


Ir the last years, the crenked random phase approximation
(CRP4) has been extensively used for the analysis of high spin states
in even-ever ruclei [1] . In this asnalysis the mein accend is
on the description of erergy charecteristica. However, the study
of electromagnetic momernts and trensitions of collective rotational
gtates can give equally importent infermation. Ir moat cases this
information on elmg. momerts end itrensitions is uore detailed and
deepened in comparison with the energy spectrum. '

Ir the paper by Hamamoto and Sagawa [2] El arnd Ml transitions
were analysed in the frawework of the cranking model, In these pa-
pers, the matrix elements of transition operators in the yrast line
atates were determined with respect to quasiparticle vacuum. However,
the question arises what is the role of quasiparticle correlations
in the yrast line states 1n description of electromagnetic trancitions,
because the yraest line state is not in fact the guagiparticle vacuum
but the phenon vacuum. The other problem is connected with linear
boson image of a transition operator which is usually used in calcu-
lation of transition probatilities. The formulation of the CRPA
based or c¢onservation laws [3] showed the necessity of including the
gecond order terms of boson expansion of single-particle operators
in the cranking hamiltonian, Quentitative description of alignment
of intrinsic engular viomentun in octupole states in actinides, wade
in [4] » confirmed the importance of the btoson second order term in
expansion of the angular wovertun operator J; .

In this letter, the inclusion of toson second order terms of
koson expansion of transition operators as well as inclusion of qua-
giparticle correlations in yrasi line states is shown to be important
for describing elmg. characteristics in even-even roteting nuclei in
the framework of the JRPA approach,

The reduced transition probability cunnpcted with a spherical
tersor rT;F is piven by

B(Th;I,~1.) = ;ﬁ |<IZM£d2|E|Lm4>\2. (4)

In the high spin limit I|’,¥I4)))\ this probability can te rewrit-
ten as follows [3]

2
BTN IoL) % 1Tt L & (T MIMDL (2



where [IM=I% ig the CRPA state in the coordinats system where

the gquantun axis coincides with %he x-axis. For simplicity, further
we will use a ahortened assignmert |LIMD> = |1V .

In the case of electromagnetic transitions from the one-phonon
atate |d, IV = Cb"‘ [0I% to the yrast line state, which ia deter-
nined as the phonon vac.'uurw i, Ly =101 (‘I) joI>= 0) , one
can write [3]

(T Tyl Ty 2 0L [Ty g, 10T

Electromagnetic tranaitions between the states [of, I, = @d IDL)
and o, T 7 %+ |0]:2> in the CRPA apprpach aTe characterised by the
following Uatrlx element°'

ATy = OLI[ [T TTIOTY + (01,1 T, 0708 (@

In the CRPA approach each single-particle operator cen be
expressed in the form of the boson expansion (see,e.gp. [3] }

T =<QITIQy + Ty +T{2), (5)
where {QUITIQS is the expectation value of the operator
with respect to vacuum |S'l§ of the cranking model quasiparticles,

T(4) and T1(2)} are the linear hoson term and quadretic
boson term, respectively where bosons are understond azs two-quasi-
particle bosons ]::t =dtdt , l,-__ o{ aL+ or LTE =a{;:l-o(%—
(see [3 ). Concretely, for the positlve slgnature (@& =+ ) opera-

tor Rx('ﬁ-)TQ;“(rrr)zi.T we have
(S T(6=D 0> - Z(x[Tii?(BEBE+er BL BE)

T((i) JcH ( < he L‘J) (6)
T(H(‘Q): {(ﬂ(L):ﬂ _]“‘ :-hLJI-)"- r“(l’tm dw Lh J""‘)S

where B‘ (B \ a]re the coefficients of the Bogolubov transforme-
tion {gee [1'] }, and numbers h=t4 , 7z=+4 and Yi=14
characterise the properties of an operator T wlith respect to
*)In the framework of the yrast line,states are interpreted as the
phonon vacuum corresponding to a given value of rotational frequen-
¢y or angular momentum J. Therefore, we derote these vacuum states

as [0 For simplicity, scmetimes we will omit the index I; oo the
phonon vacuum is denoted by 10% .
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*
hermitian conjugation ( T¥= hT ), complex conjugation £kITi€¥=
= K ITIE end time-veveraal { TTT %L J’E’T }. Ore can
ottain similar expressicn for the negative sipnature operator

( RMTRMw) = -T D
(\T(6=-1Q7 =0
TOm- 2L (bh /««hz) o ik TR
Tl - 2 e el ) G0 by

L JH
Corresponding negatlve 51gnature and positive slpnature phononb

have the following forms:

QS"'(G'-H r( %P )@') ZA‘()GP)LH bF+ (X_P§;Lf51ﬁ=iﬁfj'
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Eq.(8) ¢en be understoocd as a transfarmatlon from the space of-fwo-

(7)

-quasiparticle bosons to the space of phonons. The inverse transfor-
mations are

biy = V7 2 {fcePS 9= - (X-P)(:I)‘b‘,,\(&ﬂ}
l,; = Jé‘é_{()« P)(;%;(e“:-) -(x~ )/(,"2)&( 6=-)}

Further, we will analyse the following siftuations.

(9)
AN A R
1., Transitions along the yrast line and the moments in the yrast
line siates. .

Since the yrest line contains only states with positive signa-
ture {ever values of angular womentum)}, transitions along the yrast
line ( AI = even) as well as moments in the yrast line states are
connected with the positive signature transition operator T (in

the case of R - symmetric nucleus thig operator does not change
parity as well). The corresponding transition matrix element is

(0L TA,\(E”“OID"‘(Q'Ti,ur;rﬂm +COL T 0T 3000

where the expectation value in the quasiparticle vecuum 1§27 is
determined by the cranking model in terms of the cranking condition

(Qil|ﬂ7 -:.JI(I...J_) . Using (5), {(6) and (9) one can

obtain



(OL | Tupegg 01 01 =< QUTy 127 +

DAL “’[(x B (5, + P, (kP ;‘1 . (41)
lJM .E_ (+> + 5 \5—) ]
[(PY® (P12 + (PI (CPICTY

It can te seen from sql{11) that quaalpartlcle correlatlona in the
phonon vacuum (which is involved in the second term in eq. (10})
teads 1o an additional nontrivial term in (11) for trensition matrix
elements ( AT -= I-Z_I-‘ # (0 ) as well as for an expertation value
of the transition operator moment { Als= I.Z_I'F = ). It umust
be noted thet this sdditional term depends on two-quasiparticle
auplitudes of all phonons of both signatures and parities. The
differemce between (O, IT (6.+)lOI Y and £ §1 |T4,u 92
allows.one to estiwate the 1nf1uence of quasgiperticle correlations
in the phonon vaccumn.
2. Electromagnetic transzitions from one-phonon states to the yrast
line states.

In thls case, we have to analyze transitions with and without
the signature change., If we assume that the loweat excited states
in an even-ever nucleus are really one-phonon states (without eny
anharmonicity), the quadratic toson pert -TA 2} does not give any
contribution to the watrix element of the fransition operator. With
use of {3), (6) and (9) we can write for this matrix element the
following relations: *
for the transition frow the negative signature one-phonon state

<0y A,‘%,L(MLW - Co1|[ T, 42 (6= Ji0> =
EZ{(X*P Vtv' LI'Z "'(X-P)i_)'év } ¥z ik’TE {12)

and for the transition from the positive signeture one-phonon state

<O Ty =0y = <l Ty Do flg> =
=7 Zi(;(m, £ by - (x- p)‘”t L o)

In thig case ex£resalonv i12) and {13) colnc1de with anelogous ones
giver in [3] , and one can see that if excited states are described by
pure one-phorion states neither quadratic bosen part (Z) of the

3



transition operator nor quasiparticle correlations give contribution
to (12) or (13).

3. Electromagnetic transitions between one-phonon states sand moments
in then.

Irn the gereral case, one-phonon states are characterized by even
as well as odd values of angulsr momentum, and therefore, by koth va-
lues of signature. According to the selection rule with respect
to signature, the transitions with apin change al = even values
{ al =0,2,4. ) are described by the transition operator of
positive signature while the trensitions with AT = cdd values
{ AT = 1,3,5 ) are connected with the transition operstor of
regative signature.

Transition matrix elemerts with odd spin change {sighature
change ) can be expresazed as follows:

Q{6+ 3)| Tyl by (6-4T, = COL [, (67) [1;2'2))%;(&1)]]( o7%(#)

Using (7), (8) and (2) it is possible to rewrite this expression
in the following form:

6L T e T, = 22{ Ol (P

PR (P +E 0P L, el el |

(15a)
(&= T (=7l (6= = 2 ;{ {‘;Jj()@p){;_’ (xePS®.
Jc“(x P (e PJ"’ t" (x- P)“‘(x P)‘:' t“ (x-PS (L }(m

Fron (14) one c¢an see that only 1ncluslon of the linear boson term
ir the transition operator means zero probatility of transitioms
betweern one-phonon states with signature change (with AJ =1, 3,
S4ees). For degeription of transition with signeture change in
ever-even nuclei one has to involve the quadratic boson term
in the transition operator. It should be pointed out that trapnsiti-
ong of that type are experimentally observed (sece e.g. quadrupols
trangitions with Al= 1 between the states in the lowest rotational
bands in 168gn [57 ).

Traneition matrix elewents with even spin change (without
gignature change) are giver. by



(16)
oL bl o4 = COLIT o000+ [ TE.)‘Z) o 1>

where (Cﬂ'lT 6{){01&? is piven by (11) and the second tern in
{16 ) can be rewritten by means of (6), (8) and {(9}; 80 eventually
we obtain

{df6=4L, IT (@'=+)|di(ﬁ'=+)11> ={ OI,-H; (&0 0L,> g;(,otz +

+22‘_{‘*‘(x i kS “’XP)_“”(XP{“) :
(XP)""*’(x P)(""” ch*l(XP)‘ XP(“W} (17a)

(0L T, (6}, (61T, = COT, [Ty (o) L0 > 0,
() ) RS &) ")
2] 1 (epf el A (1P epfe
o Ul ety ) o

The cowparison of {17) with (15) shows the different character
of ftransitions with and without the signature change. This compa-
rigon supports the well-known fact that with increasing rotational
frequercy a given rotational band splits into two bands, each being
characterized by & good signature number &=+ and ©=- .
Intraband trensitions in each of these bends heve another character
than interband transiticns: 6=z = 6= § . The gsimiler hehs-
viour of transitions with AJ =4 with respect tc the signature
change was shown in paper by Hamamoto and Mottelson [6] in the
framework of the particle-rotor wodel for odd nonaxial nuclei. In
[7] , the contribtution to E2 and Ml transitions with A J= 4
in e¢dd nuclei caused by polarisation of the core via rotationsl
Goldetone mode is discussed., This Goldstone mode gives also contri-
butior to the second term in right-hand aide of (11)*

It can te seen from eqs., (10),(113,(15) and (17) that the inclu-
gion of quasiparticle correlations in the yrast line of even-sver
nuclei leads to the appesrance of the second term in {11) snd there-
fore, to the redetermination of electromagnetic momerts in the yrest

JNotice that the importance of the quadratic toson term for the
description of the irterband electric transitions between the excited

nonrotationel states had been shown alsc in the quasiparticle-phonon
wodel for deformed even-even nuclei [BT,



line states as well as in the excited atates above the ¥rast line,
The signature dependence of electromagretic transitions between the
stetes near the yrast line can ve explained in the fremework of the
CRPA by both the inclﬁsion of the quesiparticle correlations in the
RPA vacuum and the inclusion of the guadratic boson term in expan-
sion (5) of the transitien operator. Theme inclusions are valid for
both axial and nonaxial nuclei because the assumption of aximlity
was not used anywhere in this paper.
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