

объединенный
 ииститут
 ядерных
 исслвдований
 дубна

570
E4-90-119
V.G.Soloviev

UNIFIED DESCRIPTION OF ELECTRIC
AND MAGNETIC EXCITATIONS
IN DEFORMED NUCLEI

Submitted to "Zeitschrift für Physik A Atomic Nuclei"

1. Introduotion

Tho miloroncoplo theory of deformed nuolei expounded in many monographe and reviown $[1-5]$ hae cainod reoognition. It in unod to troat exparimantal data on nonrotational states. Is is moven, the ayitem of ooerdinatoes ooupled to a doformed nucleus is apeoified by an axial eymmotry, and the angular momentum projeotion onto the symmotry axis of a nuoleus, K, and parity π are good quantum numbera. We shall not consider the Coriolis interaotion mixing atates with different K and fixed parity. Thua, we ahall reatriot our oonsideration to the intornal wave funotion with a good quantum number K.

The quasipartiole-phonon nuolear model (QPN() uses one-phonon states: quadrupole, ootupole, hexadeoapole and others, as a basie. It has been ahove in [6] that in some oasee high multipole interaotions with $\lambda=5-9$ play an important role and they should be taken into account. The speoific feature of doformed nuolei is that one-phonon atates with a fixed K^{x} oan be dotormaned by different multipole and spin-wultipole interaotions. Thus, the $K^{\pi}=0^{+}$utates are dotermined by the monopole pairing and quadrupole partiole-partiole interaotiona. To them miltipole interaotiona mith $\lambda \mu=40,60$, etc. muat be added. One-phonon atates of the eleotrio type with fixed $K^{\sqrt{2}}$ oan be desoribed by the multipoles $\lambda \mu=K K, K+2 K, K+4 K$, oto. and by the epin-multipolen $\lambda \lambda \mu=K K K, K+2 K+2 K$, oto. Introducing one phonon for λK and another for $\lambda \lambda K$ wo shall have a double number of states. To avoid this, a oommon phonon ia introduoed, and takins eooount of different λ the oorresponding sooular equation is doFived (see [5]). Thus, the influenoe of hexadocapole interaotione with $\lambda \mu-42$ on the $K^{r}=2^{+}$atates is atudied by a simultaneous inolualion of $\lambda \mu=$

22+42 interaotions. In [9], interactions with $\lambda=1$ and $\lambda=3$ were taken into aocount in studying E1 transitions from octupole to ground states.

One-phonon states of the magnetio type are desoribed by the spin-multipole interaotions $\lambda^{\prime} L K$ with $\lambda^{\prime}=\angle-1$ and $\angle+1$. In apherioal nuoled, one-phonon states of the eleotrio type with $I^{\sqrt{2}}=2^{+}, 3^{-}$, and magnetio type with $I^{\pi}=1^{+}, 2^{-} 3^{+} \ldots$ are desoribed independently. In deformed nuolei, for instance, the $K^{J}=2^{-}$state oan be treated as an electric octupole one with $\lambda \mu=32$ and a magnetic quadrupole one with $\lambda^{\prime} \angle K=122$ and 322. The states with $K^{\sqrt{6}}=1^{+}$, whioh are described exoluding spurious states $[10,11]$, oonneated with rotations, are treated with the spin-spin and quadrupole interactions. If in deformed nuolei, as in spherical nuolei, one introduoss independent phonons of the electrio and magnetic type, the number of states will be doubled. Therefore, it is necessary to construct a common phonon for a state with a fixed $K^{\tilde{K}}$. The construction of a phonon consisting of the electric and magnetic parts, derivation of the corresponding RPA equations and the inclusion of the new phonon into the general acheme of the QPNM are just the aim of the present paper.

2. The QPNM Hamiltonian

The QPNM Hand lonian for nonrotational states of deformed nuolei contains an average field of neutron and proton aystems in the form of the axial-symmetrio Saxon-Woods potential, monopole pairing, isoacalar and isovector particlehole (ph) and partiole-partiole (pp) multipole and spin-multipole interactions between quasiparticles. The wave funotions of excited states of deformed nuolei have the form

$$
\Psi_{M K}^{I}(\nu)=\sqrt{\frac{2 I}{16 \pi^{2}}+1}\left\{D_{M K}^{I} \Psi_{\nu}\left(K^{\tilde{\pi}} \sigma^{\prime}=+\right)+(-)^{I+K} D_{M-K}^{I} \Psi_{\nu}\left(K^{\tilde{\pi}}, \sigma=-\right)\right\} .(1)
$$

In this paper we atudy the internal wave functions $\psi_{\nu}\left(K^{\pi} \sigma^{\pi}\right)$ of excited nonrotational states of doubly even deformed nuclei.

Interactions between quasiparticles in the separable form, usually of the rank $h_{\max }=1$, are used for oaloulations in the QPNM. As 18 known, seamable interactions of the rank $\eta_{\text {max }}>1$ are widely used in desoribing nub-leon-nucleon interactions, three-body nuclear systems and light nuclei, ie. they are used in the oases where the results of oaloulations are more sensfive to the form of radial dependence of forces in comparison with the QPNN osloulations of the properties of complex nuclei. Therefore, the use of sophmable interactions of the rank $m_{\text {max }} \$ 1$ in the QPNM oaloulations is justifled.

Let us introduce, as in [12] for spherical nuclei, a separable interaoion of the rank $M_{m a x}>1$ for deformed nuclei. Expand over multipoles the central spin independent interaction and write it as

$$
\sum_{\substack{q_{1} q_{2} q_{1}^{\prime} q_{2}^{\prime} \\ \sigma_{1} \tilde{\sigma}_{2}^{\prime} \sigma_{1}^{\prime} \sigma_{2}^{\prime}}}\left\langle q_{1} \sigma_{1}^{\prime} q_{2} \sigma_{2}\right| \sum_{\lambda \mu}\left(x_{0}^{\lambda \mu}+x_{1}^{\lambda \mu}\left(\tilde{\tau}^{-(1)} \dot{\tau}^{(2)}\right)\right) R^{\lambda \mu}\left(z_{1}, z_{2}\right)
$$

$$
\sum_{\sigma= \pm 1} Y_{\lambda \sigma_{\mu}}\left(\theta_{1} \varphi_{1}\right) Y_{\lambda-\sigma \mu}\left(\theta_{2} \varphi_{2}\right)\left|q_{2}^{\prime} \sigma_{2}^{\prime}, q_{1}^{\prime} \sigma_{1}^{\prime}\right\rangle a_{q_{1} \sigma_{1}^{\prime}}^{+} a_{q_{2} \sigma_{2}}^{+} a_{\dot{q}_{2}^{\prime} \sigma_{2}^{\prime}} a_{q_{1}^{\prime} \sigma_{1}^{\prime}}
$$

If a separable interaction of the rank $n_{\text {max }}>1$ is taken in the form

$$
R^{\lambda \mu}\left(\eta_{1}, z_{2}\right)=\sum_{n=1}^{n_{\max }} R_{n}^{\lambda \mu}\left(\eta_{1}\right) R_{n}^{\lambda \mu}\left(z_{2}\right)
$$

$$
\begin{gathered}
\text { then the expansion over multipoles becomes } \\
\sum_{\lambda \mu} \sum_{n=1}^{n_{\text {max }}}\left\{\sum_{\tau= \pm 1}\left(x_{0}^{\lambda \mu}+\rho x_{i}^{\lambda \mu}\right) \sum_{\sigma} M_{n \lambda \mu \sigma}^{+}(\tau) M_{n \lambda \mu \sigma}(\rho \tau)+\right. \\
\\
\left.\quad+\sum_{\tau \sigma} G^{\lambda \mu} \rho_{n \lambda \mu \sigma}^{+}(\tau) P_{n \lambda n \sigma}(\tau)+\ldots\right\} .
\end{gathered}
$$

Introduction of a separable Intersotion of the finite rank $\eta_{\text {max }}>1$ in comparison with $n_{\text {max }}=1$ leads to summation over n. Introduction of a separable interaction of the rank $n_{\text {max }}$ is meaningful if $h_{\text {max }}$ is much smaller than the rank of determinant of the RPA secular equation for a nonseparable interaction.

The starting Hamiltonian of the QPNM is

$$
\begin{aligned}
& -\frac{1}{2} \sum_{\lambda \mu \varepsilon} \sum_{n=1}^{n_{n o x}}\left[\sum_{\rho= \pm 1}\left(x_{0}^{2 \mu \mu}+\rho x_{1}^{2 \mu}\right) M_{n \lambda \mu E}^{+}(r) M_{n y \mu \mu}(\rho \tau)+\right.
\end{aligned}
$$

Here $q \sigma^{6}$ are quantum numbers of single-particle states, q equals to $K^{\tilde{\prime}}$ and asymptotic quantum numbers $N n_{z} \wedge 1$ at $K=\Lambda+1 / 2$ and $N n_{z} \Lambda \downarrow$ at $K=\Lambda-1 / 2, \sigma= \pm 1 ; E(q)$ are the single-partiole energies, λ_{τ} is the chemical potential; $\sum_{q}{ }^{\tau}$, means summation over single-parthole states of the proton at $\tau=\rho$ and neutron at $\tau=n$ systems. Then, G_{r} are the monopole pairing constants, $G^{\lambda \mu}$ and $G^{\lambda L K}$ are the constants of pp interactions; $x_{0}^{\lambda \mu}, \gamma_{0}^{\lambda^{\prime} L K}$ and $\gamma_{1}^{\lambda \mu}, x_{1}^{\lambda^{\prime} L K}$ are the isoscalar and isoveotor constants of ph multipole and apin-multipole interactions.

Let us perform the canonical Bogolubov transformation

$$
a_{q \sigma}=u_{q} \alpha_{q \sigma}+\sigma v_{q} \alpha_{q-\sigma}^{+}
$$

and get

$$
\begin{aligned}
& M_{n \lambda \mu \sigma}(\tau)=\frac{1}{2} \sum_{q_{1} q_{2}}^{\tau} f^{\lambda \mu}\left(q_{1} q_{2}\right)\left\{u _ { q _ { 1 } q _ { 2 } } ^ { (+) } \left[A^{+}\left(q_{1} q_{2} ; \mu_{\sigma}\right)+\right.\right. \\
& \left.\left.+A\left(q_{1} q_{2} ; \mu-\sigma\right)\right]+2 v_{\left(q_{1} q_{2}\right.}^{(-)} B\left(q_{1} q_{2} ; \mu \sigma\right)\right\}, \\
& P_{n \lambda \mu \sigma}(\tau)=\frac{1}{2} \sum_{q_{1} q_{2}}^{\tau} f_{n}^{\lambda \mu}\left(q_{1} q_{2}\right)\left\{v_{q_{1} q_{2}}^{(+)}\left[A\left(q_{1} q_{2} ; \mu \sigma\right)-A_{1}^{+}\left(q_{1} q_{2} ; j^{-}-\right)\right]+\right. \\
& \left.+v_{q_{1} q_{2}}^{(-)}\left[A\left(q_{1} q_{2} ; \mu \sigma\right)+A^{+}\left(q_{1} q_{2} ; \mu-\sigma\right)\right]-4 u_{q_{2}} v_{q_{1}} B\left(q_{1} q_{2} ; \mu-\sigma\right)\right\}, \\
& \cdot \\
& S_{n L K \sigma}^{L \pm 1}(\tau)=\frac{1}{2} \sum_{q_{1} q_{2}}^{\tau} f_{n}^{L \pm 1 L K}\left(q_{1} q_{2}\right)\left\{u _ { q _ { 1 } q _ { 2 } } ^ { (-) } \left[O_{(}^{+}\left(q_{1} q_{2} ; K \sigma\right)+\right.\right. \\
& \left.+O L\left(q_{1} q_{2} ; K-\sigma\right)\right]+2 v_{q_{1}}^{(+)} \beta\left(q_{2}\right.
\end{aligned}
$$

and other formulae. Here

$$
A^{+}\left(q_{1} q_{2} ; \mu \sigma^{\sigma}\right)=\sum_{\sigma^{\prime}} \delta_{\sigma^{\prime}\left(k_{1}-k_{2}\right), \sigma \mu} \sigma^{\prime} \alpha_{q_{1}^{\prime \prime}}^{+} \alpha_{q_{2}-\sigma^{\prime}}^{+} \text {or } \delta_{k_{1}+k_{2}, \mu^{\prime}} \alpha_{q_{2} \sigma^{\prime}}^{+} \alpha_{q_{1} G^{\prime}}^{+},
$$

$$
\begin{aligned}
& B\left(q_{1} q_{2} ; \mu \sigma^{\prime}\right)=\sum_{\sigma^{\prime \prime}} \delta_{\sigma^{\prime}\left(k_{1}-k_{2}\right), \sigma^{\prime} \mu^{\prime} q_{1} \sigma^{\prime} q_{2}-\sigma^{\prime}} \quad \text { or } \quad \delta_{1}+k_{2, \mu} \quad \sigma \alpha_{q_{1} \sigma^{\prime}} \alpha_{q_{2}-\sigma}, \\
& \beta\left(q_{1} q_{2} ; \mu \sigma^{\prime}\right)=\sum_{\sigma} \delta_{\sigma} \sigma^{\prime}\left(K_{1}-K_{2}\right), \sigma^{\sigma} \sigma^{\prime \prime} \alpha^{+} q_{2} \sigma^{\prime} \alpha_{q^{\prime} \sigma^{\prime}} \text { or } \delta_{K_{1}+K_{2}, \mu} \alpha^{+} q_{5} \sigma^{+} \alpha_{2}-\sigma, \\
& u_{q_{1} q_{2}}^{(\pm)}=u_{q_{1}} v_{q_{2}} \pm u_{q_{2}} v_{q_{1}}, v_{q_{1} q_{2}}^{(\pm)}=u_{q_{1}} u_{q_{2}} \pm v_{q_{1}} v_{q_{2}} .
\end{aligned}
$$

The matrix elements of the multipole and spin-multipole operators are expreseed through

$$
\begin{align*}
& f_{n}^{2 \mu}\left(q_{1} q_{2}\right)=\left\langle q_{1} \mid R_{n}^{2 \mu(}(z)\right\rangle_{\gamma_{\mu}}\left(\theta_{1}, \varphi\right)\left|q_{2}\right\rangle \text {, } \\
& f_{n}^{\lambda L K}\left(q_{1} q_{2}\right)=\left\langle q_{1}\right| R_{n}^{\lambda \alpha K}(z)\left\{\sigma^{-1} \gamma_{x}(\theta \varphi)\right\}_{\zeta_{\alpha K}}\left|q_{2}\right\rangle \text {, } \tag{3}
\end{align*}
$$

their characteristics are given in $[1,5]$.
Using the operators $A^{+}\left(q q^{\prime} ; \mu \sigma\right)$ and $A\left(q q^{\prime} ; \mu \sigma^{\prime}\right)$ to oonetrut phonon of the electric type, as in $[1,4,5]$, and the operators $\mathcal{G}\left(q q^{\prime} ; \mu_{\sigma}\right)$ and $O L\left(q q^{\prime} ; \mu \sigma\right)$ to construct phonons of the magnetic type, then in oontrest with the spherical nuclei we shall have a doubled number of states. Consider, for instance, the $K^{\pi}=2^{-}$states shown in fig. 1. They can be described as one-phonon octupole states with $\lambda \mu \mu=32$ and as a rule, with the enhanced E3 trans:ltion from the $I^{\widetilde{\pi}} K_{i}=3^{-2}$ to the ground states. Between the first and second poles there is a second $K_{i}^{\pi}=2_{2}^{-}$state whose energy is determined as the second $i=2$ root of the RPA secular equation. At the same time, these $K_{i}^{\sqrt{N}}=2_{1}^{-}$and 2_{2}^{-}states on be described as one--phonon quadrupole states of the magnetic type and with the enhanced M2 transitron from the $I^{J} K_{i}=2^{-} 2_{1}$ to the ground states. If the set of one-
-phonon states is chosen as a basis, as in the QPNM, then the number of one-phonon states with a fixed value of K^{π} equals the number of two-quasiparticle poles. If phonons of the electric and magnetic type are introduced in the deformed nuclei, then the number of states will be doubled. Therefore, it is necessary to construct a comm phonon operator consisting of the electric and magnetic parts. The phonon creation operator consisting of the eleotrio and magnetic parts and with a fixed value of $K^{\sqrt{c}}$ can be written as follows:

$$
\begin{align*}
& Q_{K i_{2} \sigma}^{+}=\frac{1}{2} \sum_{q q^{\prime}}\left\{\psi _ { q q ^ { \prime } } ^ { K i _ { 2 } } \left[f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)} A^{+}\left(q q^{\prime} ; K \sigma\right)+\right.\right. \\
& \left.+i f^{L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} O L^{+}\left(q q^{\prime} ; K \sigma\right)\right]- \tag{4}\\
& -\varphi_{q q^{\prime}}^{K i_{2}}\left[f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)} A\left(q q^{\prime} ; K-\sigma\right)+\right. \\
& \left.+i f^{L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} O\left(q\left(q q^{\prime} ; K-\sigma\right)\right]\right\} .
\end{align*}
$$

Here $\psi_{q q^{\prime}}^{K i_{2}}=\psi_{q}^{\prime} q i_{2} \quad$ and $\varphi_{q q^{\prime}}^{K i_{2}}=\varphi_{q^{\prime} q}^{K i_{2}}$ are oormon for the electrio and magnetic parts, which indicates the existence of a one-phonon state with a fixed value of the state number i_{2} where $i_{2}=1,2,3, \ldots$. By $f^{L K}\left(q q^{\prime}\right)$ we denote the matrix element (3) with $\lambda^{\prime} L K=L-1 L K$ or $\angle+1 L K$. When we use a separable interaction with $\eta_{\text {max }}>1$ by $f^{\lambda K}\left(q q^{\prime}\right)$ and $f^{4 K}\left(q q^{\prime}\right)$ we denote the matrix elements with $h=1$. It is seen from formula (4) that the electric part of the phonon creation operator $Q_{K i_{2} \sigma^{\prime}}^{+}$is chosen to be real and the magnetic part to be imaginary.

The one-phonon state in the RPA is described by the wave function

$$
\begin{equation*}
Q_{K i_{2} \sigma}^{+} \Psi_{0} \tag{5}
\end{equation*}
$$

where \mathbb{Z}_{0} is the ground state wave function of a doubly even nucleus determined as a phonon vacuum. The normalisation condition of the wave function (5) has the form

$$
\begin{aligned}
& \frac{1}{2} \sum_{q q^{\prime}}\left[\left(\psi_{q q^{\prime}}^{K i_{2}}\right)^{2}-\left(\varphi_{q q^{\prime}}^{K i_{2}}\right)^{2}\right] \gamma^{K}\left(q q^{\prime}\right)=1, \\
& \gamma^{K}\left(q q^{\prime}\right)=\left|f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)}+i f^{L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)}\right|^{2}= \\
& =\left[f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)}\right]^{2}+\left[f^{L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)}\right]^{2}, \\
& A^{+}\left(q q^{\prime} ; K \sigma\right)=f^{\lambda K}\left(q q^{\prime}\right) u^{(+)} \sum_{i_{2}}\left[\psi_{q q^{\prime}}^{K i_{2}} Q_{K i_{2} \sigma^{\prime}}^{+}+\varphi_{q q^{\prime}}^{K i_{2}} Q_{K i_{2}-\sigma}\right] \text {, } \\
& O L\left(q q^{\prime} ; K \sigma\right)=-i^{\prime} f^{L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} \sum_{i_{2}}\left[\psi_{q q^{\prime}}^{K i_{2}} Q_{K i_{2}^{\prime}-}^{+}-\varphi_{q q^{\prime}}^{K i_{2}} Q_{K i_{2}-\sigma}\right] .
\end{aligned}
$$

One can easily show that the phonon operators $Q_{K_{2}^{\prime} \sigma}^{+}$and $Q_{K L_{2} \sigma^{\prime}}$ obey the conditions which are usually imposed on the RPA phonon.

Using formulae (7) we express the operators $M_{n \lambda \mu \sigma}(\tau), P_{h \lambda \mu \sigma}(\tau)$, $S_{n \angle K} A^{\prime}(\tau)$ and others through the phonon operators. After ample transformatrons the QPNM Hamiltonian becomes

$$
\begin{equation*}
H=\sum_{q \sigma} \varepsilon_{q} \alpha_{q \sigma}^{+} \alpha_{q \sigma}+H_{v}+H_{v q} \tag{8}
\end{equation*}
$$

where the first two terms describe quasiparticles and phonons, and Hogg describes the quasiparticle-phonon interaction. They have the following
form:

$$
\begin{equation*}
H_{v}=H_{v}^{00}+\sum_{\lambda} H_{v}^{\lambda 0}+\sum_{K} H_{v}^{k} \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& H_{v}^{k}=-\sum_{i, i_{2} \sigma} W_{i_{1, i_{2}}}^{k} Q_{K i_{1} \sigma}^{+} Q_{k i_{2} \sigma}, \\
& W_{i_{1} i_{2}}^{K}=\sum_{\lambda}\left[W_{i_{1} i_{2}}^{\lambda K}+W_{i_{1} i_{2}}^{\lambda \lambda K}\right]+\sum_{L} \sum_{\lambda^{\prime}=L \pm 1} W_{i_{1} i_{2}}^{\lambda^{\prime} L K}, \\
& W_{i_{1} i_{2}}^{\lambda K}=\frac{1}{4} \sum_{n=1}^{n \max } \sum_{\tau}\left\{\sum_{\rho= \pm 1}\left(r_{0}^{\lambda K}+\rho K_{1}^{\lambda K}\right) D_{n \tau}^{\lambda K i_{1}} D_{n \rho \tau}^{\lambda K i_{2}}+\right. \\
& \left.+G^{\lambda K}\left[D_{n g \tau}^{\lambda K i_{1}} D_{n g \tau}^{\lambda K i_{2}}+D_{n \omega \tau}^{\lambda K i_{1}} D_{n \omega \tau}^{\lambda K i_{2}}\right]\right\}, \\
& W_{i_{1} i_{2}}^{\lambda^{\prime} L K}=\frac{1}{4} \sum_{n=1}^{n_{\text {max }}} \sum_{\tau}\left\{\sum_{\rho= \pm 1}\left(x_{0}^{\lambda^{\prime} L K}+\rho x_{1}^{\lambda^{\prime} L K}\right) D_{n \tau}^{\lambda^{\prime} L K i_{1}} \mathcal{D}_{n \rho \tau}^{\lambda^{\prime} \alpha K i_{2}}+\right. \\
& \left.+G^{\lambda K}\left[D_{n g \tau}^{\lambda^{\prime} L K i_{1}} D_{n g \tau}^{\lambda^{\prime} L K i_{2}}+D_{n w \tau}^{\lambda^{\prime} L K i_{1}} D_{n w \tau}^{\lambda^{\prime} L K i_{2}}\right]\right\}, \\
& H_{v q}=H_{v q}^{\infty 0}+\sum_{\lambda} H_{v q}^{\lambda 0}+\sum_{K}\left\{\sum _ { \lambda } \left(H_{v q}^{\lambda K}+\right.\right. \\
& \left.\left.+H_{v q}^{\lambda \lambda K}\right)+\sum_{L} \sum_{\lambda^{\prime}=L \pm 1} H_{v q}^{\lambda^{\prime} L K}\right\}, \tag{11}\\
& H_{v q}^{\lambda K}=-\frac{1}{4} \sum_{n i_{2} \tau \sigma} \sum_{q q^{\prime}}^{\tau} f_{n}^{\lambda K}\left(q q^{\prime}\right) V_{n \tau}^{\lambda K i_{l}}\left(q q^{\prime}\right)\left[\left(Q_{k i_{2} \sigma}^{+}+\right.\right. \tag{12}\\
& \left.\left.+Q_{K i_{2}-\sigma}\right) B\left(q q^{\prime} ; K-\sigma\right)+B\left(q q^{\prime} ; K \sigma\right)\left(Q_{K i_{2}-\sigma}^{+}+Q_{K i_{2} \sigma}\right)\right],
\end{align*}
$$

$$
\begin{align*}
& H_{v q}^{\lambda^{\prime} L k}=\frac{i}{4} \sum_{n i_{i} \tau \sigma} \sum_{q q^{\prime}}^{\tau} f_{n}^{\lambda^{\prime} L k}\left(q q^{\prime}\right) V_{n \tau}^{\lambda^{\prime}\left\langle k i_{2}\right.}\left(q q^{\prime}\right)\left[\left(Q_{k L_{2}^{\prime} \sigma}^{+}-Q_{k i_{2}-\sigma}\right) .\right. \\
& \left.\cdot \beta\left(q q^{\prime} ; K-\sigma\right)+\beta\left(q q^{\prime} ; K \sigma\right)\left(Q_{K i_{2}^{\prime}-\sigma}^{+}-Q_{K i_{i} \sigma}\right)\right] \text {, (121) } \\
& V_{n \tau}^{\lambda k i_{2}}\left(q q^{\prime}\right)=\sum_{\rho= \pm 1}\left(x_{0}^{\lambda k}+\rho x_{1}^{\lambda k}\right) v_{q q^{\prime}}^{(-)} D_{n \rho \tau}^{\lambda k i_{2}}- \tag{13}\\
& -G^{\lambda k} u_{q q^{\prime}}^{(+)} D_{n g \tau}^{\lambda k i_{2}} \text {, } \\
& V_{n x}^{\lambda^{\prime} L K i_{2}}\left(q q^{\prime}\right)=\sum_{\rho= \pm 1}\left(x_{0}^{\lambda^{\prime} L k}+\rho x_{1}^{\lambda L K}\right) v_{q q^{\prime}}^{(\lambda)} D_{n \rho \tau}^{\lambda^{\prime L K} i_{2}} \text {. } \tag{1}
\end{align*}
$$

Here ε_{q} is the quasipartiole energy with the monopole and quadrupole pairing; $H_{v}^{00}, H_{v}^{\lambda 0}, H_{v q}^{00}$ and $H_{v q}^{\lambda 0}$ are given in [13],

$$
\begin{align*}
& D_{n z}^{\lambda k i_{2}}=\sum_{q q^{\prime}}^{\tau} f^{\lambda k}\left(q q^{\prime}\right) f_{n}^{\lambda k}\left(q q^{\prime}\right)\left(u_{q q^{\prime}}^{(+)}\right)^{2} g_{q q^{\prime}}^{K} \text {, } \\
& D_{n g \tau}^{\lambda k i_{2}}=\sum_{q q^{\prime}}^{\tau} f^{\lambda k}\left(q q^{\prime}\right) f_{n}^{\lambda k}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)} v_{q q^{\prime}}^{(-)} g_{q q^{\prime}}^{k i} \text {, } \\
& D_{n w_{z}}^{\lambda i_{2}}=\sum_{q q^{\prime}}^{\tau} f^{\lambda k}\left(q q^{\prime}\right) f_{n}^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(t)} v_{q q^{\prime}}^{(+)} w_{q q^{\prime}}^{q i_{2}} \text {, } \\
& D_{n \tau}^{\lambda^{\prime} L K i_{2}}=\sum_{q q^{\prime}}^{\tau} f^{\lambda^{\prime} L K}\left(q q^{\prime}\right) f_{n}^{\lambda^{\prime} L K}\left(q q^{\prime}\right)\left(u_{q q^{\prime}}^{(-)}\right)^{2} g_{q q^{\prime}}^{k i^{\prime}} \text {, } \tag{14}\\
& D_{n g \tau}^{\lambda^{\prime} L K i_{i}}=\sum_{q q^{\prime}}^{r} f^{\lambda^{\prime} L K}\left(q q^{\prime}\right) f_{n}^{\lambda^{\prime} L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} v_{q q^{\prime}}^{(+)} g_{q q^{\prime}}^{k i_{2}} \text {, } \\
& D_{\substack{\lambda^{\prime} L K \\
n i_{2}}}=\sum_{q q^{\prime}}^{\tau} f^{\lambda^{\prime} L K}\left(q q^{\prime}\right) f_{h}^{\lambda^{\prime} L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} w_{q q^{\prime}}^{(-)} w_{q q^{\prime}}^{K c_{l}^{\prime}} \text {, } \\
& q_{q q^{\prime}}^{K i_{i}}=\psi_{q q^{\prime}}^{K i_{2}}+\varphi_{q q^{\prime}}^{K i_{i}}, \quad w_{q q^{\prime}}^{K}=\psi_{q q^{\prime}}^{K i_{i}}-\varphi_{q q^{\prime}}^{K} .
\end{align*}
$$

One can easily verify that the Hamiltonian (8) and its parts (9), (10), (11), (12) and (12^{1}) are Hermitian.
3. The RPA equation

Let us derive the RPA equations for the energies $\omega_{K c_{0}}$ and wave fundtrons (5) of one-phonon states. The RPA equations for the $K^{\pi}=O^{+}$states are given in [13]. To describe the states with $K^{\boldsymbol{\pi}} \neq \square^{+}$we use the following part of the Hamiltonian (9)

$$
\begin{equation*}
\sum_{q \sigma^{\prime}} \varepsilon_{q} \alpha_{q \sigma}^{+} \alpha_{q \sigma}+H_{v}^{k} \tag{15}
\end{equation*}
$$

Now, wo find an average value (15) over the (5) and using the variational principle

$$
\begin{aligned}
& \delta\left\{\left\langle Q_{k i \sigma}\left[\sum_{q \sigma} \varepsilon_{q} \alpha_{q \sigma}^{+} \alpha_{q \sigma}+H_{v}^{K}\right] Q_{K_{i}^{i} \sigma}^{+}\right\rangle-\right. \\
& \left.-\frac{\omega_{K i}}{2}\left[\sum_{q q^{\prime}} g_{q q^{\prime}}^{K i} w_{4 q^{\prime}}^{K i} \gamma^{K}\left(q q^{\prime}\right)-2\right]\right\}=0
\end{aligned}
$$

we get the following equations:

$$
\begin{align*}
& \varepsilon_{q q^{\prime}} \gamma^{K}\left(q q^{\prime}\right) g_{q q^{\prime}}^{K i_{0}}-w_{K i_{0}} \gamma^{K}\left(q q^{\prime}\right) w_{q q^{\prime}}^{K i_{0}} \\
& -\sum_{n=1}^{n_{\max }}\left\{\sum_{\rho= \pm 1}\left(x_{0}^{\lambda K}+\rho x_{1}^{\lambda K}\right) f^{\lambda K}\left(q q^{\prime}\right) f_{n}^{\lambda K}\left(q q^{\prime}\right)\left(u_{q q^{\prime}}^{(+1}\right)^{2} D_{n \rho \tau}^{\lambda K i_{0}}+\right. \\
& +G^{\lambda K} f^{\lambda K}\left(q q^{\prime}\right) f_{n}^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)} v_{q q^{\prime}}^{(-)} D_{n g \tau}^{\lambda K i_{0}^{\prime}}+ \tag{16}\\
& +G^{\lambda \lambda K} f^{\lambda \lambda K}\left(q q^{\prime}\right) f_{n}^{\lambda \lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} v_{q q^{\prime}}^{(-)} D_{n g \tau}^{\lambda \lambda K i_{0}}+
\end{align*}
$$

$$
\text { where } \varepsilon_{q q^{\prime}}=\varepsilon_{q}+\varepsilon_{q^{\prime}} \text { and }\langle\ldots\rangle \text { means averaging over the phonon vacuum. }
$$

From eqs. (16) and (17) we get the function e $G q q^{\prime}$ and $W K i_{0} K i_{0}^{\prime}$ and substitute them into formulae for $D_{n z}^{\lambda K i_{0}},{ }_{n q} \mathcal{D}_{n g z} \lambda K i_{0}, ~ \& q$

$$
D_{n w \tau}^{\lambda K i_{0}}, D_{n \tau}^{\lambda \lambda K i_{0}}, D_{n g \tau}^{\lambda \lambda K i_{0}}, D_{n w \tau}^{\lambda \lambda K i_{0}}, D_{n \tau}^{\alpha t / \lambda K i_{0}}
$$

$D^{\angle \pm 1 \angle K i_{0}} \begin{aligned} & n g \tau \\ & D \pm 1 L K i_{0} \\ & n w \tau\end{aligned}$ and With the allowance made for $\tau=P, n$ and $n=1,2, \ldots n_{\text {max }}$ the secular equation for the energies $\omega_{K i}$ has the form of the determinant of the rank $24 \cdot n_{\text {max }}$, 1.e.

$$
\begin{aligned}
& +\sum_{\lambda^{\prime}=L \pm 1}\left[\sum_{\rho= \pm 1}\left(x_{0}^{\lambda^{\prime} L K}+\rho x_{i}^{\lambda^{\prime} \Delta K}\right) f^{\lambda^{\prime} \Delta K}\left(q q^{\prime}\right) f_{n}^{\lambda^{\prime} \alpha K}\left(q q^{\prime}\right)\left(u_{q q^{\prime}}^{(-)}\right)^{\lambda} .\right. \\
& \cdot D_{n \rho \tau}^{\lambda^{\prime} L K i_{0}}+G^{\lambda^{\prime} L K} f^{\lambda^{\prime} L K}\left(q q^{\prime}\right) f_{n}^{\lambda^{\prime} L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} w_{q q^{\prime}}^{(+)} .
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{q q^{\prime}} \gamma^{\prime k}\left(q q^{\prime}\right) w_{q q^{\prime}}^{K i_{0}}-\omega_{k i_{0}} \gamma^{N}\left(q q^{\prime}\right) g_{q q^{\prime}}^{K i_{0}} \\
& -\sum_{n=1}^{n_{\max }}\left\{G^{\lambda K} f^{\lambda K}\left(q q^{\prime}\right) f_{n}^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)} w_{q q^{\prime}}^{(+)} D_{n w z}^{\lambda K i_{0}}-\right. \\
& -\sum_{\rho= \pm 1}\left(x_{0}^{\lambda \lambda K}+\rho x_{i}^{\lambda \lambda K}\right) f^{\lambda \lambda K}\left(q q^{\prime}\right) f_{n}^{\lambda \lambda K}\left(q q^{\prime}\right)\left(u_{q q^{\prime}}^{(-)}\right)_{n \rho \tau}^{\lambda \lambda K i_{0}}+ \\
& +G^{\lambda \lambda K} f^{\lambda \lambda K}\left(q q^{\prime}\right) f_{n}^{\lambda \lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} v_{q q^{\prime}}^{(+)} D_{n w z}^{\lambda \lambda K i o}+ \\
& \left.+\sum_{\lambda^{\prime}=L \pm 1} G^{\lambda^{\prime} L K} f^{\lambda^{\prime} L K}\left(q q^{\prime}\right) f_{n}^{\lambda^{\prime} L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} v^{\prime(-)}, D^{\lambda} \alpha K i_{0}\right\}=0 \text {, }
\end{aligned}
$$

$\operatorname{det}\left\|24 \cdot n_{\max }\right\|=0$.
If the apin-multipole interactions of the eleotrio type $\lambda \lambda K$ are disregarded, the rank of the determinant is $18 \mathrm{~m}_{\text {max }}$. If only ph interactions are taken into account, the rank of the determinant is $8 n_{\text {max }} \cdot$ The most interesting case is when ph and pp multipole and ph $L-1 L K$ spin--multipole interactions are taken into consideration; then, the rank of the determinant is $8 n_{\text {max }}$. It is to be noted that a particular case of eqs. (16) and (17) for $n_{\text {max }}-1$ and ph , pp multipole interactions is given in [14]. The tensor forces being added in the Hamiltonian, as in [12], won't change the rank of the determinant (18).

To illustrate the RPA solutions we shall consider two particular cases. The first case is the inclusion of ph multipole λK and spin-multipole $L-1 L K$ interactions with $n_{\text {max }}=1$. We denote $K^{L-1 L K}=x^{L K}$ and $f^{L-1 L K}\left(q q^{\prime}\right) \equiv f^{L K}\left(q q^{\prime}\right)$ The Hamiltonian is taken in the form

$$
\begin{align*}
H_{0}^{K} & =\sum_{q \sigma^{\sigma}} \varepsilon_{q} \alpha_{q \sigma^{\sigma}}^{+} \alpha_{q \sigma}-\frac{1}{4} \sum_{\rho= \pm 1 \tau} \sum_{i_{1} i_{2} \sigma}\left\{\left(x_{0}^{\lambda K}+\rho x_{1}^{\lambda K}\right) D_{\tau}^{\lambda K i_{1} D_{\rho \tau}^{\lambda K i_{2}}+}\right. \tag{19}\\
& \left.+\left(x_{0}^{L K}+\rho x_{1}^{L K}\right) D_{\tau}^{L K i_{1}} D_{\rho \tau}^{L K i_{2}}\right\} Q_{K i_{1} \sigma}^{+} Q_{K i_{2} \sigma}
\end{align*}
$$

Using the variational principle we get instead of (16) and (17) the following equations:

$$
\begin{aligned}
& \left(\varepsilon_{q q^{\prime}}^{\ell}-w_{k i_{2}}\right) \gamma^{k}\left(q q^{\prime}\right) g_{q q^{\prime}}^{K i_{2}}-\left(f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)}\right)^{2} \varepsilon_{q q_{\rho}} \sum_{\rho= \pm 1}\left(x_{0}^{\lambda k}\right. \\
& \left.+\rho r_{1}^{\lambda K}\right) D_{\rho \tau}^{\lambda K i_{2}}-\left(f^{L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-1}\right)^{2} \varepsilon_{q q^{\prime}} \sum_{\rho=+1}\left(k_{0}^{L K}+\rho x_{s}^{L K}\right) D_{\rho \tau}^{L K i_{2}}=0, \\
& w_{q q^{\prime}}^{k i_{2}}=\frac{w_{k i_{2}}}{\varepsilon q q^{\prime}} g_{q q^{\prime}}^{k i_{2}} .
\end{aligned}
$$

Then, the normalisation condition of the wave function (5) is
$\frac{1}{2} \sum_{q q^{\prime}} \frac{\omega_{k i_{l}}}{\varepsilon q q^{\prime}}\left(g_{q q^{\prime}}^{k_{i l}}\right)^{2} \gamma^{k}\left(q q^{\prime}\right)=1$,
and the secular RPA equation becomes

where

$$
\begin{aligned}
& Z_{\tau}^{\lambda K i_{2}}=\sum_{q q^{\prime}}^{\tau} \frac{\left(f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)}\right)^{4} \varepsilon_{q q^{\prime}}}{\gamma^{K}\left(q q^{\prime}\right)\left(\varepsilon_{q q^{\prime}}^{2}-\omega_{k i_{2}}^{2}\right)}, \\
& Z_{\tau}^{L K i_{2}}=\sum_{q q^{\prime}}^{\tau} \frac{\left(f^{4 K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)}\right)^{4} \varepsilon_{q q^{\prime}}}{\gamma^{K}\left(q q^{\prime}\right)\left(\varepsilon_{q q^{\prime}}^{2}-\omega_{k i_{2}}^{2}\right)}, \\
& Z_{\tau}^{\lambda L K i_{2}}=\sum_{q q^{\prime}}^{\tau} \frac{\left(f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)} f^{L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)} \varepsilon_{q q^{\prime}}^{2}\right.}{\gamma^{\prime K}\left(q q^{\prime}\right)\left(\varepsilon_{q q^{\prime}}^{2}-\omega_{k i_{2}}^{2}\right)}
\end{aligned}
$$

Owing to the foot that $Z_{T}^{\lambda L K C_{2}}$ differs from zero, the secular equation (20) does not disintegrates into two equations for the eleotrio and magnetic parts.

The second particular cage is the same interactions as in the Hamiltonian (19) but for one (neutron or proton) system. In this case we get explio1t expression for the functions $\psi_{4 q^{\prime}}^{K_{i}}$ and $\mathscr{\varphi}_{8 q^{\prime}}^{K_{i}}$. The seoular eq.(20) takes the form
$\left(x^{\lambda K} Z^{\lambda K i_{2}}-1\right)\left(x^{L K} Z^{L K i_{2}}-1\right)=x^{\lambda K} x^{L K}\left(Z^{\lambda L K i_{2}}\right)^{2}$,
and

$$
D^{L K i_{2}}=y^{K i_{2}} D^{\lambda K i_{2}}, \quad y^{K i_{2}}=\frac{1-x^{\lambda K} Z^{\lambda K i_{2}}}{x^{\lambda K} Z^{\lambda K K i_{2}}}
$$

Then

$$
\begin{aligned}
\psi_{q q^{\prime}}^{k i_{2}} & =\frac{\varepsilon_{q q^{\prime}}+\omega_{k i_{2}}}{2 \varepsilon q q^{\prime}} g_{q q^{\prime}}^{K i_{2}}, \varphi_{q q^{\prime}}^{K i_{2}}=\frac{\varepsilon_{q q^{\prime}}-\omega_{k i_{2}}}{2 \varepsilon_{q q^{\prime}}} g_{q q^{\prime}}^{K i_{2}} \\
g_{q q^{\prime}}^{K i_{2}} & \left.=\sqrt{\frac{2}{y^{K L_{2}}}} \frac{\varepsilon_{q q^{\prime}}}{\gamma^{K}\left(q q^{\prime}\right)\left(\varepsilon_{q q^{\prime}}^{2}-\omega_{k i_{2}}^{2}\right.}\right) \\
& \left.\left.+y^{K i_{2}} x^{A K}\left(f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)}\right)^{2 K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)}\right)^{2}\right\} .
\end{aligned}
$$

It is seen that the function $\mathrm{g}_{49} \mathrm{Kis}^{\prime}$ consists of the terms of the electric and magnotio type. Here

$$
\begin{aligned}
& y^{K i_{2}}=\left(x^{\lambda K}\right)^{2} Y^{\lambda K i_{2}}+\left(y^{K i_{i}}\right)^{2} Y^{\alpha K i_{2}}\left(x^{L K}\right)^{2}+2 d x^{\lambda K} x^{4 K} y^{K} i Y^{\lambda L K i_{2}}, \\
& Y^{\lambda K i_{2}}=\sum_{q q^{\prime}} \frac{\left(f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}\right)^{4} \varepsilon_{\& q^{\prime}} \omega_{K i_{2}}}{\gamma^{K}\left(q q^{\prime}\right)\left(\varepsilon_{q q^{\prime}}^{2}-\omega_{K i_{2}}^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& Y^{L K i_{2}}=\sum_{q q^{\prime}} \frac{\left(f^{L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)}\right)^{4} \varepsilon_{q q^{\prime}} \omega_{k i_{2}}}{\gamma^{K}\left(q q^{\prime}\right)\left(\varepsilon_{q q^{\prime}}^{2}-\omega_{K i_{2}}^{2}\right)^{2}}, \\
& Y^{\lambda L K i_{2}}=\sum_{q q^{\prime}} \frac{\left(f^{\lambda K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)} f^{L K}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(-)}\right)^{2} \varepsilon_{q q^{\prime}} \omega_{k i_{2}}}{\gamma^{K}\left(q q^{\prime}\right)\left(\varepsilon_{q q^{\prime}}^{2}-\omega_{k i_{2}}^{2}\right)^{2}} .
\end{aligned}
$$

One can easily show that when the energy $W_{K_{0}} i_{0}$ tends to the pole $\varepsilon_{q_{1} \circ q_{2} 0}$ the wave function of the one-phonon state (5) tends to

$$
\left.Q_{k_{0} i_{0} \sigma_{0}}^{+} \Psi_{0}\right|_{\varepsilon q_{1} 0 q_{2} 0}=\delta_{\sigma\left(k_{1}^{0}-K_{2}^{0}\right), \sigma_{0} K_{0} i_{0} \rightarrow 0} \alpha_{q_{1}^{0}}^{+} \alpha_{q_{2}^{0}-\sigma}^{+} \Psi_{0}
$$

1.e, to the wave function of the two-quasipartiole state. Moreover, for the solutions of the secular eq. (21) the following condition holds:

$$
\begin{aligned}
& \left\langle\left\{\sum_{q \sigma} \varepsilon_{q} \alpha_{q \sigma}^{+} \alpha_{q \sigma}-\frac{1}{8} \sum_{i_{2} \sigma}\left[x^{\lambda K}\left(D^{\lambda K i_{2}}\right)^{2}+x^{4 K}\left(D^{L K i_{l}}\right)^{2}\right]\right.\right. \\
& \left.\left.\cdot Q_{K i_{2} \sigma} Q_{k i_{2}-\sigma}\right\} Q_{K i_{2} \sigma}^{+} Q_{k i_{2}-\sigma}^{+}\right\rangle=0,
\end{aligned}
$$

1.e. "dangerous" diagrams are compensated. These facta indioate additionally that the ohoice of the phonon oreation operator in the form (4) is oorreot.

4. The GPN equations for doubly even deformed nuolei

Here we give formulae for describing nonrotational atates with $K \neq 0^{+}$ In the QPNM with the new phonons $Q_{K L_{4} \sigma}^{+}$and $Q_{K i_{l} \sigma}$. The wave funotion (as in [14]) can be writtion in the form
$\Psi_{\nu}\left(K_{0}^{\pi_{0}} \sigma_{0}\right)=\left\{\sum_{i_{0}} R_{i_{0}}^{\nu} Q_{K_{0} i_{0} \sigma_{0}}^{+}+\sum_{\substack{K_{1} i_{i} \sigma_{2} \\ K_{2} i_{1} \sigma_{2}}} \frac{1}{2}\left(1+\delta_{K_{1} i_{1}, K_{2} i_{2}}\right)^{1 / 2}\right.$,
$\left.{ }^{\cdot} \delta_{1}^{\prime} K_{1}+\sigma_{2} K_{i}, \sigma_{0} K_{0} P_{K_{1} i_{1}, K_{i} i_{i}}^{\nu} Q_{K_{2} i_{1}^{\prime} \sigma_{1}}^{+} Q_{K_{2} i_{2} \sigma_{2}}^{+}\right\} \Psi_{0}$,
where $\nu=1,2,3, \ldots$ is the number of the state with $K_{0}^{\sqrt{70}_{0}^{0}}$. To take the Pauli prinotple into acoount in two-phonon terms of the wave function (22) wo introduce the function

$$
\mathscr{K}^{K_{0}}\left(K_{2} i_{2}, K_{1} i^{\prime} \mid K_{1} i_{1}, K_{2} i_{2}\right)=\left(1+\delta_{K_{1} i_{1}, K_{2} i_{i}}\right)^{-1}
$$

$$
\begin{equation*}
\cdot \sum_{\sigma_{1} \sigma_{2}} \delta_{\sigma_{1} K_{1}+\sigma_{2} K_{2}, \sigma_{0} K_{0}}\left\langle Q_{K_{2} i_{2} \sigma_{2}}\left[\left[Q_{K_{1} i \sigma_{1}^{\prime}}, Q_{K_{1} i_{1} \sigma_{1}}\right] Q_{K_{2} i_{4} \sigma_{4}}^{+}\right]\right\rangle \tag{23}
\end{equation*}
$$

$$
\mathcal{Y}^{K_{0}}\left(K_{1} i_{1}, K_{2} i_{2}\right) \equiv \mathscr{V}^{K_{0}}\left(K_{2} i_{2}, K_{1} i_{1} \mid K_{1} i_{1}, K_{2} i_{2}\right)
$$

It explioit form is given $\ln [5,15]$.
The normalieation condition of the wave funotion (22) in the diagonal in $\mathcal{K}^{K 0}$ approximation hae the form

Now, let us find an average value of the Hamiltonian (8) over the state (22) and using the variational principle derive the following equation a for the energies η_{ν} and wave function (22)

$$
\begin{align*}
& \left(\omega_{K_{0} i_{0}}-\eta_{\nu}\right) R_{i_{0}}^{\nu}-\sum_{K_{1} i_{1} \leqslant K_{2} i_{2}}\left(1+\delta_{K_{1} i_{1}, K_{2} i_{2}}\right)^{-1 / 2} D_{K_{1} i_{1}, K_{2} i_{2}}^{\nu} . \\
& \cdot V_{K_{1} i_{2}, K_{2} i_{2}}^{K_{0} i_{0}}\left[1+\mathcal{K}^{K_{0}}\left(K_{1} i_{1}, K_{2} i_{2}\right)\right]=0, \\
& {\left[\omega_{K_{1} i_{1}}+\omega_{k_{2} i_{2}}+\Delta \omega\left(K_{1} i_{1}, K_{2} i_{s}\right)-\eta_{2}\right] P_{K_{1} i_{1}, k_{2} i_{2}}^{-}} \\
& -\sum_{i_{0}}\left(1+\delta_{K_{1} i_{1}, K_{2} i_{2}}\right)^{-1 / 2} R_{i_{0}}^{\nu} Z_{K_{1} i_{1}, K_{2} i_{2}}^{K_{0} i_{0}}=0 . \tag{25}
\end{align*}
$$

Hence, we get the secular equation

$$
\begin{align*}
& \operatorname{det} \|\left(\omega_{K_{0} i_{0}}-\eta_{\nu}\right) \delta_{i_{0} i_{0}}-\sum_{K_{1} i, \leqslant K_{2} i_{2}}\left(1+\delta_{K_{1} i_{s}, K_{2} i_{2}}\right)^{-1} \tag{26}\\
& V_{K_{1} i_{1}, K_{2} i_{2}}^{K_{0} i_{0}} U_{K_{1} i_{1}, K_{2} i_{2}}^{K_{0} i_{0}^{\prime}}\left[1+K_{1} K_{0}\left(K_{1} i_{1}, K_{2} i_{2}\right)\right]
\end{align*}=\omega_{K_{2} i_{2}}+\Delta \omega\left(K_{1} i_{1}, K_{2} i_{2}\right)-\eta \nu \quad \| .
$$

From (24) and (25) we find $R_{i_{0}}^{\nu}$ and $R_{K_{1} i_{1}, K_{2} i_{2}}^{\nu}$ for each value of η_{ν}. The rank of the determinant (26) equals the number of one-phonon term is in the wave function (22).

It is important that eqs. (25) and (26) coincide in form with the equations given in $[4,5,15]$ in which only ph multipole interactions are taken into account, with the equations in $[5.7]$ in which ph ruitipole interao-- tions $\lambda \mu-22$ and 42 are considered and with the equations in $[13,14]$

In which ph and pp multipole interactions $\lambda \mu$ at $n_{\max }=1$ are taken into account. Thus, the form of equations (25) and (26) and the rank of the determinant (26) are independent of what nultipole and spin-nultipole interactions are taken into account and are independent of the rank $n_{\text {max }}$ of separable interactions. This means that calculations in the QPNM can be made with any complex interactions in the separable form. The GPNM was formulated so that all complications caused by the form of interactions were concentrated in the RPA equations. It is not difficult to solve the RPA equations with complex interactions.

The inclusion of ph and pp separable $n_{\text {max }}>1$ interactions of the electric and magnetic types complicates the formulae for the two-phonon pole shift $\Delta \omega\left(K_{1} i_{1}, K_{2} i_{2}\right)$ and the function $U_{K_{1} i_{1}, K_{2} i_{2}}^{K_{0} i_{0}}$. Indeed,

$$
\begin{gather*}
\Delta \omega\left(K_{1} i_{1}, K_{2} i_{2}\right)=-\sum_{i^{\prime}}\left\{\mathscr{K}^{K_{0}}\left(K_{2} i_{2}, K_{1} i^{\prime} \mid K_{1} i_{1}, K_{2} i_{2}\right) W_{i, i}^{K_{1}}+\right. \tag{27}\\
\\
\left.\quad+\mathscr{K}^{K_{0}}\left(K_{2} i^{\prime}, K_{1} i_{1} \mid K_{1} i_{1}, K_{2} i_{2}^{\prime}\right) W_{i_{2}^{\prime} i^{\prime}}^{K_{0}}\right\},
\end{gather*}
$$

where $W_{i_{1}}^{K} i_{i} \quad$ is given by formula (10). The function $\widetilde{W}_{i_{1} i_{2}}^{a 0}$ for the case when a phonon with $K^{\sqrt{\prime}}=O^{+}$enters into the two-phonon part of the wave function (22) is given in [13]. Then,

$$
\begin{equation*}
U_{K_{1} i_{1}, K_{2} i_{t}}^{K_{0} i_{0}}\left[1+K^{K_{0}}\left(K_{1} i_{1}, K_{2} i_{2}\right)\right]=-\frac{1}{2} \sum_{\sigma_{1} \sigma_{2}} \delta_{\sigma_{1} K_{1}+\sigma_{2} K_{2}, \sigma_{0} K_{0}} \tag{28}
\end{equation*}
$$

where $H_{v q}$ is determined by formula (11). Now we use the oonmatation revatins

$$
\begin{align*}
& \left.\left.\left[B\left(q q^{\prime} ; K \sigma\right)_{\tau}, Q_{K_{0} i_{0} \sigma_{0}}^{+}\right]\right\rangle=\sum_{K_{3} i_{3} \sigma_{3}} T_{\tau}\binom{K_{0} i_{0} \sigma_{0}, K_{3} i_{3} \sigma_{3}}{q q^{\prime} K \sigma^{\prime}} Q_{K_{3} i_{3} \sigma_{3}}^{+}\right\rangle, \tag{29}\\
& \left.\left.\left[\mathcal{R}\left(q q^{\prime} ; K_{\sigma}\right)_{\tau}, Q_{k_{0} i_{0} \sigma_{0}}^{+}\right]\right\rangle=-i \sum_{k_{3} i_{3} \sigma_{3}} \mathcal{T}_{\tau}\binom{k_{0} i_{0} \sigma_{0}, k_{3} i_{3} \sigma_{3}}{q q ; k_{\sigma}} Q_{k_{3} i_{3} \sigma_{3}}^{+}\right\rangle, \tag{30}
\end{align*}
$$

with the functions T_{τ} and \mathcal{I}_{τ} being real, and get

$$
\begin{align*}
& U_{K_{1} i_{1}, K_{2} i_{2}}^{K_{1} i_{0}}=2 \sum_{\sigma_{1} \sigma_{2} \tau} \delta_{\sigma_{1} K_{1}+\sigma_{2} K_{2}, \sigma_{0} K_{0}} \sum_{q q^{\prime}}^{\tau}\left\{V_{\tau}^{\lambda_{1} K_{1} i_{1}}\left(q q^{\prime}\right) f^{\lambda_{1} K_{1}}\left(q q^{\prime}\right)\right. \\
& \cdot T_{\tau}\binom{K_{0} i_{0} \sigma_{0}, K_{2} i_{2} \sigma_{2}}{q q^{\prime} ; K_{1}-\sigma_{1}}+V_{\tau}^{\lambda_{2} K_{2} i_{2}}\left(q q^{\prime}\right) f^{\lambda_{2} K_{2}}\left(q q^{\prime}\right) \\
& \cdot T_{\tau}\binom{K_{0} i_{0} \sigma_{0}, K_{1} i_{1} \sigma_{1}}{q q^{\prime}, K_{2}-\sigma_{2}}+V_{\tau}^{L_{1} K_{1} i_{1}}\left(q q^{\prime}\right) f^{L_{1} K_{1}}\left(q q^{\prime}\right) \\
& \cdot \tilde{J}_{\tau}\binom{K_{0} i_{0} \sigma_{0}, K_{2} i_{2} \sigma_{2}}{q q^{\prime} ; K_{1}-\sigma_{1}}+V_{\tau}^{L_{2} K_{2} i_{2}}\left(q q^{\prime}\right) f^{L_{2} K_{2}}\left(q q^{\prime}\right) \tag{31}\\
& \left.\cdot T_{\tau}\binom{K_{0} i_{0} \sigma_{0}, K_{1} i_{1} \sigma_{1}}{q q^{\prime} ; K_{2}-\sigma^{2}}\right\},
\end{align*}
$$

where $V_{\tau}^{\lambda K i_{2}}\left(q q^{\prime}\right)$ and $V_{\tau}^{4 K i_{2}}\left(q q^{\prime}\right)$ are given by (13) and (13.).
Let us obtain the matrix elements of EA and $M \lambda$ transitions. Using phonon (4) we can write the corresponding operators in the form

$$
\begin{align*}
& M \varepsilon(E \lambda \mu)=\sum_{\tau \sigma} \sum_{q q^{\prime}}^{\tau} \Gamma_{\tau}\left(E \lambda \mu ; q q^{\prime}\right)\left\{v_{q q^{\prime}}^{(-)} B\left(q q^{\prime} ; \mu \sigma^{\prime}\right)+\right. \tag{32}\\
& \left.+\frac{1}{2} f^{\lambda \mu}\left(q q^{\prime}\right)\left(u_{q q^{\prime}}^{(+)}\right)^{2} \sum_{i^{\prime}} g_{q q^{\prime}}^{\mu i^{\prime}}\left(Q_{\mu i^{\prime} \sigma^{\prime}}^{+}+Q_{\lambda \mu^{\prime-\sigma}}\right)\right\}
\end{align*}
$$

$$
\begin{align*}
& M \varepsilon(M \lambda \mu)=\sum_{\sigma^{\prime} \tau} \sum_{q q^{\prime}}^{\tau} \Gamma_{\tau}\left(M \lambda \mu ; q q^{\prime}\right)\left\{v_{q q^{\prime}}^{(+)} \mathcal{B}\left(q q^{\prime} ; \mu \sigma^{\prime}\right)-\right. \\
& -\frac{1}{2} f^{L \mu}\left(q q^{\prime}\right)\left(u_{q q^{\prime}}^{(-)}\right)^{2} \sum_{i^{\prime}} g_{q q^{\prime}}^{\mu i^{\prime}}\left(Q_{\mu i^{\prime} \sigma}^{+}-Q_{\mu i^{\prime}-\sigma^{\prime}}\right) \tag{33}
\end{align*}
$$

where

$$
\begin{aligned}
\Gamma_{\tau}\left(E \lambda \mu ; q q^{\prime}\right)= & \langle q| e_{\theta f f}^{\lambda}(\tau) z^{\lambda} Y_{\lambda \mu}(\theta \varphi)\left|q^{\prime}\right\rangle \\
\Gamma_{\tau}\left(M \lambda \mu ; q q^{\prime}\right)= & \langle q| \frac{M_{0}}{2}[\lambda(2 \lambda+1)]^{1 / 2}\left\{g_{s}^{\theta f f}(\tau)\left(\vec{\sigma}^{\prime} \vec{Y}_{\lambda-1}\right)_{\lambda \mu}+\right. \\
& +g_{l}^{\theta A f} \frac{4}{\lambda+1}\left(\vec{l}^{\prime} V_{\lambda-1}\right)_{\lambda \mu}\left|q^{\prime}\right\rangle
\end{aligned}
$$

In oaloulating the matrix elements of $E \lambda$ and $M \lambda$ transitions from the ground states of doubly even nuclei to the states with the domi* mating one-phonon components in the wave function (22), we use only the phonon parts of the operators $\Pi Z(E \lambda \mu)$ and $\Pi Z(M \lambda \mu)$. As a result we get

$$
\begin{align*}
& \left(\Psi_{\nu}^{*}\left(K_{0}^{\pi} \sigma_{0}^{\pi}\right) M z(E \lambda \mu) \Psi_{0}\right)= \\
& =\frac{1}{2} \sum_{i_{0} \tau} R_{i_{0}}^{\nu} \sum_{q q^{\prime}}^{\tau} \Gamma_{\tau}\left(E \lambda K_{0} ; q q^{\prime}\right) f^{\lambda K_{0}}\left(q q^{\prime}\right)\left(u_{q q^{\prime}}^{(+)}\right)^{2} q_{q q^{\prime}}^{K_{0} i_{0}} \tag{34}\\
& \left(\Psi _ { \nu } ^ { * } \left(K_{0}^{T_{0}}\right.\right. \\
& \left.=-\frac{i}{2} \sum_{i_{0} \tau} R_{i}^{\nu} \sum_{q q^{\prime}}^{\tau} \Gamma_{\tau}(M \lambda \mu) \Psi_{0}\right)= \tag{35}\\
&
\end{align*}
$$

These matrix element a differ from the formulae used earlier, for instance in [14], by that the functions $g \frac{K_{0} i_{0}}{q q}$ belong to both parts of the
phonon operator (4), the eleotrio and megnetio parts. If, for example, in the normalisation (6) the megnetic part appears to be mach amaller than the electric one, then this will result in the hindrance of the $M \lambda$ tranaition. It can be expected that with the use of the phonon (4) the $E \lambda$ transition probabilities from the ground states will not differ considerably from the calculated ones $[14,16]$.

Reliable experimental data and numerous caloulations are available on M1 tranaltions from the ground statea of doubly even deformed nucle1 to the 1^{+}states. The treatment of the 1^{+}states as mixed symmetry states is undoubtedly a sucoesa of the IBM-2. The energies and $B(M 1)$ values are well described in the RPA with the quadrupole ph interactions with exoluding a spurious state [11]. Sinoe many oalculations were performed, we will not calculate the energies of the 1^{+}states and $B(M 1)$ values.

The experimental data on M2 to M3 transitions from the ground states are rather scarce. Thus, states with the mixed symmetry with $I^{\sqrt{N}}=3^{+}$were searched for in [17]. They measured the $B(M 3) \uparrow$-value for exoitation of the $I^{\pi_{V}} K_{\nu}=3^{+} 2$, state and did not observe M3 transitions to the states with an energy higher than 1 MeV . There are only few caloulations of the M2 and M3 transition probabilities [18-20].

It is expedient to calculate the M2 and M3 transition probabilities within the QPNM u日ing formulae (34) and (35), which may stimalate new experiments.

In experimental investigatione on the Coulomb exoitation, ($n \gamma^{\sim}$) and other reaotions (see, for ingtanoe, $[21,22]$) a large number of M1 values and M1 + E2 mixtures were observed for transitions between excited atates of doubly even deformed nuole1. Calculations of the M1, E2, M3 and other transition probabilities between exaited states oan be made within the formalism expounded in this paper.

Let us find the matrix elements of $E \lambda$ and $M \lambda$ transitions between excited states with the dominating one-phonon components of their wave fundlions (22). In these calculations we use the quasipartiole parts of the operators (32) and (33) and the commutators (29) and (30); as a result, we get

$$
\begin{align*}
& =\sum_{i_{0} i_{4}} R_{i_{0}}^{\nu_{0}} R_{i_{\psi}}^{\nu_{4}} \delta_{\sigma_{0} K_{0}+\sigma_{\mu} \mu, \sigma_{4} K_{4}} \sum_{\tau} \sum_{q_{1} q_{2} q_{3}}^{\tau} \Gamma_{\tau}\left(E \lambda \mu ; q_{1} q_{2}\right) v_{q_{1} q_{2}}^{(-)} . \\
& \cdot\left(\psi^{k_{0} i_{0}} \psi_{2} q_{3}^{k_{4} i_{4}}+\varphi_{3} q_{1}+q_{2} q_{0} i_{0} \varphi_{q_{3} q_{1}}^{k_{4} i_{4}}\right) . \tag{36}\\
& \cdot\left(f^{\lambda K_{0}}\left(q_{2} q_{3}\right) u_{q_{2} q_{3}}^{(t)} f^{\lambda K_{4}}\left(q_{3} q_{1}\right) u_{q_{3} q_{1}}^{(+)}+f^{L K_{0}}\left(q_{2} q_{3}\right) u_{q_{2} q_{3}}^{(-)} f^{\left(K_{(}\right.}\left(q_{3} q_{1}\right) u_{q_{3} q_{1}}^{(-)}\right) . \\
& \left(\Psi_{\nu_{4}}^{*}\left(K_{4} \sigma_{4}^{\pi_{4}}\right) \prod 2(M \lambda \mu) \Psi_{\nu}\left(K_{0} \pi_{0} \sigma_{0}\right)\right)= \\
& =\sum_{i_{0} i_{4}} R_{i_{0}}^{\nu_{0}} R_{i_{4}}^{\nu_{4}} \delta_{0} K_{0}+\sigma \mu, \sigma_{4} K_{4} \sum_{\tau} \sum_{q_{1} q_{2} q_{3}}^{\tau} \Gamma_{\tau}\left(M \lambda \mu ; q_{1} q_{2}\right) v_{q_{1} q_{2}}^{(t)} . \\
& \cdot\left(\psi_{q_{2} q_{3}}^{K_{0} i_{0}} \psi_{q_{3} q_{1}}^{K_{4} i_{4}}+\varphi_{q_{2} q_{3}}^{K_{0} i_{0}} \varphi_{q_{3} q_{1}}^{K_{4} i_{4}}\right)\left(f^{\lambda K_{0}}\left(q_{2} q_{3}\right) u_{q_{2} q_{3}}^{(+)} f^{\left.L K_{4} / q_{3} q_{1}\right) u_{q_{3} q_{1}}^{(-)}+}\right. \\
& \left.+f^{4 K_{0}}\left(q_{2} q_{3}\right) u_{q_{2} q_{3}}^{(-)} f^{\lambda K_{4}}\left(q_{3} q_{1}\right) u_{q_{3} q_{1}}^{(+)}\right) \text {. }
\end{align*}
$$

These formulae can be useful for further calculation a of the M1, M2 and E2 transition probabilities between excited states. Similar calculations of the quantities $\delta(E 2 ; M 1)$, as in [23], can be made for transitions between quadrupole states of deformed nuclei.

5. Conolusion

The axial symatry of well defornod nuolei complioatea the desoription of their vibrational atates in comparison with spherioal nuoled. If the projection onto the symmetry axis of K is assumed to be a good quantum number, then the vibrational state with a fixed $K^{\sqrt{2}}$ can be desoribed by multipole and spin-multipole interactions of the eleotric type and apin--miltipole interactions of the magnetio type. Thus, the states with $K^{\tilde{x}}=2^{+}$ can be described by interactiona of the electric type $\lambda K=22+42+\ldots$, $\lambda \lambda K=222+442+\ldots$ and magnetic type $\lambda^{\prime} L K=232+432+\ldots$, and the states with $K^{\pi / 3}=3^{+}$by $\lambda K=43+63+\ldots, \lambda \lambda K=443+663+\ldots, \lambda^{\prime} L K=233+$ $433+\ldots$. To avoid nonphygioal multiplicativity of a number of the oaloulated vibrational states, we have introduced a new phonon operator. It consists of the electric part taking account of the λK and $\lambda \lambda K$ interactions and the magnetic part taking account of the $L \pm 1 L K$ interantion. Th1s new RPA phonon should be used for describing doubly even, doubly odd and odd-A deformed nuole1 and first of all for describing $M \lambda$ and $E \lambda$ tranalitions between exoited atates.

In the present paper we have formulated the most general veraion of the QPNM. We have construoted the Hemiltonian and derived equations for ph and pp isoscalar and isovector multipole and spin-multipole finite rank separable interactions between quasipartioles. Introduation of the finite rank $n_{\text {max }}>1$ separable interactiona leads to oomplication of the RPA equations, which is nonessential in computer caloulations. All difficulties conneoted with the eleqtrio and magnetic types of interactions and with the $n_{\text {max }}>1$ separable interaotions are ooncentrated in the RPA equations. It is important that they do not lead a noticeable oomplication of the QPNM equations for calculating the fragnentation of vibrational states
including giant resonanoes. Additional diffioulties oaused by $n_{\text {max }}>1$ do not arise if three-phonon terns are added to the wave function (22). They also do not arise in oaloulating the fragmentation of one-quasipartiole states in odd deformed nuolei.

Fig. 4. The first two states with $K^{\pi \prime}=\lambda^{-}$desoribed either as quadrupole magnetio states with enhancement of M2 transitions or as ootupole electric states with enhancement of E3 transitions and the first two two-quasipartiole states.

I should like to emphasize that in solving such a oomplioated problem as the many-body nuclear problem one should aim at exposing the most impor tant parts of effective interaotions to be used in conorete caloulations rather than at solving the problem in the most general form.

The mathematioal apparatus of the QPNM construoted in this paper for deformed nuclei can serve as a basis for calculations of many characteristios of low-lying and high-lying states. We hope that the QPNM calculations will stimulate further experimental study of the struature of deformed nuclei at a new generation of accelerators and detectors.

Aoknowledgement

The author is grateful to L.A.Malov for useful disaussions.

Referenoes

1. Soloviev, V.G.: Theory of complex nucle1. Moscow: Nauka, 1974.
(English translation: Theory of complex nuolei. Oxford: Pergamon Press 1976).
2. Bohr A., Mottelson B.Nuclear structure,ll.London: Benjamin INC 1975.
3. Eisenberg, J., Greiner, W.: Nuclear theory, III, Amsterdam:

North-Holland P.C. 1972.
4. Soloviev, V.G.: Prog.Part.Nucl.Phys. 19, 107 (1987).
5. Soloviev, V.G.: Theory of atomic nuclei. Quasiparticles and phonona. Mosoow: Energoatomizdat, 1989.
6. Soloviev, V.G., Sushkov, A.V.: Preprint JINR E4-89-716, Dubne, 1989.
7. Nesterenko, V.O., Soloviev, V.G., Sushkov, A.V., Shirikova, N.Yu.: Yad.Fys. 44, 1449 (1986).
8. Nesterenko, V.O., Kukhtina, I.N., Sushkov, A.V., Dao Tien Khoa: J.Fhys., G: Nucl.Phys. 14, 725 (1988).
9. Alikov, B.A., Badalov, Kh.N., Nesterenko, V.O.., Sushkov, A.V.: Z.Phys. A - Atomio Nuolei 331, 265 (1980).
10. Pyatov, N.I., CherneJ, M.I.: Yad.Fiz. 16, 931 (1972).
11. Nojarov, F., Faessler, A.: Nuol. Phys., A484, 1 (1988).
12. Soloviev, V.G.: Yad.Fiz. 50, 40 (1989).
13. Soloviev, V.G.: Z.Phys. A - Atomic Nuclei 334, 143 (1989).
14. Soloviev, V.G., Shirikova, N.Yu.: Z. Phys, A - Atomic Nuclei 334, 149 (1989).
15. Soloviev, V.G., Shirikova, N.Yu.: Yad.Fiz. 36, 1376 (1982).
16. Soloviev, V.G., Shirikova, N.Yu.: Preprint JINR E4-89-822, Dubna, 1989.
17. Bohle, D., Richter, A., de Jager, C.W., de Vries, H.: Z. Phys. A - Atomio Nuolei 328, 463 (1987).
18. Nesterenko , V.O.: Commenioation JINR P4-12513, Dubna, 1979.
19. Lo Indioe, N.: Phya.Rev. C38, 2895 (1988).
20. Raduta, A.A., Delion, A.S.: Nucl.Phys. A491, 24 (1989).
21. Mo Gowan, F.K., Milner, W.T., Pobinson, R.L., Stelson, P.H.: Nucl.Phys., A297, 51 (1978) ,Mc Gowan,F.K.Milner,W.T.:Phys.Rev., C23, 1926 (1981).
22. Hague, A.M., Casten, R.F., e.a. Nucl.Phys., A455, 231 (1986).
23. Hamilton, W.D., Kumar, K.: J.Phys. G: Nucl.Phys., 5, 1567 (1979).

