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I. Introduction 

T.he concept of deformation has extensively been used 

since l95J(l] to describe 11 oolleotive 11 properties of heavy 

and light nuclei, but up to now very little is known about the 

microscopic structure of deformation. This problem was discus­

sed in a shell-model framework [ 2-4]. The common conclusion 

was that the residual neutron-proton interaction could be. 

essential to the development of collectivity and deformation 
. 20 in nuclei. In the light nuclei, for example in Ne, neutrons 

and protons occupy the same shell model levels, and this idea 

is commonly accepted. In the heavy nuclei it seems unrealistic; 

so in the majority of theoretical ·papers a neutron-proton 

interaction has not been taken into account. 

However, lately [ 25lthe importance of the neutron-proton 

interaction in generating the nuclear deformation is supported 

by the self-consistent calculations within the Hartree-Fook 

method with the Skyrme interaction. 

Many years ago [ 2 ] it has be~n shown that for two nucleons 

moving in a harmonic oscillator potential and interacting by 
res ~(- -V ... - u rt - r2 ) , the energy of the J=O state is minimum 

for ! 1 = !2 • One can see from Fig.l that the difference in the 

overlap b'etween two orbitals ( n1 l 1 j 1 ) and ( fl2 !2 h ) in 

two oases: !.., = fz and !1 .. e2 ~ l decreases with increasing 

e . T.his ~eans, we can except relativel; large neutron-pro~ 
ton matrix elements in the heavy nuclei too. Experimental mat­

rix eleme~ts [ 5, 6] confirm this assumption. In addition, the 

average interaction in T=l is weaker than in T=O; t~e diffe-

' · . · 1 renee becomes more pronounced in the heavy ·nuclei. 
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T"ne separation energy[ 241 of two neutrons (upper line) 

and two protons (do\~ line) against the number of 

valence nucleons. S2 (4k, T=O)- S~J4k-2, T=l) 
~l.Jl MeV. In.the light and medium nuclei this effect 

is a few times sttonger. 
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The competition between T=l and T=O interactions leads to 

·often discussed oC -clusters ( 7-IO 1. They can be seen, for 

example, in the so-called odd-even pair effect, Fig.2. The se­

paration e;nergy S2 from a 11 c< -clustered 11 nucleus (a nucleus· 

with n = 4k , T=O valence nucleons) is higher than from a nuc­

leus with n = 4kt2, T=l. The difference Sz ( n- 4k, T = 0) 
-S2 (n='tk!2,T= f)can be a measure of effective four-nucleon in­

teractions. This ~d other experimental data C7,Bl together with 

the conclusion ~f the. paper [ll] that .low-lying states 

(E 6 1. 5 MeV) in 218na can be built mainly from S · and p 

bosons suggest applying the model [l 2 1 in ~he actinide region. 

In § 2 we give a sketch of the model, § J includes the 

results for even 222- 226Ra and 226- 232Th, §4 presents summary 

and conclusions. 

2. Model 

In the actinide region the correlation energy [ 7 ] of the 

nucleon pairs is of about a few hundered KeV. Then, for low exci­

tation energy (E &. 1 MeV), we will treat the nucleon pairs 

as building blocks of a nucleus. With the above assumption, the 

nucleon pair with quantum numqers of the total angular momentum 
,, 

1 , the parity u and the isospin T corresponds· to the 

boson with the same quantum numbers. Taking into account the 

+ 1l + strongest interactions we have .six bosons: S,u with J =0 

T=l, fl. =0,:!: l and Pp with J9!=l-, J1 =0,:!:1, T=O. The boson 

s+ corresponds to a pair of nucleons coupled by pairing 

forces, the boson p+ substitutes for a neutron-proton pair 

found on single particle shell model levels with I e1 - l21 • I. 

3 



Themost general"Hamilt.onian H for. a system of 

S and p bosons. is: 
" 11 · · a-o· r.:.o · ··.·:, .- -

H.;. E1 ns+e2.npt-e3 [p+p+] '- [j5p]00t-e~,[s+s+] 00[SS] 00+ 
. ,- - ' 

+ esfp .. p .. J2D. [pp]za+e6[s .. s .. f~ CssJo2+e'l[p~s+J1f CspJ t!Cr) 

1- Es ( fp"p"'Joors s"Joo+ [s+ 5 .,.1oo[ P pJoo). 

Square brackets denote spin and/or isospin coupling and 

Tk. Tic= (-1 )k(2k+1)f/2[TkTk]o ; -'lp =(-I )1-P 6-p 
The first two terms. in (I) represent familiar pairing and iso­

pairing interactions, the subsequent terms -different effective 

four-nucleon interactions. Hamiltonian (I) conserves the total 

number of bosons N = np + ns , total angular momentum 1 

and isospin T • It can be rewritten in the generators 

[ +,..]:JcD,1,2iT•O . { +,...]:J=O;T:~0,/,2 [ -+,._]If . f +,_]If 
_ P p p , S S v , p S pv , S P }.{'I 

. of the unitary.group U(6). One ~rom two possible complete 

chains of subgroups of this U(6) 

. (2) 

U (6) =>Unp (3)0 Un5 (3 )=>S0,(3)®50i3}::>SOM,(2)®SOM/2) (J) 

provides the basis 

INnpJM,Tf\11 > (4) 

in which H is diagonalized. 
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J. Results 

208 The actinide nuclei, containing a Pb core with valence 

prot<?ns filling the fh9~z, 2i7;2 , I i13f2 and 2.fs;
2 

orbitals and valence neutrons in 2p712 , I iu;2 , f/rs;
2 

and 

2ds;2 orbitals, are suitable for verifying the importance 

of the effective neutron-proton interaction 1 Even nuclei of 

Ra with E,_.,. /£ 2 • <: J.2 and Th with EIJ+ /£,.,. >J.-2 
"f 1 1 1 ~., 

are chosen ~or the study. 

~e Hamiltonian (I) was diagonalized in the basis (4) for the 

boson numbers equal to f/2 of the number of nucleons over 

the core 208Pb and for the.isospin numbers T.= Tz for the va~ 

lence nucleons. From 8 one~ and two-boson energies. Ct· only, 

6 parameters k, = ·lj (c, ... ea) ~ are independent [l 2] • They 

were fitted in - order to obtain low-lying spec~a of search-

ing nuclei (Fig.J and Fi.g.4). 

The eigenstates of H 

NorN-1 

IN1M,TM1 ,£>=L Onp(:JT,E)lnpJM3>1N-np,TM1> (5) 
np"J step2 . _ • 

make it possible to find the reduced 

defined as usual 

El and E2 transitions: 

B(Ei\ ~ 11 - '12 ) =(211 +f)-11< 'Jzll B ( EA )II '11>1 2 

- with: 
1\ - . ·,_ ,... , 

Bpv ( E f):. c, [~"'P + p+-s Jp~- - (6) 

A ) ,.., 2 
8 J1 ( E 2 • C.2 _.[ P."' P J p (7) 
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Table I. The ratio for reduced probabilities of the electric 
dipole transitions.from the 1- state to the yrast 
band states ------- ---

~(EL_1:_::::~+) 
B(El,l- --o+) 

2~4Ra 1 226Ra 

1.8;t6~ 
222Ra 

exp. (ref) 

-----
2.37 2.60 I 2.1J 

----
Table 2. Reduced propabilities of E2 transitions o;.s.--2r 

in A Ra nuclei 

BCE2~o~-=:.2+)l--222~~----224Ra -~--226Ra -T--228Ra 
(e~b2) 

~-;:.~~71 :j-~~::~~ ·fff~~=r-~~:~;-
Table J. Reduced probab~lities of E2 transitions o;s. -- 2~ 

in A Th nuclei 

.~:-::--:;-:T--226~-T---:::~-- I 
2JOT.h 

____________ j_ ________ 

exp [l
7l · ~ 6,85+40 t 7.07+27 I 8. 04+!0 

l:lc~-----. --. --:~8~ -.:~: 
I 8.18 

9. 28+9 

!0.14 

Table 1 shows the ratios fo~ reduced probabilities 

of the electric dipole transitions from the 1- state ( 11octu­

pole11) to the yrast band stat~s~ Tables 2 and J contain the 

reduced probabilities of E2 transitions o;~-- 2i in 

7 . 



ARa and A .Th nuclei. The calculated values were obtained v1i th 

the parameter c; = 0.200 e2b2 • Table 4 and Table 5 show the 

ratios for the reduced E2 and El probabilities but only for 

230Th compared with the last experimental data [l9l. 

Table 4. The ratios for reduced probabilities of the quadru­
pole transitions from some p -band states to the 
yrast-band states in .2•JOTh 

-----------------------------
Jp 

B(E2,Jp -JI )/B(E2,Jp -J:') I I 79 I J' ---~-:-rrgr---~- _1.._c;1~. Ala 
J?__ ----~----------- ---------- ----

2 2 0 2.Jl + a.Jl 1.58 1.42 

2 2 4 a. 58 + a. ro _ a. J5 0.55 

2 4 0 J.44 + 0.51 4.JJ 2.57 

4 4 2 2.06 + 1.41 1. 01 0.91 

-------------- ---------

Table 5. The ratios for reduced probabilities of the 
electric dipole transitions from some octupole 
states to the yrast-band states in 

230
Th 

----------------------------
~El Joct_J: )/B~El Joct __ J' 

J! I ~i I --'----~~ ~~:~;;.ua 
[18] 

1 I 2 I 0 I 2• 44 . 2. JO I 2. JO 
1.72(19] 

---r-------
2.15 (20] 

J I 4 I 2 I 1.95(lB] .I 1.86 I 1. 78 

1. 61 [19] 

---~--~-----1-----;...-------------'--------
).17[18] 

I 516 I 4 I 2. 08 [19] 
2.08 

----J---~---~-----------------
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Then, we calculate the average number of p and s bo• 

~ens in any state 

n = L. I an, ( 'J_ r, E )1 2 ni Ca) 
n-
' 

One can estimate also the average number of cC -like clusters 

noe = 1/2 (N-w) (9) 

were w means the average number of bosons not coupled in 

J=O, T=O pairs and it can be extracted from a given eigen­

energy of (1) [l 2]. Figs. 5 and 7 show that the ground state 

and ootupole 1- state A in the studied Th nuclei have very 

similar neutron-proton and ~ -like structure. This is con­

sistent with the remark (211 that the ground states of 

heavier ATh can be octupole-deformed. The fact that reduced 

width for oe -decay is nearly constant in the well deformed 

actinides implies that the number of 11 c;<:-clusters 11 in the 

ground state is 
. (IO] 

constant • The calculations confirm this 

'flp 
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3 

224 226 228 230 A 

Fig.5. The average number of J=1, T=O pairs in the ground sta1 

1- state and at state against the mass of A Th. 
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Fig. 6. The same as in Iilg. 5 but for A Ra nuclei • 

mention too (Fig.7). Vie can see in Figs. ~ and 9 that within 

( ~ + - + ) 2JO a given band K =0 , 01 and 0 2 of T:h the average 

number of neutron-proton :pairs iip slowly increases with 

nee 

2 
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a+ 
2 

0 .. 
1 

224 226 

ATh 

---
228 230 232 A 

Fig. 7. The average number of d. -clusters in the ground state 

and o! state. We obtain in 1- state the same values 
- + of floc as in of state. 

'J ; simultaneously, fioc slowly decreases. In every case 

•.We obtain more deuteron-like :pairs than· neutron-neutron 

and :proton-proton :pairs. A similar result was obtained in the 
. [ ] . [IO ] 
:paper 9 and in our earlier calculations for the light '~2 

>'an~. ;are e~th. [ 2JJ nuc~ei. 
10 

nee. 

2 

1 

0~ 

OL Oi 

0 

01 

0/o 

45 

10 

2 4. 1 

Fig. a. oe. -clustering 'in some states of the K'ii = at, O'f and 

0~ bands in 
230

Th. 

o;o 

10 

60 

so 

4 1 

Fig.9. Percentage of neutron-proton :pairs in some states of 

2J0Th. 

Summary 

Experimental data and many successful calculations in 

different versions of the interacting boson model confirm that 

for low excitation energy the nucleon :pairs can be treated as 

building blocks of a nucleus. By the above assumption and 

taking into account the J)lost interacting :pairs. with J'it, T=01'1 

and 1-,o we are able to reproduce the experimental energies 

and the reduced probabilities of E2 and El transitions in even 

Ra-Th nuclei. It is interesting and unexpected that in every 

11' 



case of deformed nucleus (lightr221 )~ rare earth (231 and 

actini~e nuclei), we obtain over 50% of neutron-proton pairs, 

even in the ground statesl This suggests that the residual 

neutron-proton interactions can be of an origin of collecti­

vity and deformation in any nucleus. These aspects (collecti­

vity and deformation) are the most pronounced in the actinide 
.,.J -

region where valence neutrons and protonscan fill many single 

. particle levels with large j and jn =jp ::!: l. 
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