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INTRODUCTION

At present, interest in the investigation of low-energy pion-
-nucleon scattering is caused by the task of revealing the querk

degrees of freedom in hadron-hadron interactions!=®),

However, tnoe
models which do not take account of quarks can describe, often even
more accurately, the same experimental data as various quark models
Horeovpr, the existiﬁg quark models are far more complicated and
generally refer to similaer assumptions as the conventional phenc-~
menological models, e.g., the calculations of low-energy »XN -phase
shifts within bag models1'4) are carried out on the basis of Lipp-
mann-Schwinger and Low equations; for the qualitative description
of low-energy =nN =-scattering the Skyrme model Lagrangian rela-
ted to well-known phenomenological chiral Lagrangians 1s used, etc.
‘ In our opinion, in the low and intermediate energy region the
clear-cut separation of quark degrees of freedom cannot be carried
out without the consistent field-theoretical formulation of the
hadron-hadron interaction problem. One of the most general appro-
aches to hadron-~hadron interactions based on Bethe=-Salpeter-type
equations has been suggested in ref.g). However, at present this
approach is very difficult to realize in practice owing to the
difficulties caused by the absence of an adequate tool for handling
with four-dimensionel relativietic scattering equatiofs. In the
theory of connected NN- NN 10) and N - AAN 11) systems
the quasipotential reductions of Bethe-Salbeter-type equations
have often been used. However, it is well known that the quasipo-
tential equations cannot be obteined in a unique wmanner, and in

different quasipotential formulations various meson-pucleon vertex



functions should be chosen in a different way for describing the
experimental datae.
An alternative field-theoretical approach to the low-enerzy

SN -scattering is based on Low-type equations12‘20)

« The poten~
tial tcrm of these equations is constructed oui of the vertex func-
tions with two particles on mass shell. Such vertex functions have
often been used in the current algebra approacha), and the calcu-~
lation of these vertices within various quark todels seems to Dbe
much less complicated than the ones with all particles bveing off~
-shell, However, the Low-type equations are nonlinear and, tie
dfiving term of these equations is nonhermitian due to the

presence of intermediate particle propagators. In the present
work the linearization procedure for Low-type equations is sug:es-
ted. With the use of the above linearization procedure the Low-
type equations are reduced to the Lippmann-Schwinger equation witn
a potential obtained within the framework of field theory. This
energy-dependent potential is expressed via the same meson-nucleon
vertex functions as the driving term of the Low equation and
contains, in addition, a crossing term dependenst on the 7N -scat-
tering t -natrix of interest. This nonlinear term in XA -inte-
raction potential can be taken into account with the help of a

special iteraticn procedure.

1. THE LOV-TYPE EQUATIONS

In this section we shall present the derivation of Low-tygre
equations slightly different from the conventioral ones. We follcw
the metric and conventions of rer.2!).In particular, pS, ¢ anc
ps’, q'c’ {p'ep's M q”;q3=y2) denote the four-momenta ard
the spin and isospin labels for incowing and outgoing nucleons
and pions, respectively (fig. 1). According to the Lehmann-Syman-

zic-Zimmermann contraction rule521) the ¥ S-matrix SO4i =

= <oul }3,'31"{55,3[,&17) can be related to the scattering J -matrix

in the following manner:
Syi = b + (am) 8(p°+q°-p™q°) Tpi (1.1

T3

"
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<p.sla*‘f(0)lps,?$t nd, (1.2).
where 6574&”: jioa$u(rﬂ is expresgsed via the pi-meson

B -~ s . . > d 7,
field operator @.(x) and its derivative P (x) - g}aq-ﬁ)
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Fige 1o Graphical representation for
QI+ NpS)> (g’ )+ N'(p's') scatte-

’ ring =matrix, where L genotes the 7 -
meson isospin and $ -~ tha nucleon spin.

From the definition of zN -scattering J -matrix J:¢ (1.2) and
(1.3b) we obtain:

T = (2mP 18V (B3~ B-2)<ps' 1] 031ps 3, in>= (omy 56083 - F - (1.4)
On the basis of the contraction rules for @z we have
Jgi = <p's'105:(0) G, (in)l ps>= -]dr <7J’5’fT(a'é-.-f(o)az}‘;(r'))lﬁ5>=

= <13'S"f(52f'l"(0),04q; (0)]’?)5)— fdl-u<ﬁ3’IT(O"fi'(D)(J’}(r’))/;‘?) . (1.5)

The equal-time commutator in the relation (1.5) can be expressed
in the following way:
Y= <Ps'108z(0, 0k 11s> - i (2mPEV BT B-3)%¢ (1.52)

RO

Yyi « 2% <p's I[J,(o) al% QIPs> = <Ps,§i1YIPs.gi> - (1.56b)



Further we insert the complete set of physlcal states Zln JinyCinyn] =1
between the operators Ol;'u and y in the second tera of the
right~hand side of eq.(1.5) and make use of the translational
invariance of the theory. The cancellation of § -functions, cor-
responding to the conservation of the total 3-momentum of a =N
system from the both sides of eq.(1.5) leads to the following
expression:

<?5U(mmsqu> <Ps, g1 Y1ps.qi>-
§9(3+3- B
PP+ G'~ Py +IE
~Gm® 2 <p$ 1j;@)n, m)M

ig o _

..(2“)32<ps(J.,(o)|n,Ln> <£n,nlji(o)l'§s>~ (.7

<un nl_jtr(o)|T>S> ’

Here P, - (P,f,P,, stands for the total four-mementum of the inter-

mediate state In,in> .

The well-known Low equation12) can be derived from relation
(1.7) if the contributions of all intermediate states except h=
N'hw' are omitted in the right-hand side. Truncation of multiper-
ticle states is necessary for obtaining a closed set of integral
equations. This truncatibn is widely usged in field-theoretical
formulations of the equations for trensition matrices in low=- and
1ntermédiate energy region. The Chew-Low equation13)‘is obtained
from (1.7) if one neglects the equal-time commutator Y, and
uses the static approximation for the nucleon. However, an impor-
tant roie of the nucleon recoil in the low-energy pi-nucleon scat-
tering has been discussed in ref.15’2o). In particular, it has
been demonstrated15) that in the case of é nonstatic nucleon thre
regonance in the RB channel can be reproduced provided the
contributions from the antinucleon states are taken into account.
Following ref.15) we pick out the disconnected parts of transition
matrices in order to find this contribution. The resulting equa-

tion is written in the following form:

RN = - {1} > R - 3.
<ps IJL-,(o)lps,qL,m)cz <ps,qtYIps,qid> + <pS,qIVIps,qid>+

§(B-3-9)
e SR pogit
3“’(P P+d)

3 )
+(amy¥ 2 <ps IJ (0)n, m> <Ln,mJL.(o)lFs><+ (1.8)

+(en ) Z <ps 1J;(0)n, in,

<in,nly, HOIPS>, 3
n = P°

where the subscript ¢ denotes & connected matrix element, ani

YV contains one-nucleon exchange in the § ~ and U -channels
(fig. 2a,b) and one-antinucleon exchange in the 3 -~ and U -chan-
nels (fig. 2c,d), the latter being referred to as 2 -graphs.
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Fig. 2.
a) § -channel one-nucleon exchange graph; b) ¢ —channel one-
nucleon exchange graph; ¢) § =~channel Z -graph; d) 3 -channel

2 -graph.

The connected contributions to the driving term (1.9) from 7w ,
NN/; and other higher mass intermediate states are neglected.

Equation (1.8) is the Low equation for the #¥ -scattering ¢ -mat-




rix for the first time obtained in ref.15). The nonlinear three-
~dimensional integral equation (1.8) contains the § ~channel (fig.
3a) and W -channel (fig. 3b) terms, the latter being referred
hereafter to aa the crossing term and obeys the crossing-symmetry
relations. It should be pointed out that within various chiral

.

models the Weinberg-Tomozawa formulae for the g-wave TN -

scattering lensgths can be reproduced from eq.(1.8) in the tree
approximation provided the equal-time commutator ﬁgg and 2 -
graph contribution are retained in the driving term (1.9) indica-
ting the importance of these contributions being omitted in the

Chew-~Low theory.
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Fig. 3.

a) § -channel graph, corresponding to Jﬁo{' term in eq. (1.12).

b) u -channel graph, corresponding to (fG{*) term in eq. (1.12),

In the formulation of Low-~type equations considered above
nucleons alwaya remain on-mass-shell ip in- or out-states. In refs.
18'19) the Low-type equations have been suggested where both pions
and nucleons are allowed to go off-mass-shell. The driving term of
these equations, in addition to s- and UL -chennel terms, includes
t-channel exchange terms with 6, p, 2% intermediate states (rig. 4).
Equation (1.8) seems to be more simple and convenient for our pur-
pose though the formalism given below can be generalized for the
equations suggested in refa, 18219y,

Note that the driving term V (1.9) is nonhermitian due to
the presence of intermediate nucleon and antinucleon
propagators. Moreover, if the 77¥- interaction Lagrangian depends

on the derivative of the pion field, then the equal~time commutator

fime - ! Fig. 4, G - and P-exchange graphs in
N ~-scattering ¢ ~channel.

Y,; (1.6b) is nonhermitian too. This is easy to observe if Y (1.68)
is written in the following menner: .

=

¥ = 355 1[G ), 0% (0]~ (65100, G5 (011} 1Psy +

. fES)’ (1.10)

L d -
+3 <Bs Id_x°{ Log: (3(‘5,(1%(:(")]}‘Il
If the last term in (1.10) is omitted, then Y is hermitian

and can be written in the following manner

yji = 5' 27 <'s'| [J'L, (0),0*q&(°)3* [Qqu(o),“o)]lﬁs) . (1.11)

However, the last term in (1.10) vanishes provided the A -inte-

raction Lagrangian does not depend on éJI). In Appendix A a
slightly different formulation of Low-type equations is presented
where the hermitian edual-time commutators similar to (1.11) appear
from the beginning in the case of derivative coupling too.
The Low-type equation (1.8) for the sV ~scattering ¢ -mat-

rix f (1.4) can schematically be written in the following form:

F=W+ G, w=: Yeve (§Go§t)e - (1.12)
S
P+ G0+ i€~ p'0-qro

is the Green function for a noninteracting =N -systenm, and(-~)a

Here Y and V are given by (1.6b) and (1.9), G,=

denotes the crossing of initial and final pi-mesons in the expreg-
sion in brackets, i.e. the change q,i>-(p+q-p)l’ and vice
versa.

The solution of the nonlinear intezral equations (1.12) can

be found on the basis of the following iteration procedure

+ + t t
5(1 1)=W(D+ g(l I)G°j(t+|) , W”)=y’\/* (j(“Go‘j(D )cr, I=0,1,2 . (1.13)



With some initial approximation -j(o’

of iteration procedure (1.13). In ref.17)

J(E) = Y(E) + U(E)Go(E)T(E).

energy shell.

2. LINEARIZATION OF LOW-TYPE EQUATIONS

Lippuann~Schwinger equation with some potential UJ(E)

on the total energy E  of a 7N -gystenm:

and corresponding W ’

. . : ()] . L s
where tne gpecial choice of { can provide the rapid convergence

{©ho  ana W% YV

have been asgsumed. It will be demonstrated below that for any given

W“‘) eq. (1.3) on half-energy-shell are equivalent to the

dependent

(1.14)

Here J{E) coincides with the 7N -gcattering ¢ -matrix on

Let us consider eq.(1.12) in the center-of-mass frame where -

$'=_q' and B:—ﬁ

tion can be written in the following form:

« The driving term W

.
in this equa-

b, B W IBs, -hid= WealB D)= Aga (o) Ep Baa '3 - (2.12)

Here a denotes the set of quantum numbers of the 7N« system.

as=(s,1) , Eg=wy(R+we@®= Vi M2 + VRT3 12
energy of the N system, and A and &8

is the total

are hermitian matrices,

According to (1.6), (1.9), (1.10), (1.11) and (1.12) we obtain the

following explicit expression for A and B
1 "ILI

4 3 e
Baa(®,3)=<P's, |5|ps,-’pi>+Z Bao (p,3)+

d3‘q‘”d3p M (
J (21)3 2c0, @ ) wnlp*) B““ B3

Aa'o(F,[?ﬁ(Ta'.s' J."lH(*—(E}*Ep)& Ips; PO

{ >l Sl ) > -
- MBa'Q(PxP)*MB:'q(P:E)- (p%+ p°—E°)BZ-°(p $)-Q°+q"-
[
S 43 d*p'M
(2nP 207 &0 @)

9 > » 5 01 e
(P°+P _w."(q )-w,p ) Baq (P»P

(2.1b)

@)Bgnaq;',—ﬁ) -

-, (2.1¢)
qe*) .

~

where £°=V('B+’(3)z+ M? , }//"
<P's, Py s, Bin
gd34 I(P+P) i

is defined by (1.11) and:

..;

<ps|[(¢ (© —) iq ¢( )(@(O‘E)qul - 23)1|P5>

(2.28)
4 ] I ’ . -
Bq~a<§',ﬁ>=-2 <SPS 1) 010 5> <osyy j (0)1Ps>
Sy Eg' - M Eg- M (2.2b)
R2 q(»P- DS <o|JL<0)|Es,osﬁ><osﬁ,'r'3'5’ljl-'<o)|o> (2.2¢)
SH Eg+ M Eg'+ M
B3 (,,,_’) Z M <per (0)}(p+p)5~><(p+p)SN|J«(o)lpS)
e po- _ o P q° - ° (2.24d)
. - > -9, I} > N
BiaBp)=-3 — L?"“”ps"“’*"’sﬁ>w> (2.2)
s 00 @ -phl po qo-po_p? )
(VP(*P”}Z <ps’ |J O1p's" "> 5(3)( - q)<ps” 31 (0)1Ps > (2.2F)

P~ q% uw) ) PO- G- oy (P GielG)

B> and Aab.. contain the 74 -scattering ¢ -matrix of in-
a'a a
terest, therefore the solution of Low equation (1.12) is given by
the iteration series (1.13).

In the center-of-mass system the Low equation (1.12) is writ-

ten in the following form:

o Fag(pr¥) 4 a.(P,k)
&aa(P P-) WQG(F P)* Z S o'a E‘; - Ebﬂ (2-3)

, and dv s d*% M2 90 (Rrwy(®) -

where Eig = Epie

Further the iteration series for eq.(2.3) are considered:

) RV
aalBP= 7 4,0 6.9 (8-42)
(rn)
N-1 NS
(K) > Z gdg ‘foa (EP;K) }ia P k) , N )2 . (2.4b)
- E
n=y a’ kTP

In particular, for N:1,2,3

G-

we obtain:

Wa'a 3D (2.5a)



. o r s P > -
_jm (.5_5 .5 SdE Woa(por) Wae(piv) i ZSd; Wae(pait ) Ugqa (R, p; EFY) (2.5b)
3 Ez- €f ¢ Er- E3

{U) (F,B): Z_ de dl(I WHB(P"‘J)“GG (Pnkz (WSZGJ(KZ K]) _ ngg)(l.(:);:z))z
(3

E, - ES F s _ g4
102 Ky Ky %y [
3 - E(F< ) (2-50)
o » . Hge, (0,0 D) Ug,al¥,, 6 €
=2 Sd'ﬁd“’ Vg (Po) ———— ' — . '
€, (cl?l— Eﬁ')(t]?l - Ep )
Here U is a hermitian matrix for any real parameter £
- > > - 2.6
ugjgz(kl,i}:;f)f 'qg,éz(kl"(l)+ EBglgz('(J’Hz). ( 0)
From the definition of U(€) (2.6) we obtain:
3 9 » < > -
We,g, (6,8, = Ug e, (4,0 ER) (2.7a)

* - (2.7v)
w@,@, (k-hk)l): LIEJBI(RJ !irI’E;l) .

(2.5a)-(2.5¢) can be generalized to higher-order terms of- itera-

tion series (2.4b) in the following way:

(R oy S 3 - F’, d;} u (Q" E’ £z ) n>3>(2.8)
y at,, piKy) = Z Weg, (Po¥ ) (Ez—:g AR R LR LA :
J=1 J] n

b

Equation (2.8) can be proved for any h by mathematical induction

We assume thas (2.8) holds for a finite N >3 . Then, using (2.4b),

j::" is written in the following manner:

(N+1) d
3(02;, (P)’?/V*J)‘ {% J;_ Jwag (P 'ﬁ)ﬂ (—_J—E‘ £ Ugijgju(!{,,kjmf,( ))‘&X

dk, . ad di. (2.9)
. : o

'E—_ KE"'_: - ‘iﬂ) j W@/m [ (A’Nu-"y)pnﬂ ( Es - €4, Uglgi_l(wgly(_l;:wh))] }

En” Nu A (3 i
where ﬂ( 1=1 and Z ( , When M <L is assumed.

With the use of (2.7a)- (2 7b) from (2.9) we obtains

Wet) 3ls S T -+
Talgrs (P ) = 2 {C--e, J Wag (B 11 (8 ugg, (5. 5 5820)>
(2.10)
1 . .
* dry Uggue (i Kiey s ERye,y )}-

(ex,- &2 ﬂ (&%~ &) | ﬂ (Eke &)

10

In Appendix B the identity:

5 2 | e

2 = f (2.11)
- E%

net Eh-er)r1(c -En)ﬂ (Ep-En) O1(Eg £ {

f=ne

~

for any N and m:o0,4 - N-1 ig proved.

With the use of explicit expression for u(e) (2.6) as well as
(2.10) and (2.11) one makes sure that ;QZ"' is given by an
expression gimilar in form to (2.8) with n= ¥+1 ., Thus, the proof
of eq.(2.8) is completed.

The iteration series where the n -th term is given by eaq.
(2.8) can be reproduced from the following linear integral equation
<R Tgig (621> = U B 600+ Z { Ugan (BT E0) ] <dlJarg (EOIR>  (2.12)

a €3-€d
From the comparison of each term of the iteration series for eq.

(2.12) with the corresponding expression (2.8) one obtains:

(N+1)

faa (S’/P) ;quwae B{q)ga-ga <41T¢q

(M) (s
f
b (2.13)

(N) - W, -
faa (B.p) = <P! ja'z(t$)|P>'

With the use of (2.5a) we finally arrive at the following re;sult:

faa BB - 52qu Walg (F8) [ 8408 (5-3) + quTg <G Ty ERIP>]

2 ~ (2.14)
fqa (3,3 = <Pl Taa(epIP>

Thus, for any given Wy, (2.1a) each term in the iteration series
of eq.(2.12) with potential U(f) (2.6) coincides with the corres-
ponding term in the iteration series for the matrix fa’a on energy
shell. Hence the solution of eq.(2.12) reproduces the solution of
nonlinear equation (2.3) which is given via the iteration series
(2.4a)-(2.4b).It should be pointed out that the series (2.4a)-(2.4b)
may diverge but the solution 4., can still exist; e.g. in refs.
15’16) Pade approximants have been used to sum up such divergent
series. Recalling the explicit expressions for W (1.12) and cor-

responding (/(€) one can easily observe that ip fact eq.(2.12) is

11



nonlinear due to the term (§Go§' ) in W (1.12). Such non-
linear equations can be treated by the iteration procedure (1.13).
Similar nonlinearity due to the symmetry of the amplitude of inte-

rest with respect to the pi-meson crossing is inherent of Low-type

equations for on- scattering19). However, in the case of NN -
scattering the nonlinear terms in the potential of the resulting
Lippmann-Schwinger equation do not appear.

It should be pointed out that if the nonhermitian term By,
in W (2.1) is set equal to zero, the equivalence of the Low equa-
tion and Lippmann-Schwinger equation can be rigorously proved in
the scattering theory 22) provided the potential A4, does not
create bound states. Cn the other hand,; if all terms in W except
the term proportional to (Ep—M)'1 are omitted, then eq. (2.12)
will be similar to the linear equation suggested in ref.17). Hence,
the linearization procedure suggested in the present work genera-
lizes, on the one hhnd, the linearization scheme known in the po-
tential scattering theory and, on the other hand, the result ob-

tained in ref.17) to the case of any given driving term.

3« OTHER PORMULATIONS FOR THE PION-NUCLEON SCATTERING PROBLEM

In this section we demonstrate that the nonlinearities arising
in the Low equation (2.3) and corresponding Lippmann-Schwinger equa:
tion (2.12) are inherent of other formulations of pi-nucleon scat-
tering too. In particular, below eqs. (2.3) and (2.12) will be
compared with the corresponding multichannel Lippmann-~Schwinger
equations obtained within the framework of potential scattering
theory as well as with the Bethe-Salpeter or quasipotential egqua-

tions for any -scattering.
3.1. Multichannel Scattering Theory Equations

Below we consider the multichannel scattering theory for re-

lativistic particles with channel states o= N » AN , TAN

12

NNN s  7inNNN <[ 6 o Our choice is motivated by the fact that
the same intermediate states are present in the Low equation (1.8)
In particular, N and 7N intermediate states appear in S -
channel diagrams (fig. 2a and 3a); 77N and 77nX  gtates, in
U ~channel diagrams (fig. 2b and 3b), and NMA¥  ahd nANNN  gta-
tes, in 5- and U ~channel diagrams (fig. 2¢,d). The transition
matrix T@a(E) is a gsolution of the Lippmann-Schwinger integral

equation:
: ¢ .
Top(E) =Vag + 6Z Vo Gy (€, B6) Tga (E )y (3.1)
=1

where E is the total energy of the wKX system, Es is the
energy of the asymptotic state 6 , and G,(Efs)-<6l(E-Hy) I5)is the free
Green function in the & -channel. Purther the set of scattering
states |y;”> of the total Hamiltonian Hag- (HotVlug is intro-
duced. The potential Vag ~ is assumed to be hermitian. Then, if

Va@ does not create bound states, one obtains the following

representation for the total Green function G(E)

6 . ’
[6(Eug- [G5 (€)= Visg - 5 {<¥I¥s > <¥s"le> (3.2)
621 E+ig- E6

With the use of the relation Tog(fp)=- I Vus <6143 > one arrives
=1

at the nonlinear singular integral Low-type equation for the multi-

channel scattering ¢ -matrix:

5 1 +
Tap(E) = Vag+ 2 Vos' [GIENgs Von = Vag+ 2 SM (3.3)
¢ ¢ 6,5'1 ¢ ® e’ Tevie- ee

Below it is demonstrated that the special cﬁoice for Vhp will
allow us to obtain the Low equation for the 7N -scattering ¢ ~
matrix _BW(E) almost similar in form to (1.8). For this purpose

Voip is chosen to be:
/ /..-a -, ' o .
Vpp =~ @nP 8V (BB <Fs §i 1 §185,30> 3.4)
Here one has to work with the formulation of Low-type equation

with the hermitian Y -term (1.11) presented in Appendix A in

13



order to provide the required hermiticity of potential \/(,([3 . liore~-
over, for o=3 -6 » by analogy with the derivation of (1.8),only
the disconnected terms in transition matrices Too(E) , describ-
ing interactiomsin 7NN vertices will be retained. In particu-
lar, we assume that

Tor (1) P BB 530 Fs g 05> (3.58)

[
- .a

Toy' (Ej)t—/zrl(?ﬂ)3éh)(p % p)é"’q,};ﬁ)& <ps!J L @IS > Iy (3.5D)

’171

1;,,‘,(54)=__'(7")36('s)(5 57; ?); p)S (q, q)5‘“<psU., ,(o)lps ‘}'97) h o, }3 .5¢)

; )~-—(2m35“’(q 5805, P)a;5 <01 [ 0By 51 B> {rsP +54)

T%:(ch)rE’-(?n)%m(*%ﬁ,% Pe 6‘3’(9,,1 p)&s,,sci(’(q,‘, 980
(3-56)

x <0lJg: 0 B sy, Basi> - { TN}
qu,_‘z‘O pquﬁ_(’)vN)- R

Here {aje} denotes the permutation of particles a and € . An
explicit expression for the pion source operator j;:‘ (o) ig given
in Appendix A (formula (A.5)). The disconnected amplitudes (3.5a)-
(3.5e) are depicted in fig. 5.

In transition amplitudes Td‘,(e) and potential Vup the & -
functions corresponding to conservation of the total three-momentum

are singled out

Tog (€) == (P 63 ( Py *‘(;g)fd@(E )

Vo = ~ (2\1)35(3) Pa)Uu@ . (3.6)
7 S 7 Tt
g LT N Pig. 5. Graphical
S <~ e Je¢ Graphical represen-
—-—E;)/ < O tation for multichannel
LS e =0 scattering matrix Ta'2 for
T, bt n'=1--6z20,8,c.d,ef=N 7N
-o—ﬁcdl o " O N I
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for the wN- scattering { -matrix {,(£)

With the use of (3.4) and (3.5a)-(3.5e) from (3.3) the Low equation

is obtained:

tyn(E) = ol )~ (znﬁsz (3.7a)
E*LE-Ez”
Wyry (E)= Uy - en3 2 "LP/"’{E‘”*"‘?(E“), (3.7v)

o2 E+ (- Ea
The effective pion-nucleon potential w,,(£) (3.7b) contains the
connected LovaZ(E) and disconnected w;:(E) (fig. 5) parts. Using
(3.5a)-(3.5e) one obtains the f&llowing expression for the connec—~

ted part

<PS, 301wy, (EDIPS,Gi> = <p's 301§ 1Bs,3i>-

A3 M B JOVRDD 4 oy
_2Z S N <ps IJ'a (O)IP~SN>u<PNSNqu\(O)|PS>—

Sv ” oxipo) E-wn(Fone

(37
-5 [EPBRM 2t M 2 TR (3.8)
S 5 O (F, <Ps Jq. PNSN £ wN(B,,)~q"—q"’+IE<P“S"U‘1« (©)Ips>+

E-QB)-p Pleie
RCMT)

d P ~ > [ ~
+ 2 S w M \0'174'1‘ (o)l'ﬁs,pﬁsﬁ> <pS, Py Sk |J‘E’k(o)|o>+

S wN(

Y
\ 2 <ol j2:-(0)]ps, o
Sk S oy JqL PR NR)-P-P2g-adHg

i Z S djﬁlldsq'M 8(3)(p -'_"// "//)
5 3 (B 2won@ @) E - (P - W (§)-9% 474 (€

<P's ,PNSNUqI 4 (0)10>-

(Y B

x <P’ lJa (©1p"s" §""> <IE"5",Z1”i”I_jg‘,.i,(o)|55>.

Here the (- ) sign in the fourth and fifth terms in eq.(3.8) ap-

pears due to the nucleon permutation.

-—— —— ——————— -

—-F— —-6\_’

a) b) 3] d)

Fig. 6.
Disconnected diagrams in (;.)712(5) (3.7b), which stem from the dig~

connectedness of Tg's , when o'33 (fig. 5¢=5f).
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The disconnected part of potential w,, (£) depicted in fig.
6 contains the nucleon (fig. 6a,b) and pion (fig. 6c) self-energy

graphs and the vacuum graph (fig. 6d). Often such disconnected

diagrams are included into the pion- and nucleon-mass renormali-
zation in the free Hamiltonian He 23). In ref.24) it is demonstra-
ted that if one works with the renormalized propagators from the
beginning, then the disconnected part can be set equal to zero.
According to the resﬁlt of ref.24), in the present work we onit
the disconnected part u»é(s) « Once uy:(E) is omitted in the
potential, one can readily obtain the low equation for the connec~
ted ¥ —gcattering matrix 'ﬂé « The corresponding equation is
completely similar in form to (3.7a), except t;é and w3z are
substituted for ¢,, and Ww,, with kaz defined by (3.8).

On the next step the equation for fzg obtained above is com-
pared with the corresponding Low equation (1.8) on half energy
shell, where E¥E2=.f+q°‘ +» One makes sure that by analogy with
(1.8) the nonlinear term (§604")cy is present in uﬁé(f) . How-
ever the propagators in u and U -channels in these two equations
differ off energy shell, i.e. when q°= p%¢°-P°. Kotwithstand-

ing this difference the Low equation for {,; can be reduced to
the Lippmann-Schwinger equation along similar lines as in section 2
The resulting equation is written in the following way:

tnwg=%ﬂgpﬁu”wm&mb@)hq@h (3.9)

~ (4
where £y, (£} and t,, () coincide on energy shell, and & (E)
is expressed via ubé(f}) according to (2.6).
It is of interest to compare the solution of eq.(3.9) with

the solution of the following linear equation:

f:"Z(Ez)= Ky, (8;) - (2m322; Korpn (€30 Go (£, Epn) tyup (E3) (3.10a)

Ryp(Ex)= Vyp - (?”)3&%252*2 Vs (G (£ g Vpa (3.10b)
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which is obtained directly from (3.1). Here Ky, (E) , by analogy
with  w,,(6) , contains both disconnected and connected parts,
In the kernel of integral equation (3.10a) Ky (E;) (3.10b)
the logarithmic singularities due to the presence of intermediate
multiparticle propagators appear whereas no such singularities in
the kernels of eqs. (2.12) and (3.9) are present. However, the
golution of eq. (3.10a) obeys the two- and three-particle unitarity
whereas the solutions of eqs. (3.7) and (1.8) obey the two-par-
ticle unitarity only on energy shell. Hence from the comparison
of solutions of eqs. (3.9) and (3.10a) the contribution of multi-
particle connected diagrams beingz neglected in the derivation of
(3.9) can be evaluated. Further, the advantage of the approach
based on eq. (2.12) as compared to the one based on (3.10a) con-
eists in the fact that the former allows the unambiguous field-
theoretical prescription for constructing a¥ -potential. More-~
over, within the framework of the former approach (2.6) defines
the fully off-shell oW~ -potential while in (1.8) the driving
term is defined only half-off-shell.

3.2. Bethe-Salpeter-Type Equations for Pion-Nucleon Scattering

The derivation of Bethe~-Salpeter-type equations for pion-
-nucleon scattering carried out recently in refs.11’23’25'26) is
based on the last cut lemma37), According to this method, in the
infinite sum of Feynman graphs the sums of n -particle irredu-

cible gréphs,'i.e. graphs which contain more than hn -particles-

in intermediate states are singled out. These sums define n -par-

ticle irreducible transition matrices Mé:) « The system of four-

(n)

~dimensional singular integral equations for M@d ig derived.

~In particular, according to ref.26), for the =z¥ -scattering mat-

rix M?ﬂWN) one obtains:

Mgy TN = Mg (W)« My, (W) Mg (7K (3.11)
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a)

(
M27 (77N)= M;;) (WN)+ MZZZ)(WN)deZr MQ(;,(””)} (3‘12)

where d~ and dr denote nucleon and 7T -meson propagators and
one-particle irreducible AN -scattering matrix M;é) and 7AN
vertex function M;P do not contain one-nucleon intermediate

states. Mg) and M%) do not contain two-particle intermediate

(U

states, etc. For M, the following equation is obtained:

M(2(|)(7w) - M:f)(W’V)* M,(;’(m()a'h.d,,Mzg')(W/()' (3.13)

A graphical representation of eqs. (3.11)-(3.13) is given in
fig. 7. Purther, in close analogy with the derivation of Low=type
equations (1.8) or (3.7a) the disconnected contribution from
multiparticle intermediate states is taken into account in M(” ’
whereas the contribution of connected amplitudes for transition
from the xw¥ state to 77X prN  , TEAAN arpK ..
states has been neglected. Then on the basis of the last cut lemma
one obtains:

. t2),,
Mn’(rN)_ MS) (mN )+ .Z b'_“)(l,N)c‘J:'c\szy]:)(J:N)-F

+ 5 Z U“)((,m)dmd d”y (22 (J,m)" (3.14)
m=6,p i¥)
Here 5:“(1,“/ denote the disconnected h ~particle irreducible

amplitudes:

(n) -4
3 GLN) = My G, M) d,

-1
s YN My N

o a y (3.15)
3IGELE) = My (3,6)d% 5 E7G,60 < My (K 6)dN; -

Using again the last cut lemma, for Mg)(wﬂ) one obtains:

(
My (iN) = 2 i) dy i, dy S PG (3.15)
- - - - -~ \ -
- £D.+
a) -
5. * Fig. 7. Graphical representa-
b) - - tion of the equation
T = + a) M2y (3.11). b) M(" G2,
. c) M (3.13).
¢l )
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P

where Ff") denote the disconnected r -particle irreducible
amplitudes for the trangition 7N > 77N

- (n) =
(h)( )= M’(;)(W WK)N')C"JT;B[(")(]) MaT (7, ,N)Cl""j: LJK:I?3,’ZJI,312, 3.17)

The graphical representation of eqs. (3.14)~(3.16) which define
the pion-nucleon potential Mé?(nw) is given in fig. 8. It is
easy to observe that under the crossing transformation (3.16)
transforms into the § =-channel term of eq. (3.12) with the 7¥

intermediate state (fig., 9):

( Z 026 dn, diydy i ) < W26k ) dy ly Mgy () G.18)
&3]

Hence, the potential of the Bethe-Salpeter equation, Mz;(ﬂN)
containg the nonllnear crossing term as well as the potential of
eqs. (2.12) or (3.9)=(3.10a). However, unlike (2.12), (3.9) and
(3.10a), eq. (3.12) is a covariant four-dimensional equation. Con-
sequently, in this equation the nucleon and antinucleon degrees
of freedom in ihtermediate states cannot be separated from each
other. Moreover in the Bethe-Salpeter equations congidered above
the nucleon pole term in M,,(nN) has been singled out (3.11).
The quasipotential equations obtained on the basis of the Bethe~
—Salpeter equation are similar in form to (3.12), except all the

integrals are taken over three-momentum space.

3
e b >
-
= - + -
e
(DE :)(D"'

Figo 8.
Graphical representation for the two-particle irreducible potential
M;’Z’(ﬂm ((3,14) and (3.16)).
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The advantage of the approach based on Low equation (1.8)
as compared to the one considered in this section consists in the
fact that the #N -potential in the former is built up via the
vertex functions with nucleons and antinucleons on mass shell.
Moreover, all intermediate state propagators in this approacn

are linear and contain on-mass-shell particles.

4. THE DYNAMICAL INPUT AND CALCULATIONS OF AN -SCATTERILG
' PHASE . SHIFTS

In this section the results of numerical calculations of P -
wave NN -gcattering phase shifts performed on the basis of equi-
valent linear equation (2.12) are presented. First we discuss the

parametrization of various meson~nucleon vertex functions needed
for the construction of effective pion-nucleon potential U(E) (2.6)

4.1, NN - Vertex
In the expression for § - and u -channel terms of the driv-
ing term V (1.9) the vertex functions <-§'5'|Ji(0)lﬁs> appear,
while in the expression for S - and U -channel terms the vertices
<ol\ji(oJ lBs,-ER Sg> are present. From the Lorentz-covariance and

isotopic invariance one obtains
<Ps'1j;(0)1ps> = ig ((p-pi) TF'sH5T; ups) ‘ (4.1a)
<ol ji(onﬁs,ﬁﬁsi,om) = ig, ((p+ PR ) TP, S35 T UBS) (4.10)
Por the function g,) in the region t«<o the parametrization

from ref.16) has been used:

) _4m2y -4
3ﬂ(t)=gw(o)[1+ %:LT—)] , t <0, (4.2a)
N

where p, 1s a cutoff and g,(0) is determined from the Gold-
berger-Treiman relation, g (0)=/2 79 3 g,(t) when t2 4m? is
a complex function. According to ref.15) the completeness condition

in the form {= %(%ln,iw(in,nl*|n,ouf><oui,nl) has been used in S -

20

and U -channel terms of the driving term V ) . Making use of this
trick one makes sure that in these terms Re(g"(ﬁ)g:' +,))

appears instead of the products g, (#)g, () . Then, following
ref.15) for further simplification of the problem the product of

two real functions, called ¢ () , 9, (40) Gny) is substi-
tuted for the expression Re (9,01, )97 () , and the following
parametrization for g}(%) similar to (4.2a) is chosen

- = t(+-4M2) 77" 2

gi- & [+ Hgr] L e (4.20)

Here g,f 19, (4M?)] and p, s8re adjustable parameters.

‘4 .2. Equal-Time Commutator

To calculate the explicit gxpression of the equal-time commu-
tator yﬂ "(1.6b), the 7/ -system interaction Lagrangian is to be
known. In the present work, a simple effective Lagrangian which
describes the interaction between '7Y,p,6’ megons and nucledns

(see, e.ge ref.27)) has been used for this purpose:
. = : : - -+ > - -
<y - Grnn VJS?JV*' Jern ¥ V6 +Jenn S99 - 397171({;,‘ [gx a’l‘?]) +(4.3)
- = ) R - -
* o V1 1R+ PG AT (AF AR
where 6, Eua and ¥  denote 6,p,m -meson and nucleon field

operators, respectively. We restrict ourselves to the tree appro-

ximation in calculating the equal-time commutator. In this appro-

ximation for z % ['JL,(O),GE';(O)] one obtains the following expres-
sion : . .
. -
2" [jr(0), 05001 = 2gg, 3i56(0)+ 20 €¢(j Gormd" §/ (@) - (4.4)

Note that the expression (4.4) can be obtained in the linear
6 -model with vector and axial-vector mesonsa'4o) in tree approxi-
mation, if A1 -meson field is omitted in the corresponding Lagran-

giun. However, in order to describe experimental. data the coupling
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constants must be scmewhat shifted from their theoretical values.
The matrix element of (4.4) in the tree approximation coincides
with the sum of 6 =~ and ¢ -exchange Feynman graphs (fig. 4). The
second term in (4.4) violates the hermiticity of Y . As it has
been demonstrated above, if one neglects the term Y’ (2.2a) which

’

in the case considered here equals to ‘.(Eﬁ'E/"')gpnn54“Lj<53"§>f(0),'f35>

then the hermitian ¥ -term can be written in the following way:
<ps,qil Yy lss,§¢> - 286"n§,~t.i<$‘s’|6(o)lﬁs)+ igwei«u(q"kq")q?s’lﬁff(o)lﬁ's» (4.5)

Below the calculations of P -wave phase shifts are carried out wit:
Y; (4.4) and the hermitian ¥ (4.5): With the use of the condi-
- .
tion a"f;,’=o (4.4) can be written in the following form:
R IR A I3 R . AT ~ . . OO e -
<ps,qi 1Y%ilps,qid>= 2361,“5“<ps 160)ps> + 190 .€ij R, <Ps lg’f(o)lps>+(4.68)
i€y 39"02‘2) <p’s’|§; (@1pS> 5
where
B (2E34+2E3- PP - (B+P))
Q(I)' priEp-p-p,-(p*p

(4.6b)
Q' = (- 265 ,0).

The first two terms in (4.6a) are included into Ay, whereas the

last term is included into Bga (see eq. (2.1a)). For 6NN and

pNN vertices the following parametrization is chosen:
~ oy 4
<Ps'I6@)IPs> = Gewn 1'5({)u(p'5)u(ps)m_t (4.7a)

- P -y ST 1 (4.7p)
<pS' B (OS> <~ Goun N ITFsIFT LY, (1+§,)- ‘J%P—]u(ps)w_—t’

where t-(P-p')z. and [5(t) and [p{t) are the phenomenological
form factors. The parémeters of these form factors are determined
by fitting experimental data for P —wave #X .~phase shifts. The
constant 9s~~ ig taken to be approximately equal to the 7¥¥
coupling constant due to the chiral symme try constraints. The cons-
tant 3p/v~ is determined with the use of the P -universality

condition and Kawarabayashi-Suzuki-Riazuddin-Fayazuddin relation
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m 8 the value 3.7 is
Goun = 4 ). For the constant va

taken which g.rs obtained from the analysis of nucleon electromag-

netic form factors.28). The constants g, and gp,,,, are expres-—

sed via the 6,p meson masses and decay widths (6 om and
lo~>2m
§ 2 '/
Jonr = omg (21 (6s2m /(3(mg - 4P (4.8)
7
Gorn = 2Mp (3m [psom /(mp° - Guipe )2,

For the p -meson wass and width the experimental values "p= 770
MeV and rp’2“=153 ¥eV are taken, whereas mg and Fgson . are
regarded as adjustable parameters and are determined from fitting

pion-nucleon scattering P -wave phase shifts.

4.3, The Crossing Term

The numerical treatment of the crossing term ({G,,{+ Yer
turns out to be very cumbersome in practice. The calculations car-
ried out in refs.16'29) nave demonstrated that the contribution
of the crossing-term to the pion-nucleon scattering P -wave ampli-
tude is dominated by the A -resonance contribution to the cros-
sing term, i.e. (}Gof*) = (§33f1°{;3 Yer . Preliminary calculations
of the crossing-term have motivated our choice for the initial
approximation i‘°’ in the iteration series (1.13)
2 2 -1
(0 glglph (1= o [ LT oyl (au9)

. M S Kkidix| g2Ux1)
X wu(ﬁ)w"(?) E2- En

R L M
Here 8(|k)=k’*}‘c" , iy

where Ep= 1.236 GeV is the resonance energy; [Py < P33l 18 the

DT -diy Fig. 9. Graphical representation
for the crossing transformation,

qi Q)
A - \
~ s~ - 7
< P \> = \U] ﬁf corresponding to (3.18), with
@] -iD, cr -~ qu-"*Q'P.
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20— /,,... Fig. 10. Input TN Pss phase shifts,

calculated according to (4.9). Solid
line corresponds to ﬁc;=9p and dashed
/ line to Me=1om,

3

PHASE SHIFT [deg)
38 &

P33

0 S0 100 150 200 250 300
P1ON LAB ENERGY [Mev )

0

projection operator on the Fﬁ3 channel; the separable approxima-
tion is used for the %3 ~partial-wave pion-nucleon scattering
amplitude; ¢, 1is en adjustable parameter. In the present work
P. 1is set equal to Sy =1.25 GeV. However, it should be pointed
out that the contribution of the crossing term does not change
significantly when the parameter p. 1s somewhat shifted from

the given value. This fact is illustrated in figs. 10 and 11. In

fig. 10 t i i i = =
g he comparison of the input amplitude for fc~9p and p =10u

with experiment is given (the experimental data are taken from

[3
3
2
1
0

Al 3

£ . 2 .
E 100 125 15 175 20 2.25 25 27530 100125 15 175 20 225 25 275 30
T
“ 10 T 3 .
8 P
< 8 - 13 Py
& 2
4

4 1

2

0 0

10 12515 175 20 275 25 2j75 30 10 12515 175 20 225 2.5 275 30
CENTER OF MASS ENERGY (Gev)

Fig. 11~
. Crossing contribution to P -wave driving term. P -wave phase
shifts are plotted for TN- scattering R -matrix tazen equal to

(fGof')y on energy shell.

24

re£.39)). In fig. 11 the crossing contribution to W’ on energy
shell is depicted for the same values of the parameter P, . As

can be easily observed, the crossing terms calculated for

Pes SP
The numerical calculations have demonstrated that the inclu-~

and Pc=(°F do not differ significantly.

sion of the crossing term in P33 channel leads to the 10-15%

enhancement of the Py; phase shift. The solution in the Py chan-
nel approximately equals the input amplitude on energy shell. Con-
sequently, one can expec£ that subsequent iterations of the crossing
term will give rise to small corrections to P —wave partial amp-

litudes which can be compensated by a slight change of adjustable

parameters.

4.4. The Results of Numerical Calculations

The Lippmann-Schwinger equation (2.12) after the partial-

-wave decomposition is reduced to the one-dimensional singular
integral equation.. The methods of numerical solution of such

equation are well kmown. In particular, in the present work the
matrix inversion method suggested in ref.31)\was used. To inves-
tigate the role of ¢ -meson exchange in 7N- interactions within
the approach presented above the P -wave 2w ~scattering phase
shifts have been calculated with the full expression for Y (4.4)
as well as without the P -meson exchange term, Moreover, the
P —wave phase shifts have been calculated with and wi%hout the
crossing term. The calculations of P -wave phase shifts with the
hermitian Qﬁ (4.5) have also been performed to evaluate the contri
bution from nonhermitian y’ (2.2a) to the effective pion-nucleon
potential. o

In fig 12 the P -wave 7N -phase shifts without the p -mesor
exchange contribution are depicted (a dashed line). For the most
meson-nucleon vertex functions a parametrization similar to the

one from ref.16) has been used; e.g. according to ref.16) the cut-
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Pig. 12,
ﬁN’-scattering P ~wave phase shifts with (solid line) and with-
out (dashed and dot-dashed lines) the P -meson exchange contri-
bution. The dashed line corresponds to the 6n¥¥%  vertex paranetri-

zation used in ref.16).

off mess y  in (4.2a) is set to be equal to 1.195 GeV. The 644
vertex function is taken to be Q(Q)z(%fqﬁggg? with fg=1.57
GeV, and the product 29 g. . is set equal to 0.95 § mi/M .
However, for a better description of experimental data we have
used the parameterization for the #¥¥ vertex function in the
region ¢ )4#?(4.2b), different from the one used in ref.15). Here
9r was set equal to 9.1, and H2=1.57 GeV, As one can observe
from fig. 12, the qualitative description of all partial-wave
phase shifts, except PH » 18 obtained. In our opinion, the chan-
ge of parametrization of vertex functions for describing the expe-
rimental data is necessary because, on the one hand, in ref.16)

the authors have restricted themselves to the Pade [1,1] appro~

ximant on euergy shell instead of summing up the Pade series for
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the Low equation (1.8), and on the other hand, with the different
treatment of the crossing term in ref.15) and in the present
work.

. The important role of the p -~meson exchange in describing
the experimentally observed change of sign of the PH phase shift
wags indicated in the early sixties, in ref.14). In refs.3’4) the

7 ~scattering phase shifts were calculated in the Cloudy Bag
Model, however, the nucleon recoil and crossing-symmetry in tae
X -scattering amplitude have not been taken into account. As dis-
cussed in ref.33), these effects may turn out to be essential for
understanding the pion-nucleon dynamics in R, and Pj3; channels,
In refs.34'35) the experimental data for low~energy pion-nucleon
scattering has been described on the basis of the dispersion app-
roach. In ref.32) 7N ~phase shifts were calculated on the basis
of quasipotential equations in the sepsrable peir interaction mo-
del, however, the crossing-symmetry has not been taken into con-
sideration. The copsideration of crossing-symmetry and nucleon
recoil haé been made in calculations of g) ~-phase shifts on the
basis of Low-type equations15'16’2o’29). In particular, in ref.16)
the contribution of inelastic channels has been phenomenologically
included into the driving term ih order to describe the experimen-
tal data for the P, phase shift. In ref.29) on the basis of a
direct numerical solution of the Low equation it has been demonst-
rated that the consideration of the p -weson exchange contribu-
tion in the driving term allows one to obtain the desirable beha-
viour of the P;y phase shift. A similar result is obtained in the
present work after the numerical solution of equivalent linear
equation (2,12).
In numerical calculations in the case when the ¢ -meson ex-

change term is present in the potential U(£), the 6¥¥ form factor

2 2
[glt)= Ps-Ms with Pe= 1 GeV. According

was taken to be 2
Mg - ¢
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6
to ref.3 ) the parameters characterizing the € -Wmeson were set
as follows: mg= 760 MeV, rﬁ,?,,:zoo MeV; for 6xv coupling the

2
value 36mv /4 =10 was taken; the dipole form factor

’uez _ va. 2
re({)= [;TTTTE* ] with He= 1359 GeV was used in the NN vertex;

other parameters were: Hy= 1195 Gev, Mr= 2.1 GeV, §W= 9.75.

A8 it can be easily observed from fig. 12 (a solid line), the des-
cription of all partial waves can be regarded satisfactory. It
should be pointed out that "small" partial waves H3 and R“ re-
veal strong dependence on adjustable parameters, so we have not
tried to fit these partial waves with high accuracy, Furthermore,
it turns out that if one neglects the f -meson exchange, and the
monopole form factor in the 6wn vertex is used, results obtained
after a slight readjustment of model parameters, are gimilar to
those found with the use of the. parametrization from ref.16) (a

dot~-dashed line).Note that the experimentally observed change of
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Pig. 13.
.The same as in fig. 12 with (solid line) and without (dashed line)
the crossing term. The dot-dashed line corresponds to the results

obtained with the hermitian Y ~-term (4.5).
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sign of the Py phase shift in the approach described in this pa-
per cannot be obtained for am arbitrary set of physically accepted
model parameters if the P ~meson exchange contribution is not

taken into account.

In fig. 13 the P -wave oIN -scattering phase shifts with
the f -meson exchange (a solid line), without the crossing~term
(a dashed line) and with the hermitian Y -term (4.5) (a dot-
~dashed line) are depicted. One can observe from fig. 13 that
though the crossing term and the nonhermitian part y’ (2.2a) are
important for the description of P -wave scattering, the quali-
tative behaviour of phase shifts does not alter when these contri~
butions are neglected. It should be pointed out that the effects
caused by either of these contributions may be fully compensated

by a slight readjustment of model parameters.,
5. CONCLUSION

In the present work, the Lippmann-Schwinger~type linear
integral equation (2.12) with the energy-dependent potential equi-
valent to the Low equation for =¥ -scattering (1.8) has been
suggested. The effective pion-nucleon potential which appears in
the equivalent Lippmann-Schwinger equation turns out to be a func-
tional of the aN -scattering + -matrix. The existence of this
nonlinear term in the potehtial stems from symmetry of the ¢ -
matrix with respect to the pion crossing. It is demonstrated that
nénlinearity of that kind dué to pion crossing is inbereﬁt of the

7N -scattering problem and arises in the formulations of the
latter within the framework of the multichannel scattering theory
or the Bethe-Salpeter (or quasipotential) approach. Howeier, for
the case of NN- scattering such nonlinear terms are not present.
It should be pointed out that eqs. (2.12) and (2.6) defipe fully-
-off-ghell effective 7N- potential which can be further

employed in calculations of pion-nucleus interactions.
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The mejor uncertainty arising in the construction of the effec-
tive pion-nucleon potential comes from arbitrariness in the choice
of the phenomenological parametrization for various meson-nucleon
form factors. From the structure of eqs. (1.8) and (2.12) it is
clear that these vertices depend only on three-momenta of external
particles. On the basis of current algebra and the dispersion app-
roach the coupling constants which appear in each vertex can be
evaluated. In our opinion, further progress in the investigation
of low-energy 7N -scattering within this approach is concerned
with the construction of the above-mentioned form factors in rea-
listic quark moﬂels.

The advantage of eq. (2.12) suggested in the present work as
compared to the Bethe-Salpeter equation consists in that in the
vertex functions used for construction of the potential U(£) all
nucleons are on mass shell, and all intermediate state propagators
in U(E) also contain the particles on mass shell. For this rea-
son, a considerable simplification of the problem may emerge when
the approach wnich explicitly takes into account the quark degrees
of freedom is used to construct the pion-nucleon-potential or
scattering 1 -matrix. In future we plan to'carry out the calcu-
lations of @) -scattering phase shifts on the basis of eq. (2.12;
suggested in the present paper, with the use of various meson-
-nucleon vertex functions, calculated in Quark Confinement lodel
38,39y, '
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APPENDIX A

The approach based on Low-type equations can be formulated

in such a form that the hermitian equal-time commutators will
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appear from the beginping. For this purpose we start with the
following asymptotic conditions for the pion field operator Q(r)

eand its canonical conjugate (x)

- ~in
&im <ol ;(x)p>= VE <alp > (x)ip> (a.1)
Ty>i00 )

i{m <d)iilx))5> vz <dlﬁ[w'(r)l¢>- (A.2)
> t00 )
Here ¢ and § are arbitrary states, Z~ is the renormaliza-

- Ln * in -~ ¥ L
tion constant, I*(x)= & dir(x) ; Tlx)< e g )+ Fr B

where ¢ "and Y% are the total and interaction Lagrangians of
the system, respectively. Note that in quantum field theory usually
instead of the asyuptotic condition (A.2), a similar condition
with é{zv gubstituted for # (%) is used. Due to this the opera-
tor Qg (x") (1.3a) appears in contraction rules. In the case con-
gidered here applying the contraction rule to the S -matrix sand-
wiched between 7¥ -gtates one obtains:

<out, p's, 195, Gt in>= <pls'l ag(in)Ipsgisin>+

" - 1y~ -
+iZ % (lm _ lim ) [dOxe TIPS 10, 00019 G 0) 195, G 0> = (4.3)
Xoto0 K- .

- 2 o x
= &+ Jdxe <B's’| Ty (x0UPs, G in> s

where
~ . 5% 3 Lq'z > . [._.,( (1) 4 .!4 djfelqll‘ af_{
Gy (o= 27 [P T - G001 = 0o o0 AT 200 (a4

[4

/ . h~
ooy 28 (e e & (@ TZ K VTei2 Vi [dme T (x) . (A5)
Oy (x=02 [d]e G ag'g.'lr)” / xe' g

Prom the definition of the operator Ssqn{rv it is easy to make

~ ~1t 3 A
sure that &/ (x°) and 5 (x9 obey canonical commutation
relations. Consequently, the third nonhermitian term in (1.10)
vanishes identically in this case. Further, on the basis of (A.3)
the Low equation for the matrix element <F37/qqdv)/P$54[¢2

can be derived. This equation will be gimilar in form to (1.8),
0 O¥r @ O¢r

P

except that Y (1.11) and J:‘,‘(r)‘J("(Z)”? g x) Ox° Af x
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will be substituted for Y¢ (1.6b) and /:(x) . It is ¢lear that

the matri ~ - . .
atrix elements <°{I‘/5¢'(0)/ﬂ> and <dlt/{.(o)//5> coincide on

energy shell,

APPENDIX B

In this Appendix the derivation of eq. (2.11) is considered.

For k=2 it reduces to the well-known identities.

{ { { 1 1
Ey~E B~ € gz-et E,~- &' (6\~E1)(E,- EY)
£ { £, {f £ (8.1)

+ _—
E-E* E,- B E,-E* £,-6' ~ (€-ET)(E,-£)
We assume that (2.11) is valid for some Nz K;>2 and consider

the case ¥= N,+1 . For the first time we take m<K)
Ng*i E;’:l E”’:’
0

2 (- e e ) ) (Ey.—enBieEro "t
n Enm BT -ED T (5-80) (e, £ T (e~ 68)
go Er'tn
+ o .
n=.(Euw,-EJ)(Eh-ei)f\(ei-e;)if(e;-e;)
= =N+t

(B.2)

Purther we transform (B.2) with the use of the following relation:

1 _ 1 [ 1 1 (3.3)
( Epei - Ex ) (E,- ET) CEpr= %) | Epey -E5 * E,- E* ] »

We obtain:

r
Eﬁ’c"l 1 No E,:n
(Ey.. - E*)[T(E-E D) *(E -E* 2 R m -
R A Mo B (En-8%) [0 (E-E5) [T (Epki)
[ 3] f=nn
_ 1 No ™ (3.4)

_ ZW .
(E/voﬂ E*),H (E,.—I:‘Ar[,u)if:ll (E[-E.,‘)&I-E (Ep-Ex)
+}

If in (B.4) (2.11) for K: N, is used, the first and third terms

cancel out, and we obtain the desired relation for N=Ny+1
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Equation (2.11) in the case when m= 4, can be derived

along similar lines, except that the relation:

(B.5)

En 1 [ Exper £ ]
- = +
(Enge)-Ep MER-E*)  (Eyu-E*) L Ey, -€r  E,- EF

is substituted, instead of (B.3) in (B.2) and again (2.11) is used
for N=KN, .
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