

объединенный ииститут ядерных исследований

J.Kvasil*, R.G.Nazmitdinov

ELECTROMAGNETIC PROPERTIES

OF ROTATING NUCLEI IN CPA APPROACH

Submitted to "Physics Letters B"

[^0]Ir the last years, the cranked random phase approximation (CRPA) has been extensively used for the analysis of high spin states in even-ever nuclei [1]. In this analysis the main accent is on the description of erergy characteristica. However, the study of electromagnetic moments and transitions of collective rotational states can give equally important information. Ir most cases this information on elmg. momerts and transitions is nore detailed and deepened in comparison with the energy spectrum.

Ir the paper by Hamamoto and Sacawa [2] El and MI transitions were analysed in the framework of the cranking model. In these papers, the matrix elements of transition operators in the yrast line states were determined with respect to quasiparticle vacuum. However, the question arises what is the role of quasiparticle correlations in the yrast line states in description of electronagnetic trancitions, because the yrast line gtate is not in fact the quasiparticle vacuum but the phonon vacuum. The otber problem is connected with linear boson image of a transition operator which is usually used in calculation of transition probabilities. The formulation of the $G R P A$ based or conservation laws [3] showed the necessity of includine the second order terms of boson expansion of single-particle operators in the cranking hamiltonian. Quantitative description of alignment of intrinsic angular momentura in octupole states in actinides, made in [4], confirmed the importance of the boson second order term in expansion of the anerular mowertum operator J_{x}.

In this letter, the inclusion of boson second order terms of coson expansion of transition operators as well as inclusion of quasiparticle correlations in yrast line states is shown to be important for describing elmg. characteristics in even-even rotating nuclei in the framework of the ORPA approach.

The reduced transition probability connected with a spherical tersor $T_{\lambda \mu}$ is civen by

$$
\begin{equation*}
\left.\left.B\left(T_{\lambda} ; I_{1} \rightarrow I_{2}\right)=\sum_{\mu M_{2}}\left|\left\langle I_{2} M_{2} \alpha_{2}\right| T_{\mu}\right| I_{1} M_{1}\right\rangle\right\rangle\left.\right|^{2} . \tag{1}
\end{equation*}
$$

In the bigh spin limit $I_{1} \approx I_{2} \gg \lambda$ this probability can be rewritten as follows [3]:

$$
\begin{equation*}
B\left(T_{\lambda} ; I_{1} \rightarrow I_{2}\right) \approx \mid\left\langle I_{2} M_{2}=I_{2}, \alpha_{2}\right| T_{\lambda \mu}=I_{2}-I_{1}\left|\alpha_{1} I_{1} M_{1}=I_{1}\right\rangle_{1}^{2} \tag{2}
\end{equation*}
$$

where $|I M=I \alpha\rangle$ is the CRPA state in the coordinate syatem where the quantum axis coincides with the x-axis. For simplicity, further we will use a shortened assignmert $|\alpha I M\rangle=|\alpha I\rangle$.

In the case of electromagnetic transitions from the one-phonon state $\left|\alpha_{1} I\right\rangle=\phi_{\alpha_{1}}^{+}|O I\rangle$ to the yrast line state, which is determined as the phonon vactum $\left|\alpha_{2} I\right\rangle=|0 I\rangle\left(\Phi_{\alpha}|O I\rangle=0\right)$, one can write [3] ${ }^{*}$)

$$
\begin{equation*}
\left\langle\alpha_{2} I_{2}\right| T_{\lambda \mu}\left|\alpha_{1} I_{1}\right\rangle: \simeq\left\langle O I_{1}\right|\left[T_{\lambda \mu=I_{2}-I_{1}}, \phi_{\alpha_{1}}^{+}\right]\left|O I_{1}\right\rangle \tag{3}
\end{equation*}
$$

Electronagnetic transitions between the states $\left|\alpha_{1} I_{1}\right\rangle=\mathscr{D}_{\alpha_{1}}^{+}\left|O I_{1}\right\rangle$ and $\left|\alpha_{2} I_{2}\right\rangle=9 \rho_{\alpha_{2}}^{+}\left|0 I_{2}\right\rangle$ in the CRPA approach are characterised by the following eatrix elemerits:

$$
\left\langle\alpha_{2} I_{2}\right| T_{\mu \mu}\left|\alpha_{1} I_{1}\right\rangle \approx\left\langle O I_{1}\right|\left[{D_{\alpha_{2}}}\left[T_{\lambda \mu}, \phi_{\alpha_{1}}^{+}\right]\right]\left|O I_{1}\right\rangle+\left\langle O I_{1}\right| T_{\lambda \mu}\left|O I_{1}\right\rangle \oint_{\alpha_{1} \alpha_{2}}(4)
$$

In the CRPA approach each single-particle operator can be expressed in the form of the boson expansion (see, e.e. [3])

$$
\begin{equation*}
T=\langle\Omega| T|\Omega\rangle+T(1)+T(2), \tag{5}
\end{equation*}
$$

where $\langle\Omega| T|\Omega\rangle$ is the expectation value of the operator T with reapect to vacuum $|\Omega\rangle$ of the cranking model quasiparticles,
$T(1)$ and $T(2)$ are the linear boson term and quadratic boson term, respectively where bosons are understood as two-quasiparticle bosons $b_{i k}^{+}=\alpha_{i}^{+} \alpha_{k}^{+}, b_{\bar{i} \bar{k}}^{+}=\alpha_{i}^{+} \alpha_{\bar{k}}^{+} \quad$ or $\quad b_{i \bar{k}}^{+}=\alpha_{i}^{+} \alpha_{\bar{k}}^{+}$ (see [3]). Concretely, for the positive signature ($\sigma=+$) operator $\quad R_{x}(\pi) T R_{x}^{-1}(\pi)=+T$ we have

$$
\langle S \Omega| T(6=+)|\Omega\rangle=\sum_{k \ell}\langle\kappa| T|\ell\rangle\left(B_{k}^{\bar{\iota}} B_{l}^{\tau}+\gamma_{\tau} h B_{k}^{i} B_{l}^{i}\right)
$$

$$
\begin{equation*}
T^{(+)}(1)=\sum_{i j} t_{i j}^{(+)}\left(b_{i j}^{+}+h_{2} b_{i j}\right) \tag{6}
\end{equation*}
$$

$$
T^{(+)}(2)=\sum_{i j m}^{\infty}\left\{t_{i j}^{(+)}\left(b_{i m}^{+} b_{j m}+b_{i m}^{+} b_{j m}\right)+t_{i j}^{(+)}\left(b_{i m}^{+} b_{j m}+b_{i m}^{+}-b_{j m}\right)\right\}
$$ where $B_{k}^{i}\left(B_{k}^{i}\right)$ ijme the coefficients of the Bogolubov transformation (see [1]), and numbers $h= \pm 1, \tau= \pm 1$ and $\gamma_{\tau}= \pm 1$ characterise the properties of an operator T with respect to

[^1]hermitian conjugation ($T^{+}=h T$), complex conjugation $\langle k| T|l\rangle^{*}=$ $=r\langle k| T|l\rangle$ and time-reversal ($\tau T \mathcal{T}^{-1}=\gamma_{\tau} T$). Oi e can obtain similar expression for the negative signature operator ($R_{x}(\pi) T R_{x}^{-1}(\pi)=-T$)
\[

$$
\begin{aligned}
& \langle\Omega| T(6=-)|\Omega\rangle=0 \\
& T^{(-)}(1)=\sum_{\mu} t_{\mu}^{(-)}\left(b_{\mu}^{+}+b_{\mu} h z\right) \quad \mu=i k_{k}, \bar{i} \vec{k}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { Corresponding negative signature and positive signature photons }
\end{aligned}
$$ have the following forms:

$$
\begin{align*}
& \alpha_{\alpha}^{+}(\sigma=+)=\frac{1}{\sqrt{2}}\left(x_{\alpha}-i P_{\alpha}\right)^{(+)}=\frac{1}{\sqrt{2}} \sum_{\mu}\left\{(x+P)_{\mu}^{(+)} b_{\mu}^{+}+(x-P)_{\mu}^{(+)} b_{\mu}\right\}, \mu=i j, i j \\
& \phi_{\alpha}^{(+)}(\sigma=-)=\frac{1}{\sqrt{2}}\left(x_{\alpha}-i P_{\alpha}\right)^{(-)}=\frac{1}{\sqrt{2}} \sum_{\mu}\left\{(x+P)_{\mu}^{(-)} b_{\mu}^{+}+(x-P)_{\mu}^{(-)} b_{\mu}\right\}, \mu=i j, i j . \tag{8}
\end{align*}
$$

Eq.(8) can be understood as a transformation from the space of. two--quasiparticle bosons to the space of phonons. The inverse transformotions are

$$
\begin{align*}
& b_{i j}^{+}=\sqrt{2} \sum_{\alpha}\left\{(x+p)_{i j}^{(+)} D_{\alpha}^{+}(\sigma=+)-(x-p)_{i j}^{(+)} \phi_{\alpha}(\sigma=+)\right\} \tag{9}\\
& b_{\mu}^{+}=\sqrt{2} \sum_{\alpha}\left\{(x+p)_{\mu}^{(-)} D_{\alpha}^{+}(\sigma=-)-(x-p)_{\mu}^{(-)} D_{\alpha}(\sigma=-)\right\}
\end{align*}
$$

$$
\mu=i j, \bar{i} \bar{j} .
$$

Further, we will analyse the following situations. 1. Transitions along the yeast line and the moments in the yrast line states.

Since the yrast line contains only states with positive aignatore (ever: values of angular momentum), transitions along the yeast line ($\Delta I=$ even) as well as moments in the yeast line states are connected with the positive signature transition operator T (in the case of R - symmetric nucleus this operator does not change parity as well). The corresponding transition matrix element is

$$
\left\langle O I_{2}\right| T_{\lambda \mu}(\sigma=t)\left|O I_{1}\right\rangle \approx\langle\Omega| T_{\lambda \mu=I_{2} I_{1}}|\Omega\rangle+\left\langle O I_{1}\right| T_{\lambda \mu}(2)\left|O I_{1}\right\rangle,(10)
$$

where the expectation value ir the quasiparticle vacuum $|\Omega\rangle$ is determined by the cranking model in terms of the cranking condition

$$
\begin{aligned}
& \langle\Omega| I_{\mid}|\Omega\rangle=\sqrt{I(I+1)} \quad \cdot \operatorname{Using}(5),(6) \text { and (9) one can } \\
& \text { obtain }
\end{aligned}
$$

$$
\begin{align*}
& \left\langle O I_{2}\right| T_{\lambda \mu=I_{2} I_{1}}(6-t)\left|O I_{1}\right\rangle=\langle\Omega| T_{\lambda \mu}|\Omega\rangle+ \\
+ & 2 \sum_{i j m}\left\{t_{i j}^{(+)}\left[(X-P)_{i m}^{(-)}(X-P)_{j m}^{(-)}+(X-P)_{i=}^{(+)}(X-P)_{j m}^{(+)}\right]+\right. \tag{11}\\
& \left.+t_{i j}^{(+)}\left[(X-P)_{i_{m}}^{(+)}(X-P)_{j m}^{(+)}+(X-P)_{i=m}^{(-)}(X-P)_{J_{m}^{m}}^{(-)}\right]\right\} .
\end{align*}
$$

It can be seen from eq. (11) that quasiparticle correlations in the phonon vacuum (which is involved in the second term in eq. (10)) leads to an additional nontrivial term in (11) for transition matrix elements ($\Delta I=I_{2}-I_{1} \neq 0$) as well as for an expectation value of the transition operator moment ($\Delta I=I_{2}-I_{1}=0$). It must be noted that this additional term depends on two-quasiparticle amplitudes of all phonons of both signatures and parities. The difference between $\left\langle O I_{2}\right| T_{\lambda \mu}(G=+)\left|O I_{1}\right\rangle$ and $\langle\Omega| T_{\lambda \mu}|\Omega\rangle$ allows.one to estimate the influence of quasiparticle correlations in the phonon vaccum.
2. Electromagnetic transitions from one-phonon states to the yrast line states.

In this case, we have to analyze transitions with and without the signature change. If we assume that the lowest excited states in an even-ever nucleus are really one-phonon stater (without any anbarmonicity), the quadratic boson part $T_{\lambda \mu}(2)$ does not give any contribution to the matrix element of the transition operator. With use of (3), (6) and (9) we can write for this matrix element the following relations:
for the transition frow the negative signature one-phonon state

$$
\begin{align*}
& \left.\left\langle O \Pi_{2} T_{\lambda \mu} \phi_{\alpha}^{+}(\sigma=-) \mid I_{O}\right\rangle\right\rangle=\left\langle\left. O T_{2}\left[T_{\lambda \mu}, \phi_{\alpha}^{+}(\sigma=-)\right]\right|_{1} O\right\rangle \simeq \\
& =\sqrt{2} \sum_{v}\left\{(X+P)_{v}^{(-)} t_{v}, h_{2}-(X-P)_{v}^{(-)} t_{v}\right\} \quad \nu=i k, \overline{i k} \tag{12}
\end{align*}
$$

and for the transition from the positive signature one-phonon state

$$
\begin{align*}
& \left\langle 0_{2} T_{\lambda \mu} T_{\alpha}(\sigma=+)\left[D D_{1}\right\rangle=\left\langle\left. 0 I_{2}\left[T_{\lambda \mu}, Q_{\alpha}^{+}(\sigma=+)\right]\right|_{1} 0\right\rangle \cong\right. \\
& =\sqrt{2} \sum_{i j}\left\{(x+P)_{i j}^{(+1} t_{i j} h z-(x-P)_{i j}^{+1} t_{i j}\right\} . \tag{13}
\end{align*}
$$

In this case expressions (12) and (13) coincide with analogous ones giver in [3], and one can see that if excited states are described by pure one-phorion states neither quadratic boson part $T_{\lambda \mu}(2)$ of the
transition operator nor quasiparticle correlations give contribution to (12) or (13).
3. Electromagnetic transitions between one-phonon states and moments in them.

In the gereral case, one-phonon states are characterized by even as well as odd values of angular momentum, and therefore, by both values of signature. According to the selection rule with respect to signature, the transitions with spin change $\Delta I=$ even values ($\Delta I=0,2,4$.) are described by the transition operator of positive signature while the transitions with $\Delta I=$ odd values ($\Delta I=1,3,5$.) are connected with the transition operator of regative signature.

Transition matrix elemerts with odd apin change (aiçnature change) can be expressed as follows:

$$
\left\langle\left[\alpha_{2}(\sigma=\mp)\left|T_{\lambda \mu}(\sigma=-)\right| \alpha_{1}(\sigma= \pm) I_{1}\right\rangle=\left\langle 0 I_{2}\right|\left[D_{\alpha_{2}}(\sigma=\mp)\left[T_{\lambda \mu}^{\sigma=-}(2), \Phi_{\alpha_{1}}^{+}(\sigma= \pm)\right]\right] \mid 0 I_{1}\right\rangle .(14)
$$

Using (7), (8) and (9) it is possible to rewrite this expression in the following form:

$$
\begin{aligned}
& \left\langle\alpha_{2}(\sigma=-) I_{2}\right| T_{\lambda \mu}(\sigma=-)\left|\alpha_{1}(\sigma=t) I_{1}\right\rangle \approx 2 \sum_{i j m}\left\{t_{i j}^{(-)}(X+P)_{j m}^{(+)}(X+P)_{i m}^{(-)}+\right. \\
+ & \left.t_{i j}^{(-)}(X+P)_{j m}^{(+)}(X+P)_{i m}^{(-)}+t_{i j}^{(-)}(X-P)_{i m}^{(t)}(X-P)_{j \bar{m}}^{(-)}+t_{i j}^{(-)}(X-P)_{i m}^{(t)}(X-P)_{j m}^{(-)}\right\} \quad(15 a) \\
& \left\langle\alpha_{2}(\sigma=+)\right| T_{\lambda \mu}(\sigma=-i)\left|\alpha_{1}(\sigma=-)\right\rangle \approx 2 \sum_{i j m}\left\{t_{i j}^{(-)}(X+P)_{j m}^{(-)}(X+P)_{i m}^{(+)}+\right. \\
& \left.+t_{i j}^{(-)}(X+P)_{i m}^{(+)}(X+P)_{j m}^{(-)}+t_{i j}^{(-)}(X-P)_{i m}^{(-)}(X-P)_{j m}^{(+)}+t_{i j}^{(-)}(X-P)_{i m}^{(-)}(X-P)_{j \overline{i m}}^{(+)}\right\} .
\end{aligned}
$$

Frow (14) one can see that only inclusion of the linear boson term ir the transition operator meana zero probability of transitions betweer: one-phonon states with signature change (with $\Delta I=1,3$, $5, \ldots$.$) . For description of transition with signeture change in$ ever-even nuclei one has to involve the quadratic boson term in the transition operator. It should be pointed out that transitions of that type are experimentally observed (see e.g. quadrupole transitions with $\Delta I=1$ between the statcs in the loweat rotational bands in ${ }^{168}$ Er [5]).

Transition matrix elements with even spin change (without signature change) are giver. by where $\left\langle 0 I_{2}\right| T_{\mu \mu}(\sigma=t)\left|0 I_{\lambda}\right\rangle$ is given by (11) and the second term in (16) can be rewritten by means of (6), (8) and (9); so eventually we obtain

$$
\begin{align*}
& \left\langle\alpha_{2}(\sigma=+) I_{2}\right| T_{\lambda \mu}(\sigma=+)\left|\alpha_{1}(\sigma=t) I_{1}\right\rangle=\left\langle O I_{2}\right| T_{\lambda \mu}(\sigma=t)\left|O I_{1}\right\rangle \delta_{\alpha_{1} \alpha_{2}}+ \\
& +2 \sum_{i j m}\left\{t_{i j}^{(+1)}(X+P)_{i m}^{\left(\alpha_{2}+\right)}(X+P)_{j \bar{m}}^{\left(\alpha_{1}+\right)}+t_{i j}^{(+)}(X+P)_{i m}^{\left(\alpha_{2}+\right)}(X+P)_{j m}^{\left(\alpha_{1}+\right)}+\right. \\
& \left.+t_{i j}^{(+)}(X-P)_{j \bar{m}}^{\left(\alpha_{1}+\right)}(X-P)_{i \bar{m}}^{\left(\alpha_{2}+\right)}+t_{i j}^{(+)}(X-P)_{j m}^{\left(\alpha_{1}+\right)}(X-P)_{i m}^{\left(\alpha_{2}+\right)}\right\} \tag{17a}\\
& \left\langle\alpha_{2}(\sigma=-) I_{2}\right| T_{\lambda \mu}(\sigma=+)\left|\alpha_{1}(\sigma=-) I_{1}\right\rangle=\left\langle 0 I_{2}\right| T_{\mu \mu}(\sigma=t)\left|0 I_{1}\right\rangle \delta_{\alpha_{1} \alpha_{2}}+ \\
& +2 \sum_{i j m}\left\{t_{i j}^{(+)}(x+p)_{j m}^{\left(\alpha_{1}-\right)}(x+p)_{i m}^{\left.p \alpha_{2}-\right)}+t_{\bar{j}}^{(+)}(x+p)_{j \bar{m}}^{\left(\alpha_{1}-1\right)}(x+p)_{i \bar{m}}^{\left(\alpha_{2}-\right)}+\right. \\
& \left.+t_{i j}^{(+)}(x-P)_{j m}^{\left(\alpha_{j}-\right)}(x-P)_{i m}^{\left(\alpha_{2}-\right)}+t_{i j}^{(+1}(x-P)_{j \bar{m}}^{\left(\alpha_{1}-\right)}(x-P)_{\bar{i} \bar{m}}^{\left(\alpha_{2}-1\right.}\right\} . \tag{27b}
\end{align*}
$$

The comparison of (17) with (15) shows the different character of transitions with and without the signature change. This comporison supports the well-known fact that with increasing rotational frequency a given rotational band splits into two bands, each being characterized by a good signature number $\sigma=+$ and $\bar{\sigma}=-$
Intraband transitions in each of these banda have another character than interband transitions: $\sigma= \pm \rightarrow \sigma=\mp$. The similar behanviour of transitions with $\Delta I=1$ with respect to the signature change was shown in paper by Hamamoto and Mottelson [6] in the framework of the particle-rotor model for odd monaxial nuclei. In
$[7]$, the contribution to E 2 and MI transitions with $\triangle I=1$ in odd nuclei caused by polarisation of the core via rotational Goldstone mode is discussed. This Goldstone mode gives also contributior to the second term in right-hand aide of (11)*).

It can be seen from eqs. (10),(11),(15) and (17) that the inclusion of quasiparticle correlations in the yrast line of even-ever nuclei leads to the appearance of the second term in (11) and therefore, to the redeteraination of electromagnetic momenta in the yrast

[^2]line states as well as in the excited atates above the yrast line. The signature dependence of electromagnetic transitions between the states near the yrast line can be explained in the framework of the CRPA by both the inclusion of the quesiparticle correlations in the RPA vacuum and the inclusion of the quadratic boson tera in expansion (5) of the transition operator. These inclusions are valid for both axial and nonaxial nuclei because the assumption of axiality was not used anywhere in this paper.

References

1. E. Ẃarshalek, Nucl. Phys. A266 (1976) 317. D.Janssen and I.N.Mikhailov, Nucl. Phys. A318 (1979) 390. J.L.Egido, H.I.Mang and P.Ring, Nucl.Phys. A339 (1980) 390, Nucl. Phys. A341 (1980) 229
Y.R.Shimizu and K.Matsuyanagi, Progr. Theor. Phys. 70 (1983) 144. J.Kvasil and R.G.Nazmitdinov, Sov.J.Part. Nuci. 17 (1986) 265. K.Sugawara-Tanabe and A.Arima, Phys.Iett. B206 (1988) 573.
2. I. Hamamoto and H.Sagawa, Nucl. Phys. A327 (1979) 99. I.Hamamoto, Pbys.Lett. B102 (1981) 225.
3. E.Marshalek, Nucl.Phys. A275 (1977) 416. I. N.Mikhailov Communication JINR, P4-7862, Dubna, 1974.
4. L.M.Robledo, J.L.Egido and P.Ring, Nucl. Phys. A449 (1986) 201. R.G.Nazmitdinov, Yad.Fiz. 46 (1987) 732 (in Russian).
5. W.F.Davidson et al., J.Phys. G: Nucl.Phys. 7 (1981) 455.
6. I.Hamamoto and B.R.Mottelson, Phys.Lett. B132 (1983) 7.
7. P.Arve, Phys.Lett. B197 (1987) 307.
8. V.O.Nesterenko, V.G.Soloviev, A.V.Sushkov Communication JINR, P4-86-115, Dubne, 1986.

Received by Publishing Department on February 19, 1990.

[^0]: *Department of Nuclear Physics, Charles University, 18000 Prague 8, V.Holesovickach 2, Czechoslovakia

[^1]: *) In the framework of the yrast line, states are interpreted as the phonon vacuum corresponding to a given value of rotational frequency or ancular momentum I. Therefore, we denote these vacuum states as 10D. For simplicity, sometimes we will omit the index I; so the phonon vacuum is denoted by $|0\rangle$.

[^2]: *) Notice that the importance of the quadratic boson term for the description of the irterband electric transitions between the excited nonrotational states had been shown also in the quasiparticle-phonon model for deformed even-even nuclei [8].

