


1+ Intreduption

The miorowoopic theory of deformed nuclei expounded in mw monographs
and reviews [1-5] has gained recognition. It ia' used to treat sxparimen-
tal data on nonrotational states. huhmu;,thslnt-otoocﬂmten—
ooupled to & deformed nucleus 1s epeoified by an axial symmwtry, and the
angular mnhun projection onto the symetry axis of a nuoleus, X , and
parity & are good quantum numbers. We shall not consider the Cortolin
interaction mixing states with different A" and fired parity. Thus, we shall
reatriot our ocneideration to ths internal wave funotion with a good quantum
number A, |

The quasipartiole—phonon nuoiear model (QPNN) uses one—phonon states:
quadrupole,. ootupole, hexadeoapole and others, as a basis, It has baen shown
in[6] that in eome cases high mltipole interactions with A= 5-9 play an
important role and they should be taken into acccunt. The speoifio faatu.re‘
of d.etomd nuolei is that one-phoncn stateu with a fixed A d oan be
datami.ned by rltt!erant mltipole and spin-multipcle interactions. Thus,
the J’f =07 ltatea aro determined by the monopole pairing and quadrupole
partiole-pactiole interacticns, To them miltipole interaotions with AM=4060,
oto. muet be added. Gne-phonon wtates of the eleotris type with fixed &%
oan be desoribed by the multipoles ,‘1/11 KK, K+2 &\ Kt4 o , eto.
ﬁ by the spin-multipoles A )i « KKK 3 A+2 k+2 K » oto,
Introducing one phonon for AA and another for AA X we shall have a ’
double number of states, To avoid this, a eommon phonen is mtroduogd. and
taking mooount of different A the corresponding secular equation ia de-
rived (see [ 5]) Thus, the influsnce of hexadecapole intersotions with |u=h2
a the KT =27 states is studied by a similtansous inolusion of Ape =
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22+42 interactions. In [9], intersotions with A=1 and A =3 were taken

into account in studying E1 trensitions from octupole to ground states.
One-phonon states of the magnetic type are desoribed by the spin-gultipole

interactions AL K with A'=4 -1 end /4 *{ . In spherical nuolei,

"y
one—phonon states of the electric type with =2 * 3

2 My

and magnetio type

with J z, 7 f, 2 :5* are desoribed indeperidently. In deformed nuolei, for in—
stance, the A~ /L 2" state ocan be treated as an electrio ootupole one with
aju=32 and a megnetic quﬁd.rupole one with AZK =122 and 522. The states with
K ‘%:j +, whioh are described excluding spurious states [10,117] , connected with
rotations, are treated with the spin-spin and quadrupole interactions. If

in deformed nuolei, as in spherical nuolel, one introduces independent phonons
of the electrio and magnetic type, the number of states will be doubled.
Therefore, it is necessary to construct a common phonon for a state with a
fixed A~ £ . The conatruction of a phonon consisting of the electric and mag-
netic parts, derivation of the corresponding RPA equatione and the inclusion
of the new phonon into the general acheme of the QFNM are just the aim of the

present paper.

2, The QPNM Hamiltonian

The QPNM Hamiltonian for non.rotat?.onal states of deformed nuclel contains
an average field nf neutron and proton systems in the form of the axial-symmet-
rio Saxon-Woods potential, moncpole pairing, iscscalar and isovecior particle—
—hole (ph) and perticle-partiole (pp) multipole and apin—mitipole interactions
between quasiparficles. The wave funotiona of excited states of deformed

nuolei have the form
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In this paper we study the internal wave funotions f‘/), ( L4 J"‘_,) of exoited
nonrotational etates of doubly even deformed nuclei.

Interactions between quasiparticles in the separable form, usuaily of
the rank gy ™1, ave used for omloulations in the QFNM. As 18 known, sepe~
rable interactione of the rank ncra >4 are widely used in desoribing nue-
leon—nucleon 1pteractiona, three-body nuclear systems and 1ight nuclel, 1i.e.
they are used in the cases where the repults of caloulations are more sensi-
tive to the form of radial dependence of forces in oomparison with the QPNM
oaloulations of the properties of complex nuoelsi. Therefors, the uese of sepa—
rable interactions of the renk /7, 27 in the QPNM oaloulations 18 justi-
fied,

Let us introduce, as in[ 12] for apherical nuclei, a separable interac—
tion of the rank ﬁmﬂ, >4 for deformed nuclei. Expand over mﬁltipoles the

central spin independent interaction and write 1t as
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If a separable interaction of the rank /Zmux >7 1a taken in the form
e Amax _am Are
R ("24,"2,[,) =Z jeh ('Z’J/Qn /7'.:)_,
n=d .

then the expansicn over multipoles becomes
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Introduction of & separable interaction of the finite rank 7 g b in
oomparison with /2, .. =1 leads to summation over /1 . Introduction of &

separable interaction of the rank /7., 18 meaningful if /;, is much

Tx
smaller than the rank of d.etermina.:_:t of the RPA secular equation

for a nonseparable interaction.

The starting Hamiltonlan of the QPNM i1s
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Here g, & are gquantun numbers of single-particle states, % equala o
5
A snd asymptotic quantum numbers M&/\f at A=A +%, and N A
at K=A- 7 , &=1 ; F(g9) arethe single-particle energies,
z
A r ie the chemical potential; 2 R means summation over single-par-
tiole states of the proton at 7T =0 and neutron at T=/7 systems.
A ALK
Then, E"rg sre the monopole pairing constantse, & ad &
At ALk Ape ALK
are the oonstents of pp intersctions; ¥G, , 7, and x,”, x,
are the isoscalar and isoveotor constants of .ph multipole and epin-multipole

interactions.



Let us perform the canonical Bogolubov transformation
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The matrix elemente of the multipole and spin-multipole operators are exp—
ressed through

A A
jn/w[% f’&) =<2, ’phﬂfm)ya‘/w (8, V)}?’z) 3

ALK ALK @
j,, (7/1'?/4)=<‘?/1/’?,, (1){6})1’(9?).;4;( )?’.z>:
their charaoteristice are given in [1,5] .

Using the operators A+(¢?,:/ua‘) ad A (7/?/,/“ 6“) to oonet-
ruot phonons of the eleotrioc type, aa in f1,4,5] , and the operators 44 799;/‘0)
and 6!( 7’?‘: Vid 6") to construct phonone of the magnetio type, then in ocont-
reat with the spherical nuclel we shall have a doubled number of states.
Coneider, for instance, the A ‘z: 27 gtates shown in fig. 1. They can be
desoribed as one-phonon octupole states with A#¢=32 and as a ruls, with the
enhanced E3 transition from the J f/{" =3 -21 to the ground Btates.‘
Between the firat and second polea there 18 a second K f = 22- otate whose
energy is determined as the fecond { =2 root of the RPA pecular equation, At
the same time, <+hese A :l = 2; and 2 2_ states oa.ri be described as one—
—phonon quadrupole states of the megnetic type and with the enhanced M2 transi-
tion from the .Z J/-((_ = 2-2 ¢ Yo the ground states. If the get of one-



~phonon states is chosen as a basis, aa in the QFMM, then the number of
one-phonon states with a fixed value of X~ j;aquala the number of two—quasi-
particle poles. If phonons of the "electrio and magnetio type are introduced
in the deformed nuclei, then the number of states will be doubled. Therefore,
it is neoeseary to construct & ocommon phonon operator consisting of the
electric and magnetic parts. The phonon eoreation operator oonsisting of the
eleotrio and nﬁmetic parts and with a fixed value of 4 a can be written

es followa:
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Here ,"={V, * ad @ ':'=§0, *  are common for the eleot-
¥4 4 2 % ¢
rio and magnetic parts, which indicates the existence of a one—phonon atate
vrith a fixed value of the state number {5 where ‘4 ,2)3, ...« By
f (?,?} wo dencte the matrix element (3) with A‘AA =474/ or
L+ { LK . When we use a separable interaction with /7,,,, > 7 by

£ /¢,g, ) and f (g,g, ’) we denote the matrix elements with /7 =1. Tt 1s

seen from formula (4) that the electric part of the phonoen creation operator

+
Q Kie is chomen to be real and the magnetio part to be imaginary.
2
The one—phonon state in the RPA is described by the wave function
S Y ¢
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where _4‘/0 is ths ground state wave funotion of & doubly even nuoleus deter—
mined s a phonon vaouum, The normalisation condition of the wave function (5)

has the form
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One can easily show that the phonon operators 47 Kl & and G)g‘_' 28
obey the conditions which are usually impcsed on the RPA phonona.

Uaing formulme {(7) we expreas the operators h A e ( ), "'jf“" ( 'r) '

Al
,5; )y /r}and others through the phonon operators. After aimple traneforma-
tions 'I:he QPNM Hamiltonian becomes

H = Z€ dﬂ, go T My T g s ®

where the first two terms deseribe quasiparticles and phonone, and A ry
desoribes the quasiparticle—phonon interaction. They have the following

form:
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Ons can easily verify that the Hamiltonian (8) and its parts (9}, (10), 11),
(12) and (12!) are Hermitian.

3. The RPA equation

Let us derive the RPA equations for the energies w""o and wave funo-
tions {5) of one-phonon states. The RPA equationa for the £ e 7 * states are
glven in [13]. To desoribe the states with & J; 0% we use the following
part of the Hamiltonian (9)

+ X
?5 6‘7, a’?e d;s' +/L/v_ ) (15)

Now, wo find an average value (15) over the stmim(5) and using the variaticnal
principle

d‘{<0 G’[ZE d;s’ ge ] /(z.oe'>

-k [595 g Mrgg - 2] =0

we get the following equations:
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where & +end < .,.> means averaging over ths phonon vaouum.

?f Ko A
From eqa. (16) and (17) we get the Tunctions , and T e

ke
subetitute them into forsmlae for _D:t"a ' 2 A%, 3

Akl:p aaf.,_‘a /"AKLQ )2&’(.‘, -Dbrfﬁkl.‘o

D , D ) 2

rwr hT A nwre ? ne
LtlKi, Lttt LK E,
and ﬁ Y
ng W
ad =42 oythe secular equation for the energies ﬂdx‘ has the
form of the datermmant of the rank 24/, , 1.0,

. With the allowance made for =p 7
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If the spin-multipole interactions of the eleotrio type AAK

(18)

are disregarded, the rank of the determinant is 78 /7”' ox If only ph

interactions are taken into account, the rank of the determinant is 8 /7,5, .

The most interesting case is when ph and pp multipole and ph L-{ LK spin-
-multipole interactions are taken intc consideration; then, the rank of the
determinant 18 & /7,,,, - It is to be noted that a particular case of eqe.’
(16) and (17) for ﬂ/hax ={ and ph, pp mltipole interactions is given in
[147 . The tensor foroes being added in the Hamiltonian, as in [12], wont
change the rank of the determinant (18).

To illustrate the RPA solutions we shall oonsider two partioular casee.
The first case is the inolusion of ph multipole AK and spin-multipole

LUK LK
=

L-1LK  interactions with /Iy, =1 . We dencte )¢ X  and

fA-H.A??q’/)E Y 11(/; ;;[ The Hamiltonian is taken in the form
1

K + / Ak 2K pHKip
S e o oA -2 s ] +pr, ) Dt
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+(x, +px, )DT sz }C?Kd‘gOK‘.”.

Using the variational principle we get instead of (16) and (17) the following

equations:
% ' K ,y L K ax ., (*) (2 0k
(&g~ W )T (490G, ~ (F (997 %,y ) &g 2 (0

. L Ky,
i E“‘)D;: “-(f M(MJ“;;,)%?,Z (")), =0,

pet1
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Then, the normalisation condition of the wave funotion (5) is
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Owing to the fact that Z, differs frem gero, the secular equation
(20) does not disintegrates into two equations for the eleotric and magnetic
parts. .

The second partioulsr osge 1B the same imteractions as in the Hamiltenian
(19) but for one (neutron or proton) system. In this case we get axpliolt

Ay Ky

expreasions for the functions ﬂ/”, and @ PRV The seoular eq.(20)
takes the form
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ard magnetlo type. Here
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One can easily show that when the energy WK ¢ tends to the pole
ot

E‘(’ 04,0 the wave function of the one-phonon state (5) tends to
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i.e. to the wave function of the two—quasipartiocle atate., Moraover, for the

solutions of the secular eq. (21) the following oondition holda:
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1.e, "dangerous" disgrams are compensated, Thege facta indioate additio-
nally that the cholce of the phonon creation operator in the form (4) 1e

oorreot.

4. The QPNM equations for doubly even deformed nuclei

Here wo give formulae for desoribing nonrotational states with & ‘f; of
+ A
in the QPNN with the new phonona Qm_.‘ﬂ, and Kiye . The wave fune-
tion (as in [14]) can be written in the form

Y4
+ f 2
Z‘ﬂ (k 6“) {Z Ka‘oe‘a Z %(f kﬂ-g,/\’ &y ) '
“-’-l- ‘4‘1
< * + (22)
(]
CLTRLYY A YN z?e, Lr, Kty T Kylywy 6743 A f)éyo s

Fe
where ))=1)£’J.5;,,,:|.a the number of the state with £, ° , To take the Pauli
principle into acoount in two-phonen terms of the wave function (22) we

‘Antroduce the funetion

-f
. ((L_,_ I/(’a KL_!) {7+ A’f‘-f,&q) .

J Z J":A’f""kz. 5, k " 4.6 [[ Ayi'ey o kz‘:ﬁ]Q 46-7}(23)

€163

e . .
" °(A’,r.,,.(_,‘q)fyf ('(”-.z //{ e, Ky el
Its explioit form is given in[5,15] . :
The normalisation condition of the wave funotion (22) in the diagonal in .

approximation haa the form
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Now, let us find an average value of the Hamiltonlen (B) over the state

{22} and using the varistional principle derive the following equations for
the energles ? » and wave function (22)

(Wi -2, 05 (1+4,  Jp” .

ffl-f k [

Kok Kikr, Kaia
p A
U [/wr (m,&u)] 0,
Ky Ly, &
[w‘"ﬂ—'; +mki.¢.r, * AC()((,L,, 4‘) ? ] Kt".f;'ﬁ t--!._
Ko &
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(25)

Hence, we get tihe seoular equation

afg?f ”(N - ? ) ‘ol Z (f+ kyeq K.:l-.c)_z. (26)

KpipSKy ey
Koo Ao ba' /4 u(( A
'UK-":"K‘L.J' U‘K{‘-JJ#-!‘:"[ x ! f; 2 -‘}]

WK'G— + Cdk Cq + Aw(k L',)‘(‘L..g)'?p
Y
From {24) and (25) we find /? Kyl Kty

The rank of the detemnmnt (26) equa.lu the number of one-phonon terms in the

=4,

for eash value of ?v .

wave funotion (22).

Tt 18 important that eqe. (25) and (26) coincide in form with the equa-
tions given in I_ A.5,15] in whioch only ph muitipole 1nteraotiona are taken
into mooownt, with the equations in[ 5,7/ in whioch ph multipole interac-
tions AJR, 222 end 42 are oonsidered and with the equations in [13,14]
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in which ph and pp mltipole interactions fbﬂ ot gy =4 are taken into
aocount. Thus, the form of equations (25) and (26) and the rank of the deter—
minent (26} are independent of what rimltipole and spin-multipole interactiona
are taken into account and are independent of the rank /mgy of separable
interactions. This meana that oalculations in the QFNM can be made with

any complex Iinteractions in the separable form. The QPNM was formlsted

so that all complications caused by the form of interactions were concemtrated
in the RPA equationa. It is not difficult to solve the RPA equatione with
complex interactions.

The inclusion of ph and pp separable /7, r = 7 interactione of the
electric and magnetio types complioates the formulme for the two—~phonon pole
shift 4 & {(’, &y, Ay ¢y ) and the funotion U kﬂ. “o

Indeed,

. - Ko . v . \ A ’
Aw (K &y k8, )=~ % [(Qt' (’(.z‘*a,'er‘_/“‘/f"f:&-".z)M{;.,;/(;)

Ko . . . . Ao
Pl ki K )W S G

&<
where Wz.' iy 18 given by formula (10°). The functicn 14/"“" for the case
!

when a phonon with /&’ 0 enters lnto the twe-phonen par't of the wave
function (22) 1s given in [13]. Then,

Ay Ka
e 1+0 (&, ¢, K, ¢ .
m‘r,fqa[ e, Gal--f er,s*,,, G",A:f +6, Ky 66405
(28)
* #
2 Gy @ o Ho G
{ Kpégf, V? Ay ’—16? k:t"'.le';, 0&:‘446:1 Ay by 67 U?,@& P~ s

whare H‘Vp is determined by formula (11). Now we use the commtation rela-

tions
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with the funotions _7;- and .ﬁ; being real, and get

ﬂky-t

[ ket v, gl f (m

=25 SV,
Kils Kals Colg q SRR GK gy

Kaf:ﬂs’o,/{bf.“eﬁ"_’_’) V,;‘Q‘Kg R % ﬂ:/c,_

T § 205" (p9°) -

T 29’ K-8

. 7.:‘: (Kal—.og‘ﬂ,kf’:f‘?) 4 V;erfd'(¢/¢’)f£’('(¢¢j .

'9‘?/) Ky =63
an

Ko tobo, Kt 6%, 3 K 4 p 153,
Tp (Cifean) s VA" 0097) £ * 390

99 Kies
‘J"(’evf—aﬂ? /(f“xs:t)}
T 94" ; &y - &

where Vz i(‘%?') and V,; L‘(&%') are given by (13) and (139.
Let us obtain the matrix elements of £/ and MA traneitions. Using

phonona (4) we can write the corresponding operators in the form

T(Erp) =5 517 (Eiwi 290 0BGy pelt
TE g,ﬁ,

(32)

+ ﬂ‘:(-
1M o)) 54, (@, e *Qypr-e )1
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M (M) = & z /*(M,yu w){v L Blgg}pe)-
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where

[y (Eipei99) =<gle,, S (v)2” )/ CITSY
s (3559043 |2 D005 30002,

f4 AM'(Z )A\/u)?’Q

In oaloulating the matrix elements of £4 and MA  +{ransitions
from the ground states of doubly even nuclel to the states with the domi-
& nating one-phonen ocomponents 1n.the weve function (22), we use only the
phonon parts of the operators 777 (EAm) ed 777 (MAp )

As a result we get

(é.ﬂ,,* (k) T (EAp) ¥, )=
(34)

1SR E (ke ﬁ’”"' 041 )2, Ko to
iL ,Z (E2Ko 3997 # (o2 (%) );ﬁ,,

(4/ (675 ) 1 (rap ) 4, )=

£ z R 7 O B

M’ b
Theae matrix elements differ from the formlae used earlier, for instance

in [14]1:3; that the functions g Ko o belong to both parts of the
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phonon operator (4), the elestiric and megnetio parts. If, for exampls, in the
normalisation (6) the magnetic part appears to be muoch emaller than the
electric one, then this will result in the hindrance of the A7A  transition.
Tt can be expected that with the use of the phonon (#) the £A transition
protebilities from the ground states will not differ considerebly from the
ealoulated ones [14,16].

Reliable experimental data and numerous oaloulations are available on
M1 traneitions from the ground states of doubly even deformed nuclel to the
i+ astates. The treatment of the 4" gtateas as mixed symmetry states is
undoubtedly a sucoess of the IEM-2. The energles and & (M7 ) values are
well described in the RPA with the qgagrupole ph interactions with excluding
a spurlous state [11] . Since many oalculations were performed, we will not
calculate the energles of the 4 * states and B / M ") values.

The experimental data on M2 to M3 transitions from the ground states
are rather scarce. Thus, states with the mixed symmetry with I "&:‘ 3 * wera
searched for in [17]. They measured the BfM3 ) 4  —value for exoitation
of the L Ik}, =3%2 ; state and did not observe M3 transitions to the sta-
tes with an energy highgL than 1 MeV. There are only few caloulationa of
the M2 and M3 transition probabilities [18—20].

It 18 expedient to calculate the M2 and M3 traneition probabilities
within the QPNM ueing formulas (34) and (35), which may stimulate new
experiments.

In experimental investigations on the Coulomb excitation, { br' ) and
other reactions (eee, for instance, [21 ,22] ) a large number of M1 values
and M1 + E2 mlxtures were observed for transitions between excited states
of doubly even deformed nuolei. Calculations of the W1, E2, M3 and other
transition probabilitles between exoﬂl.ted states oai be made within the for-

malism expomded in thie paper.

22



Let us find the matrix elements of £ A and A’A transitione between
excited states with the dcm:lnatix‘ag one-phonon components of their wave funo-
tione (22). In these ocalculations we‘ use the quasiparticle perts of the
operators (32) and (33) and the commtators (29) and (30); as a result,

we get

( 4’,,:‘ (ﬂx"eﬁ,‘)m (¥, (5% ))-

'Z %J‘ S > /"(g,;/%%%)yr)

&, Ko 16 /1, 8%, K,
“, S T 40,9

(36)

Ky Ly Ky iy Koty y ADS
y + .
(sy 243 g{/}" ¢4 ?%‘ Z3 y’: P4 )
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(7", %ﬂ;:?:fm/sz 2,)

J

5} 4K )
ugs? B9)% f %, I)u(

(4/ (6, "%, 5 ) (i)Y, (6 7e) =

-1 RIRS bap /:_-(Mﬂ/";%%)’?;;“

bly to v SR RLEK, T #%:%3

LA A?“r 4 Ky ey Ao
‘(W?z 73 ;1/%% ;ﬂ 4483 W%; )Kf (h?’ ; 23 \7[ (73?»'} fa?¢+

+‘fﬁ(7%?3) ;(; fﬂk#(?s?f)%;:)qi )

Theee formulae can be useful for further calculationa of the M1, M2 and E2
transition probabilitiea between excited statea. Simllar caloulations of
the quantities 6”(52 /A1), as in [23], can be made for transitions bet-

ween quadrupole states of deformed nuslel.
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5. Conolusion

The axial symmetry of well deformed nuolei complicates the desoription
of their vibrational states in ocomparisen with spherioal nuolei. If the pro-
Jeotion onto the symmetry axis of K 1 aseumed to be & good quartum
number, then the vibrational atate with a fixed A’ & cen be desoribed by
multipole and aﬁ:l.n—umltipole interactions of the electric type and spin-
-multipole interactions of the magnetio +type. Thus, the states with X 3-;2 '
can be described by interactions of the electric type AK =22 t§ 2+,
AAK =222 +442%, .and megnetic type ) LA =232+432+... , and the
states with k'zj"*by AK=43+634., AXAK=443+663¢., ALk =233+
43 3+... . To avoid nonphysical multiplicativity of a number of the oalou-
lated vibrational statee, we have introduced a new phonon operator. It con—
siste of the electric part taking account of the AK  and Af\l‘r inte—
ractions and the magnetic part taking account of the 427/ K  interaction.
This new RPA phonon should be used for describing doubly even, doubly odd
end odd-A deformed nuolel and first of all for describing M4 and £A
transitions between exolted atates.

In the present paper we have formulated the most general version of
the QFNM. We have oonstnfcted the Hamiltonian and dqrived equations for
ph and pp isoscalar and isovector mult.ipole and spin-multipole finite rank
separable interactlons between quasipartioles. Introduotion of the finite
rank ﬁmm’ S j separable interacticns leade to complication of the BP.ft
equations, which is nonessentisl in computer caleulations, All difficulties
conneoted with the eleotrio and megnetic types of interactions and with the

/7,,,0“, > _f separable interactions are ooncentrated in the RPA equa-
tions. It ie important that they do not lead & noticeable complication of

the QFNM equations for caloulating the fragmentation of vibrational states
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tnoludins' glant resonanoes, Additional diffioulties caused by /7_,” or 7
do not arise if three-phonon terms are added to the wave funotion (22). They
alao do not arise in oaloulating the fragmentation of ocne—quasipartiole states

in odd deformsd nuolei.

T Tl = =15t pote an 642 - 5214
M2 E3

I
27 2

2
BIM2}~ Zr(nz,qq'lg‘q?,' ‘qc’lz . BIE3)~ Zl‘lE3 Qg

M2 E3

*
0-09

i -
Fig. 1. The first two states with K = 2 desoribed either as quadrupole
magnetio atates with enhancement of M2 transitions or as octupole
electric states with ephancement of E3 transitions and the firat

two two-quasiparticle ptates.

I should like to emphasize that in Bolving such a oomplicated problem
a3 the many-body nuclear problem cne should aim at exposing the most impor—
tant parte of effective intermotions to be used in conorete caloulations

rather than at solving the problem in the most general form.



The mathemsatioal spparatus of the QPNM construoted in thie paper for
deformed nuclel can serve as & basis for calculations Qf many characterietloa
of low-lying and high-lying states. We hope that the QFNM calculations will
stimulate further experimental study of {:he gtructure of deformed nuclel at

a new generation of aceelerators and detectora.
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