


1. Introdqction

In recent years, methods thaf map many-fefmion problems onto
many-boson ones have been studied intensively. Firs£
established in the‘theory'of>spin waves [1,2], the boson
representation of the bifermion operators has been extended
to general fermion systems [3-6]. Several approaches have
been = suggested to. develop the boson representation
techniques [7-12]. In nuclear physics, an aim  of such
studies is to ‘obtain a microscopic support for the
phenomenological models -of nuclear collective states, like
the‘ihteracting,boson model- (IBM). The bosonization of the
fermion problem is thus accompanied by an identification of
the subspace of relevant collective degrees of freedom and‘
truncation of the full space to that subspace.

There are three classes of microscopic investigations of
nuclear collective structure in terms of boson models. In
the first one, the collective Hamiltonian is constructed
within a simple ﬁnderlying symmetry group [13]}. Thus, the
collective variables are fixed independently of the real
physical problem. As a result, a considerable coupling of
the collective and noncollective degrees of freedoﬁ may
occur.

In the second class, one does not demand that the
collective Hamiltonian has ani exact symmetry group
structure. Collective variables are determined so as' to
minimize'the coupling of the collective and noncollective
boson variables[14].

‘The third class nts an intermediate
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approach [8,9,15] in which, the «coupling between the
collective and noncollective variables is not fully
minimized. Instead, the structure of the boson collective
variables is taken from the 1lowest fermion pair in the
Tamm-Dancoff approximation (TDA). Such an identification
seems to give a reasonable definition of the collective
subspace.

In this paper, we proceed within the last approach. We
start with the BCS quasiparticle representation of the
fermion problem. The truncation to the lowest quadrupole TDA
pair is made. In the bosonization step, we develop a
procedure based on the correspondence of the fermion and
boson quadrupole collective states. Our approach goes beyond
the SU(6) symmetry of the IBM which we obtain as a limiting
case.

In sect.2, we discuss the mapping of the fermion
quadrupole collective states and the pair fermion operator
onto the boson ones. In this procedure, the norm matrix
plays an important role and an approximate procedure how to
calculate it 1is suggested. The boson image of the
particle-hole operator is investigated in sect.3. In sect.4,
the collective boson Hamiltonian is derived. Results of some
calculations are presented in sect.5. At the present stage,
we do not start with the microscopic fermion parameters. We
rather inspect whether the present approach is able to give
results which differ from the phenomenological IBM.

Conclusions are given in sect.6.

2, Collective pair operator

In the TDA, the lowest quadrupole state is generated by the

operator
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Using Azn’ we construct the subspace of the collective

quadrupole states in the fermion space by the recurrence

relation [8,9]
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In the above, |1,1,0,2,M>F=A2H|0> and (n—lvé%Il;Zl)anI)

are the I=2 boson fractional parentage coefficients (cfp).
In the boson space, the I=2 collective states are given
analogously to eq. (2)
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where |1,1,0,2,M)B=d:m10) and d:m denotes the creation
operator of the collective quadrupole boson. ‘

The boson states (3) form an othonormalized system by
definition. That is not true for the fermion states (2) for

which the norm matrix is considered

<n’v’Q’ =
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We introduce the boson operator exp(—ﬁ), which in the boson

space reproduces the norm matrix
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The TDA amplitudes and the L=2 boson c.f.p.’s could be
chosen real so that the norm matrix 4 is real and symmetric.

The unitary mapping of the fermion collective subspace (2)

onto the boson collective subspace (3) is brought in as
1A
|anIM>F — exp(— 3 A) |anIM%_ (5)

One easily sees that the mapping (5) implies the mapping of

the TDA operator
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From the unitarity of the mapping it follows
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To obtain the norm matrix from eq.(4) is not an easy task.
We can, however obtain an equation fof the norm matrix
operator exp(—ﬁ) starting from the nonunitary Dyson boson
mapping. In that, the pair creation and annihilation
operators in the general single particle space ..s,t,.. are

mapped as
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Of course, the norm matrix in the collective subspace is
expressed through the elements of the norm matrix in the

single particle space. For the latter, we have
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On the other hand, the matrix elements of any operator in
the collective boson space are expressed through the matrix
elements of this operator in the full ideal boson space. We

thus have for the operator exp(—ﬁ) in the ideal boson space
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The operator exp(-A) which satisfies for every s,t the

relation
A A '
- + _ .+ _~A
e bst = Bst e ’ (9)

together with the normalization condition

e™ 10) = 10y,
satisfies also eg.(8). We have shown [16] that the above
equétions determine the operator exp(-ﬁ) uniquely.

The relation between the ideal boson space bst and the
transformed boson space buﬁ” with the collective

quadrupole boson dm=baﬁn is
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Note, that for i=1,1=2 the superscripts i and L are not
written in eq. (1) and also in the following treatment.

Equation (9) is transformed into the collective boson

subspace as
A
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Here, the operator % is expressed generally through the

collective quadrupole bosons d2M as well as through the'

other transformed bosons bur At this stage, we made an
A
approximation by restricting F in eq.(10) only to the

collective gquadrupole bosons. Using the defini;ion (7), we

have
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Here ﬁ is the d- bosons number operator and I" 1s the square
fat}
of the angular momentum. The eigenvalue of the operator T

in the SU(5) basis is equal to Vv(Vv+3), where v is the

seniority of the state.
From eq.(10), one gets the recurrence relation for the

matrix. elements of the operator exp(—ﬁ) in the SU(5) basis
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Note that the matrik elements from eq.(12) are not symmetric
due to the approximation made for F. We symmetrize them by
néglecting.the antisymmétric part of the‘eXp(-ﬁ) matrix in
the recurrence rélation (12). In fact,; we .have found in
actual calculations that the antisymmetric part from full
eq.(12) is well smaller than the symmetric part.

Another feature which calculations reveal ~is the
smallness of the nondiagonal matrix elements of exp(—ﬁ) in
comparison with the diagonal ©ones. We neglect the
nondiagonal elements in the following, which simplifies the
calculation of the square root operator exp(4%ﬁ) and its
inverse.

If in eq.(11) the equality of ¢, =C=C,=C is - assumed, the
operator‘% reduces to §=%Cﬁ(ﬁ—l).~Then the elements F(nvI)
of F depend only on the boson number n. Substituting this
result in the recurrence relation (12), we have
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Since 3 depends only on N, we write eq.(6) as

Al ——exp(- 3 A(N))a) exp(; A(N))=d] explZ(A(N)-A(N+1))].

We obtain the final result
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Thus, in the case of CO=C;43=C, the boson representation
(6) of the quadrupole TDA operator reduces to the SU(6) IBM
expression with C ' being the maximum number N _ of bosons
in the IBM. '

We introduce the cutoff in the boson number when the
corresponding matrix element of exp(-ﬁ) are less than zero.
In the case of different parameters Cyr C,. and C4, this
cutoff depends not only on the d boson.number n but also on
the other SU(5) gquantum numbers.‘In,this way, we gqnbeyond

the SU(6) symmetry.

3. Particle-hole operator

In order to define the boson mapbing completely, we have to
find the boson image of -the particle-hole operator. The
matrix elements of this operator in the single-particle

basis are given in the Dyson boson mapping by
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Using the properties of the operator exp(—ﬁ), we write the

righﬁ— hand side of eq.(13) as
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Here, the commutativity of the operator exp(—ﬁ), and

consequently of any function of exp(—ﬁ), with the Suv has
been used [15]. The relation (5).generalized to the single
particle basis is
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In order to make the equality of the particle-hole matrix

‘elements consistent with this mapping, we set
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Of course, in the discussion of the following section we

restrict ourselves in the above relation only to the

collective quadrupole boson terms d:ndac'
4. Collective Hamiltonian

The fermion quasiparticle representation of the nuclear



Hamiltonian is written as follows:
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Using the boson representation of the fermion operators as

discussed in the preceding section, we obtain after

truncation to the quadrupole collective degree of.freedom the

collective boson Hamiltonian in the form
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The coefficients-of the boson Hamiltonian (15) are expressed
in terms of the parameters of the original fermion

Hamiltonian (14) and of the TDA amplitudes ¥ [17]
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We see immediately another feature in which the boson
Hamiltonian (15) differs from the IBM Hamiltonian. Namely,
the presence of the exp(-%ﬁ) and exp(%ﬁ) operators
implicitly introduces many-body effects. These are not
considered within the ordinary IBM which deals only with

one- and two-body terms -in the Hamiltonian.

5. Calculations
The procedure of calculations with the fully microscopically
determined collective quadrupole Hamiltonian should start
with the fermion quasiparticle Hamiltonian from which the
TDA amplitudes, the norm matrix operator and the boson
Hamiltonian would be derived. It appears, however, in
different microscopic studies of the collective nuclear
structure that the truncation only to the lowest collective
pair is restrictivé in most cases [18]. Other degrees of
freedom, as for example the I=4 collective pair, play an
important role. These degrees of freedom can be included
either explicitly or implicitly through the renormalization
of the parameters of the guadrupole boson Hamiltonian.

We do not perform the microscopic calculations iﬁ the

present paper in which the truncation to the quadrupole
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poson 1S uuly considered. Rather we want to investigate the
poséible aspects of the deviations of the boson Hamiltonian
(15)' from the SU(6) symmetry énd from the ordinary IBM
Hamiltonian. For this purpose, we fix the Hamiltonian
parameters so as to get for qfc;%a=N;x the SU(3) or the
O(Gj limits of the IBM. Then, the variation of spectra
depends only on one of the parametérs Co, C2, and C4 while
two other being still fixed.

Thé results obtained are shown in figures 1 and 2. It is
seen that the varia£ions in the wide limits of the values of
the C;I, C;1 and Cr near N do not change drastically the

spectrum of the collective states.

6. Conclusions
We have presented an approach to the description of the
low~lying nuclear collective states in which the fermiqn
problem has been transformed into the boson one. Starting
with the mapping of fhe quadrupole collective states in the
fermion space onto the boson épace, we have found the boson
images of the bifermion operators and fermion Hamiltoni&n.
In this mapping, the operator reproducing the fermion norm
matrix in the boson space plays an essential role. We have
suggeéted recurrence relations for this oﬁerator and solQed
them in the tfﬁncaped quadrupole boson space.

The reéulting Hamiltonian contains the terms which go
beyond the ordinq;y SU(6) IBM Hamiltoniaﬁ. However, as far
as one stands on the phenomenological level, the deviations

from the IBM results are not drastic and could 1likely be

reproduced by changing the phenomenological IBM parameters.
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Fig.1l The spectrum of the collective states for different

values of C;I, C;1 and Cr. In every graph, one of the para-

1

meters C_ ', C; , and Cr is changed and the others are equal
(o]

to 10. The parameters of the Hamiltonian are fixed so that
. -1 =1 a1 _
the SU(3) limit is realized when Cj =C, —C4—10. For conve

nience, the ground state quasirotational band (left part)
and the excited bands (right part) are shown separately.
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The norm matrix operator exp(—ﬁ) is closely related to

the projection operator onto the physical boson space [16].
We haye to note, however, that the problem of mixture of the
nonphysical boson components is not solved.in the present
approach and remains to be an importént challenge to the
boson models of nuclear collective structure.

Another ' problem is the inclusion of the degrees of
freedom other than the lowest gquadrupole collective states.
on the phenomenological level, such an inclusion increases
the number of model parameters enormously. Therefore, the
microscopically motivated models should be developed. In
principle, the present.approach can be extended easily to
include them. Then the norm matrix operator exp(—ﬁ) could
contain large nondiagonal elements which might influence the
handling the square root

results significantly. However,

operator exp(—%ﬁ) and its inverse should be more difficult.
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Hosem . u np. E4-90-319
DosoHHOe mnpepcTaBneHHe M MHKPOCKOHYEC KU

KOJIJIEKTHUBHBIH ApepHbil raMHiIbTOHUAH

llonyyeHo 6030HHOe npencTaB/leHHe ¢deDMHOHHOI'O TI'aMUNIBLTO-—
HHaHa Ha OCHOBe GO30HHOr'O NpeCTaBlIeHHsl GubepPMHOHHBIX
KBaApYIIOJBHEIX KOJUIEKTHBHLIX onepaTopoB. C moMoublo npHUOIH-
KEHHOTr'O peKyppeHTHOT'O COOTHOWEeHHSs BhuHcJleHa MaTpHLa HOp-
Mbl 6030HHOIO npenctaBieHus. lonyueHHn! GO3OHHLIET IaMWUIBTO—
HHaH COOEepXHT uleHb, o6obumawiye o6buHyw SU(6)—-cHMMETpPHIo
raMuiIbTOHHAHa MOZesIH B3aHMoOeHCTBYyKIHUX 6030HOB. PesynnTa-
Tl pacyeTa NoKas3bBawT, YTO OTIHYHA MeXOy INOJYUYEeHHBIM ra-—
MHIBTOHHAHOM H [aMHIbTOHHZHOM MOMENH B3aHMOOeHCTBYIHX
6030HOB HecylleCTBEHH:I, . .

Pa6oTa BHIIONHEHA B JlabopaTopuu TeopeTHuecKod (GUIHKH
OIAN.

I'Ipenpm»n OGbeMHeHHOTO MHCTUTYTA ANEPHRIX BecenoBaHuit. Hy6ua 1990

Dobes J. et al.’ E4-90-319
Boson Mapping and the Microscopic

Collective Nuclear Hamiltonian

Starting with the mapping of the quadrupole collective
states in the fermion space onto the boson space, the fer-
mion nuclear problem is transformed into the boson one.
The boson images of the bifermion operators and of the
fermion Hamiltonian are found. Recurrence relations are
used to obtain approximately the norm matrix which appears
in the boson-fermion mapping. The resulting boson Hamilto-
nian contains terms which go beyond. the ordinary SU(6)
symmetry Hamiltonian of the interacting boson model. Cal-
culations, however, suggest that on the phenomenological
level the differences between the mapped Hamiltonian and
the SU(6) Hamiltonian are not too important.
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of Theoretical Physics, JINR.
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