 v+ )(19.1)

' qu’ (gFE) :W 50(?5254_%.5?(4- M+X)8";° Se‘sﬁ 85’ +f
Ke _ - . -4
K= (48 (- 8,01 ™,

| > ie the vacuum for quasiparticle and phonon operators
(¢£9|> Q {5 = o) V “is the number of intrinsie stete with
given KT . Note. that for K,20 the functidn Y, (M in-
clgdea the eigenvalue 3’“— -1 of the operator R; and fulfils
the condition {42) (see Appendix A}, :
Let us coneider the selectiop condltlons “(sil(r [=Ke

and JKEM[ =K, to be embedded intc the amplitudes C_"'x'
and _23:?_" , Tespeetively. Then, the normahzathn eondltmn

(19.2)

for the wave funetion (18) is
~ Vi > N
(4 (R ¥, () RA(RyNCUCOIET B
‘ ry :

The smplitudes C:i’ - and D:rﬂ; ean be obtained by veri-
etional method with keeping the condition (20):
A

5{ (F B Hant, oy, ®5) = 7, (O @D Py, RT)- 1) f 20,

where emplitudes C‘;f" &nd .Z):; are the varietional vari-



ables and Lagrange multiplier l? vy, meeans the excitation ener-
2

gy of the state {(1£).
Ueing the expectation value:. of Hentr

( k})\:;"('Zo”r) Hin‘tr wvh’u(ﬁ:r)) -

Z(c"“ (e g )+ L (L00) (v rwy)-

sry
V&% Ve 78 9
Z Z C DSr'g ( r?s,s' 8r,r’+’r’i" SS,S') - [22)
sros'ry
° L on s
. ZZ Cvx vﬁ’ C<rsiv, ]r5> +ZZ.Z)SY§ ,3”9 rSN,,?]rsJ?””.
sr s'r' 'srsrg
ry'

we will have from (21) the system of equations for the amplitudes
A VY, -
Csr and asrg :

2C Va'.,“- E_'?vg Z’Z)er Fg’g r gss)+

(23.1)

+Z C. (<rsl\/n,,fr's'> P oy 1755, )20,
VY- _ - * Ag ‘+ﬁ'§ g+
2 357’3‘ (£S+ Er“’Wg ?VJ,) s"Zr.Csfra ((;5' Sr‘r [;r- gsrs ) (23.2)

+ 7 .Z) .rg(<rslv,,,,|rs/‘w+<rs|\f trs> Xi) 0.

s'r'yy
(the expressiona for f;g and diagonal case of <rsfv,.,,]p5‘;a can

be found in Appendix B).
If we neglect the nond:n.agonal matrix elementa <YSiVn, tr's'> iy

of h-p interaction equationa (23.1)7(23.2) are simplified

and can be rewritten as
DYVE = (E+E, + Wy +<rs Vi lrsZ =Y Y7 (24)
s r 3 np ey V‘Ya

sry
¥ / Z C\m(rﬁ ‘g ﬁ-z'gs,s')



Fss‘m F'S'”‘ ]g(zs)
£.+E, MRS IATIES 7\,( '

ZC {Sm (€ b rsivplrsy, ?va‘
srg

with the secular eguation for‘finding the excitation energies

Jetf{ cgsr s'r'(€5+fr+<“wnr|r5?'7v )-4 Fss,m E;s,rn, 'H:D,(ZS)
5 L R I VAR X
, «f1dy S
where ],_, “F?S 8
S8,V 55, r,r, rr, L9V
Expressions (24)-(26) give more general déscrlptlon of
intrinsic states of 0dd-odd nuelei then the previous variant of
the GPM in [4]. In addition to [47] they include the interaction
MQP, the isovector ss well as the iscscalar parts of multipole
forces (9), the particle~particle contribution (see the second
term in (B7)) to qu881partlcle—phonon interaction, the mixing of
n-p cohfigurations due to the quasiparticle-phonon interaction.
In final expressions (24)- -{26), the nondiagonal matrix ele-
ments of Wh-p interaction are neglected for the sake of simpli-
eity. Thia approxlmatzon ,in spite of ita wide application,can
not be considered as substantiated. Indeed, values of nendiagonal
matrix elements c¢an be of the seme order of magnitude as diagonal
ones. It is easy to see also from (23.1)-(23.2) that nondiagonal
h-p matrix elements result in an additional mixing of W-P con-
figurations in odd-odd nueclei. S0, the role of nondiegonal h-p
matrix elements needs - . further careful investigetion,

5. Gallagher-Moszkowaki splitting and Newby shift

It is easy to show that the Gallagher-Moszkowski splitting
and the Newby shift are embodied in the equations for the inte
rinsic excitations, derived in Sec. 4. To be sure of thia let us
consider the simple case when the long—range residual 1nteract10n,
except for V,, , is neglected ( rss4rr o) . Then from (17}, (510)
and (26) one can write

Estlr
VZVYG:E E +<|"5anpr5> ""SKOY<I"+S] !V_SA‘.?"—
Bt 4P gty (WU cresity o b )
B Slx;k,l,x,{“ﬂ"Vnrlns-) (U USATL) Cre 541V I 50 W:“;W:l’:)gz?)
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Keeping the condition X;: -1) I (see Appendix A) we finally
obtain the well-known expression for the Gallagher-Moszkowski
splitting energy, corresponding to the case of independent qua-
siparticles [6,9]:

aE-= ?vyu' 5“(,— Kel, K, ?vafeé Ke+ Ky, Ke‘
It (28)
2 CPr 81V ra s> = Crest Vg Iress >+ 8 () < ras- 1V, |15+,

The last term in (28) is responaible for the Newby shift:

AC ?VH' -4 ?v’y:u 2 2Lr+58~ [ Vnp IT-54 2> (29)

6. E(M)A transitions

The reduced trensition probubilities for electric (X‘E)
and magnetic (X=M)  trznsitions of multipolarity A betiween
the states |I"Mp >  and lI’nI‘\d'_p' >  described by the wave
functions (4) is [32]

B(x», I —» I7p) =
[Z BI" BI“P {(IK,‘/\K KUKV a6, NI '(xayu.-x;.x)l%r(x,")>+

vx ° (80)
: - TT-Kk AR T K By (KT M 1A, p =K |8 (kT T

In the 1ntr1na:.c system, the operator of XA - transition
can be written in the case X =E as [(33])

M (EX =2 ZP??(E)’&; + Z:L;EJ(O§+O-§)+

(31)
* Z P {é) (”7 u?t b 1"9,_) B(?-fqr'./”)
9=
where
(E‘] \PETI g
L y ?-)‘ az_c; P m (u H"h)( ma LF%%) (a32)
and in the cuse .1 as

10



U (MJ\/. =5 Prm)(u [ QM.,J(Tﬁ;wi‘)*ﬁm%;m):aa)

"'fa'h

+ZPrm}(u, Z"Zr)j?{[%‘hj“)
Tt oot ZS« ~o{;:ol$ 9 (34)

J‘)l(q‘q‘/“) Zs ”"z/” -?:0(19616:_ (35}

are the magnetie count,e parts of electrical-type operatora (I5.4)
and (15 2) and P (x) is the single-particle matrix element of
XA transition. Smce in our upproach the long-runge residusl
intersction is reatricted to multipole forces only (and does not
include the spin-multipole forces), the vibrations of doubly-even
core .are described by phonons (40) of electric type. as a re-
sult, the contribution of core polarization to the: ‘M'(x’zyﬂ can
be expressed in terms of phonon operators only for the X:=£ 2ase
{see the second term in (31), where [, &’ is the matrix element
of EA transition between ground state and one-phonon state g
in deubly-even core). The corresponding contribution for. X=M
cage is written in terms of two-quasiparticle operators (34).

Using (31) and (33) we can obtain the expressions for intrin-
sie matrix elements of transition cperators:

~

<%gfﬂtl'!m'(m,;nl%,_(ﬁf)>= Ser-t i

o
0.,y

Tor V& 7 2R -4
2: C C ( Ps:(x)(us Hs':%'s?"s'm[r'*["r}::m (M'u*”?ﬁ??'?')‘gu')k%!;

G e

] S!’g
Sri )
vy /e _ ey V22
£ DD (P::(x)(”s“-*151"5-)5”'7’;?”(” U *H')*SA ?‘Gf"

Srgl 5 r'g‘_'f

Sv,
sryyy

I



where, opposite to (32), the guantity L(;) is given by

My _ \ 1+ al - J -
L+ e 3 o (40,15, st ) S
178

end in the right-hand side of (36) the upper and lower aigns are
valid for X=& eand X:M, respectively. Further,

4
\IZ (é‘sﬁ’i Sdr;f - X; 85‘.‘,‘1’ gér,‘f) 1 “‘F K":D ' K" 0

ce 4 , , (38)
A vz (855.‘” ggr;_{ -t &s:_f Ssr,n)) f K,F0, K70
1 , in other cuses
Ko\ot
(\"Ek,.) (‘gss;«f et “3’565’_, g‘rf‘) , (f K=o, k'#0 (59
39

I‘( z;}‘Df = Ko~ '
Yy (\ﬁ- kj, J (56,';” gd.»:’f -X ggs;,., 56(“4'1)1
k;; J(/:? ( 1+ Sx,,o 5,(;‘0 (4- @u‘o)) , v other coses.

(‘f Kip , K =0

It should be noted that the shift operator of intrinsiec snguliar
momentum J & belongs to the magnetic type operatoer with %M =11
and, therefore, its matrix element presented in (44), (A5) and
{A8) ean be determined by (36) for X=M .,

7. Summary

The mieroseopic approach for deseription of low-lying
states in odd-odd deformed nuclei is proposed. The approach ia
derived as a unifieation of the QPM [4] and the models where the
rotational degrees of freedom &s well as the Coriolis mixing and
effeetive h-p interaction are included [6,29,30}. Ap & result,
the approach takes into azccount the most -important effects (n-p
interaction between externsl nucleons and coupling with rota-
tional end vibrational degrees of freedom of doubly even core)
which are necessary for deseription of excitation energies as
well 8s £3(MA) ~trensitions in odd-odd deformed nuclei. It
should be noted that the effects listed above are treated on the
same microscopie footing. In particular, the h-p interaction
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responsible for the Callagher-MHoszkowski splitting and the Newby
shift jis shown tc be a part of residusl interaction which has
been neglected earlier in the QPHN. .

Some comcents on the approach have to be done. Firstly, the
Pauli principle has to be sllowed for. For this aim, the correas-
pording formulae for odd deformed nuclei {25] can be quite easy
revwritten for the case of odd-odd nuclei. On the other hard, in
refs. {35,36] it has been shown thet the Pauli principle has to
be taken into account simulteneocusly with coupling with multipho-
nen configuretions since both these effects are of the same order
and act opposite to each other. For the embedding of the latter
effect would iesd to tremendous complication of the approach, we
did not allowed for both thege effects and limited ourselves to
the use of the simple procedure proposed in [253 for odd nuclei
for indication of the most crucisl violatiomns of the Pauli prin-
c¢iple. Secondly, twe other modifications of the approach are very
desipable: the exact exclusion of the "spurious” states caused by
nonconservation of the particle nurker in sn odd-odd rucleus (for
an even-even core this problem is solved correctly {25}),&nd inc-
luding the apin-multipole residuel forces into consideration
which mey improve considerably the description of MA -transitioms.
Both the medifications are now in progress.

Acknowledgement

The authors are grateful to Prof. R.K.Sheline for initiation
of present investigations &nd to Prof. V.G.Soloviev for useful

discuaaions.

13



Appendix A. trix ‘elements of the Hamiltonian

In order to o})tain the amplitudes @\f;f: in wave function
(4) one must diagonalize the matrix of the Hamiltonian (1) in
the baais of functions IT®MKv> given by (&). The opera'tor R:
in (5),repreaenting the rotation by angle T arcund the second
exis,changes the sign of K for the intrinsic stete W, (KT,
The special care hes to be given to the K=0U case for which
we have [32]3 '

R an,(K:D):?j’wvx(K-‘O), (41}

where = %1 and there is the condition
y:= (0%t (42)

So, for KO the intrinsic function \,Vva,(KHD) is the
eigenvector of the operstcr R with eigenvalue X . Therefore,
in the paper, where it is needed, we ascribe the additional
index Y to the intrinsic function. Following (42) the rota-
tionel band based.om the intrinsic state YWy-4( (®=0) can

involve only the atates with even values of T , while band based
on  Wyy:o (K:0) can have only odd values of IT.

The matrix elements of total hamiltonian H in the busis of
Punctions (5) ere es followa

T MK, [HIT MK V> =< ME A H g  H He HAL M.k%)

where (43)

Ty H Y =
<MK ul HCn{rI Le MY, ? Sl;Mq"‘VuIz”LKzVL { ?V, (4- 8K4,°)+ (44)

A [‘f"' ['1)IX4 ] ‘?y‘y,, ' 85'..;Yz_ 8K4,0 }

, m, ; 5 !
< I’ M KeYe ! HR l Il M KaVa 51]”4K4V4, Ia.Mszvz. ?‘b {I’(I'H) K"})

(A5)
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m, : fiy = = i
<I4 M4 K1Y4 J HCI(Iz M1K2v2>_ 5I4M‘JI M‘L -f‘p

* { (SK‘J K,'--f[ (I1+Kz)(-rz"(a+f) (%2(Kz) IJ+I.%4(K1)>‘+

(48}
ren Y RED S Ses < (mlJ*W kol
* Skq, K(H[ (I;k,_)(I,}Eé*{) < WW(K«")'-I*‘ L‘Vv‘ (k) >+
4(-1')1‘ Egiti) 81&,18&,0( HVW‘(K,] 1J* %&YL(K‘W) ?_]},
m T *
<I4'M4K4V4IHJI-L;1M1K2V1 51.”?‘“1.”1 K, .ch X
Z[<W (kJ1J* IW (K}><‘V{mu [ ¥, (k) >+ (K7)

Y, K;

+<Wv‘-fk") “+[ %,(KJ)(‘V\J"(K()“*'I wytfka) >]_
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Appendix E. Motation for the intringic Hamiltonisn

The functicns used in Sec. 3 are derived within the (FM for
the case when isoscelar and ispvector forces are tsken intce

account :
| 3 -Fqﬁ {79 U? T E?r?t.
X3- (4+§/u,o)z Lo : N
98T 99~ 3
g
Y9I Y Y? 1- (222 X% }2
T~ (xor;\/.n :yc)) X?T , (82)
\{3 = (i“’ Z 767'91 7[‘7«92 u‘h?a 6?191“”5‘ ) |
2y 2 (B3
’ sger (Cqa, " Wy')

{2 = g /Ef (34)

99, 149 94, '7:.

where E%?: E -P{§L is the energy of two-quasiparticle state
9,9, , W ia the phonon energy.BExpressions for r-gr end X.?_
can be found in [25 33]

Further,
.[’ (B5)
‘74?;_ LIL ?4‘?;. _
end the amplitudes and (Pq b are nérmalized ag
(B6)
‘;z( AN ‘74?: ?4‘?1 %‘F;) 2 8?3

In Sect, 4 the followlng notation h&as been used:

‘?491.6—'5 WS%Q ‘F% (i*'SK‘OH-ng))"% -

VoG, Uy, L (U5 17) Z(%Z:’?‘f;";”) (a7)

qe'r

._.8 Szj“m

10



where

‘Fr'a/.:‘ s oo [ 4 |K€Ku| = 4
. Tea . (88)
e 1ES 6341 Kq‘ﬂr\qz M,
<q+¥'r‘na’"ffi+>:<q-if"/“!q-> kg~ Ko | =
_Fa/u _ 1 ) 9, "9, /4
qﬁz B 3 - . (B9}
<q+1f7g->= <<q (%15 | Kyt Kg,
The trensition single-particle matrix elements Faq P2 and

P”, fx) have the same form as (B8) and {(B9)} respecuvely,
with the correspondmg subeututmn of the oparator of XA
transition,

In the édimgonal case (r:r” ) 5=.§'J Y=x") the matrix
element of n-p interactiop <PS [Vaplr's' >/u¥_3,. is written as

LFs{Vaplrs> ,“a,

2 }i_{(< PESEiNup PS> B g —<PESE Vp PT 4> T )

) 5Ks+l<r,l~<.,*-yl +

+(<r:s:lv,,[rts¢>{?(“-<rzs:lv.,,,irz$:>"z‘,—,_,,)“ (B0
X Sm,—x,l,rr.tjui‘ -
-x(<rrs:i'vnpa?zs;«>&?;s4< FESEIVap [ X252 T
X 5:5 rrl o}
where .
Goomurug ety | Bourrvlu (1)
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