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1. Introduction

The success of the Skyrme model[l] in describing nucleons as quan-
tum states of the chiral soliton makes it natural to apply the model to
nuclei. In traditional physics nuclei are considered as bound states of
nucleons. The first attempt to describe nuclei within the Skyrme model
was the potential approach[2]. In such an approach one has to calculate
the potential of interaction between the skyrmions at all distances R.
Nucﬁei would then arise as bound states of skyrmions in this potential.
There are some difficulties in such way of constructing the nuclei. First
of all the distance R between skyrmions is determined absolutely arbi-
trary and the potential V(R) has some sense only for large R, where the
potential must be identical to the one-pion exchange potential. To obey
the last condition one usually uses the so-called Product Ansatz for chiral
field configurations and has the problem to obtain the intermediate-range
attraction in effective nucleon-nucleon potential. The last problem is in-
tensively discussed now, and is to be solved soon.

But this approach is not the only one to describe the nuclei-like states
and is unnatural for the Skyrme model. The Skyrme model gives us
straight way for constructing a system with an arbitrary baryon charge.
We have to look for solitons of classical fields with the corresponding
topological charge and then to quantize solitonic degrees of freedom to ob-
tain an object with nuclear quantum numbers. From the investigations of
the system with baryon number equal to 2,3 and 4 without vibrations|[3]-
[7] and including the breathing mode[8)-{9] one may conclude that the
intermediate attraction problem is to a great extent artificial or technical
one. It is seen from this fact that even the first variational approxima-
tions and more precise calculations lead to a high value of the binding
energy for a system with B = 2. We have to emphasize that the binding
energy of light nuclei in such an approach is bigger when we take into
account the monopole vibrations. Naturally, the distance parameter R
does not appear here in any way. In general we can assume that nucle-
ons must be born only out of nuclei or at their surface. Strictly speaking
nucleons do not exist in the interior of nuclei. Indeed, the skyrmion must
have a possibility to rotate freely in the space and isospace in order to
obtain nucleon quantum numbers. But it is not the case in nuclei be-
cause the interaction potential between the skyrmions depends on their
relative orientation in space and isospace. As a result, only nuclei as a
whole may have right nuclear quantum numbers. (See[10]).

Up to now there are some papers concerning calculations of nuclear
states in the Skyrme model. The most impressive results were obtained in
the calculations of minimal-energy solitons for configurations with topo-
logical charge two by numerical methods[4], [5]. Recently a variational
ansatz was proposed independently in[11], [12]. This ansatz obeys the
symmetry conditions formulated in[5], [6] and, being very simple, gives
the possibility to do one more step in analytical analysis of the problem
and to take vibrational modes, for example, the monopole one,into ac-
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count in a simple way. This analyses gives a natural explanation of the
origin of the ansatz from[3] and also gives some new solutions. Among
them we have solutions that we may interprete as compound nuclear
states including antibaryons and meson-like states composed of skyrmion-
antiskyrmion pairs. We have to note that our analysis is very similar to
the one in[13] in the part concerning to B = 2 states. But in[13] possible
contributions to the skyrmion-antiskyrmion pairs in the nuclear struc-
. ture, that take place for [ # 0 states, were not discussed. (In our case
number ! has in general the same sense as in[13] and will be introduced
later).

2. The Properties of Static Field Configurations

In view of the above consideration, it seems to be very important to
express such solutions in an analytical form. It is usefu.ly to investigate
tﬁem analytically step by step and to perform numerical calculations at
the end.

2.1 Generalized Ansatz for the Static Solutions

It is well known that historically the first stationary solution of the
Skyrme model in a sector with topological charge N was the hedgehog
configuration or the so-called Skyrme—é}itten solution

Usw(7) = cos(F(r)) + (7 - N)sin(F(r)). (1)

Here N determines a definite direction in the isotopic space, and hedge-

hog configuration is specified by the vector N = 7/r,and 7* are the Pauli
matrices. In (1) F(r) is the chiral angle describing the absolute value
of the pion field. The function F(r) obeys the following boundary con-
ditions F(0) = n -7, F(oo) = 0. These conditions ensure finiteness of
the energy for a soliton with a topological number n, which is equal to
a baryon number B. It was shown in{7] that the only configuration that
provides minimum energy of the soliton with n = 1 is that given by (1).
However, for other sectors such a form is not obligatory. For example,
in{3] the solutions defined by the "k¢” configuration:

N = {cos(k¢) - sin(8), sin(k¢) - sin(8), cos(8)}, (2)

(8, #) being the angles of vector 7'in the spherical coordinate system, have
been considered. In (2), k is an integer determining also the topological
charge. Some interesting properties of the states generated by these
solutions were described in [3], [14]. In the sector with baryon charge
B = 2, this form of the solution gives us low mass states in the range of
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about two nucleon masses. Quantization procedure generates rich spectra
of rotational bands{14].

In the present paper, we use a new form of the solution given by the
next vector[11],{12]

N = {cos(&(9)) - sin(T(8)), sin(2(4)) - sin(T(6)), cos(T(6))},  (3)

where ®(¢), T(f) are some arbitrary functions.

It will be shown that this ansatz is a generalization of the hedgehog
and "k¢”-configurations. In some sense the present ansatz gives an ex-
planation of the origin and approximate character of the last. As it will
be seen, (3) leads to a series of new solutions in baryon and topologically
trivial sectors. Some of these new states are classically stable.

2.2 Mass Functional and Solutions for Static Equations
Let us consider the Lagrangian density £ for the stationary solution:

F 1 2
L= E .1 T(LkLk) + 3967 . TT‘[Lk,L;] . (4)

Here L, = Ut8,U are the left currents. After some tedious algebra, (1),
(3), (4) lead to the expression

L =Ly + Ly, (5)

where

F? ny . [sin?T 2 ngl Sin?F
Lzz_?'{(.F) +[sin29.(q’) +(T)]' 2 } (6)
and
sin?F ( sin®T 2.sz'nzF sin?T

- _ ¥ Y QI 2 TI 2 FI 2 7
L4 2e2r2{sin20(Tq>) r2 +[sin20( )+ )]( ) }' (7)

In (6), (7) we use the symbol prime to denote the following derivatives

d dF
_._Q.T'=£-F'=—. (8)

'
=1 do ' dr

The variation of (5) with respect to ®(¢) gives us
®" =0, thatis ®(p) =k ¢+ Const. - (9)



We consider only solutions with a vanishing value of this constant. The
number k must be an integer in order to obtain a single-valued solution
U(7) in the whole 7-space.

Now we have the following expression for the mass of the soliton

M = Mz + Mg, (10)

0/ o/ Osznﬁ{ F')? +

»14
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3in28

sin Fszn 1 z(T )2}sm F (12)

whete y =7 -Fy/eandz = F,-e-r,
In order to minimize the functional M, the functions T'(6) and F(z)
have to obey the following equation

M0, My 13
§T — ' 6F 7 (13)
or more strictly
[zz + 2a3in2F] F"+2zF' + [a(F')2 -=— 2b3m F]sm(2F) =0, (14)
. 2 -
9. [A + kz.B.‘"n T] .T”_kz.A.ﬁ"(z_T)+
sin? sin?0

The coefficients a, b and A, B in (14), (15) are the following integrals:

x

P ]
= [[22 T, (T')?] sinf b, b= K? / Sin'L ryigin 949, (16)
0

) sin2f stn2f

sin F

A= 7.9an [ +(F')]d:: B = /

0

dz. (17)

From (10)-(12) and (16),(17) we conclude that the function 7T'(@) has to
be some integer factor of x for § = 0 and § = x. We consider only the
configurations with finite masses; that is why we have F(0) = n - 7 with
integer n. Without loss of generality we take F((co) = 0. It is not difficult

. to prove that the asymptotic behaviour of F is presented by

1 . vV1i+2a-1
F(z) — ey for z — 00, withp= — (18)
In the vicinity of the coordinate system origin
F(z) > x-n—a-2?, (19)

where a is some numerical factor.

It is clear that T'(6) has the following behaviour near the boundary
of the domain of its definition

T(0) — 6, for 8 = 0; T(O) = x-l—(x—0), for6 — = (20)
Here [ is an integer number.

Now all solutions U,y are classified by the set of integer numbers n, k

and I. The solutions of (14)-(15) are graphically represented in Figs.1 2
for some values of k and L.

2.3 Baryon Charge Distribution and the Soliton Structure
Now we consider more carefully the structure of solitons. For that pur-
pose let us calculate the baryon charge density

1
J()B(i) = 24 2 GOFVPTT(L L L ) (21)

The straightforward calculation gives

-1 3m2F dF sinT dT d®
JB = R eninli et
o (r9) o2 12 dr sinf df d¢ - (22)

Here we have used (1) and (3). The expression for the topological charge

density, (22), is the generalization of the one for "k¢” ansatz from[3] and
the Skyrme-Witten ansatz.
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Fig.3 Baryon charge distribution on the (x,z)-plane
for solutions characterized by number n,k,l

Equation (22) immediately results in the expression for the corre-
sponding topological charge

B = 5 [1 — cos(m - l)] _ (23)

One can see now that for even [ we have meson- like solitons. In Fig.3 the
baryon charge distributions are schematically presented in the (X, Z) -
plane for solitons characterized by the number k,n (F(0) = n-n, F(o0) =
0) and boundary conditions T(0) =0, T(x) =« -1, 1=2,3,4.

In Table 1 we symbolically present the structure of solitons, the total
baryon charge and the values o? the mean square radius for some number
of k and I. For example, we point out 2525 structure for k = 2, [ = 2
solution when the baryon charge distribution divides the whole space into
four axially symmetric regions. One unity of a positive baryon charge is

concentrated in two of them and one unity of a negative charge in two
others.

Table 1 Structure of states (n =1, k, l) and the mean
square radii of baryon charge distributions

k1 1 ) 3
B=1(S) | B=0(5-3) | B=1(5-35-9)
1 rf,:rf,:r: r:=r:: r::r2=—41
=14 r2=0 r? =228
B=2(25) |B=0(25_25)| B=1(25 25 —25)
2 r2=r2=65 2=rl=0 ri=rl=-87
r2 = 2.9 rf=0 r2 = 62
—3(3S) |B=0(35-35)|B=3(35-35_39)
3 |ri=rl=16.2 =r=0 r2=r2=-99
;=42 =0 r2 =114.3

The mean square radii demonstrate a very different form of the ob-
tained stationary configurations. Some of the mean square radii are nega-
tive. Evidently only the negative (antisoliton) baryon charge distribution
may lead to such values.

In Figs.4,5 we present our more detailed results for the baryon density
distribution in the (X, Z) plane and ”3-dimensioned picture” of the same
distribution for a dibaryon. It is easy to obtain from Fig.4 that the peak
in the baryon-number density is near p = /22 +y? ~ 1.5/F,e, z = 0.
The solution with k = 2, | = 1 has the toroidal structure, as was pointed
out in[5].

In Fi1g.6,7 one sees the contour plots for baryon density distribution
for S — S — S skyrmions that give us concrete knowledge about such a
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complicated object. Evidently this soliton has not the simple toroidal
structure. Only one antiskyrmion (with B = —1) has the toroidal struc-
ture and two others have not. One may conclude that B =0 and | = 4
solitons (see Fig.3) consists of one toroidal skyrmion, one toroidal an-
tiskyrmion and a skyrmion-antiskyrmion pair of the nontoroidal form
localized near z-axis. _

We have to note here that the quantum states of the § — S~ §
type (k = 1, | = 3) should experimentally appear as compound nuclear
states in the interactions of a stopped antiproton with a deuteron. So we
have unusual possibility to include antinucleons in the compound state
structure in the same manner as nucleons.

2.4 The Masses of Classical Solitons

When we discuss multiskyrmion configurations we search for and in-
vestigate not only classically stable configurations.(The decay in two or
more skyrmions is forbidden energetically). Nonstable configurations are
also in our attention because they may become stable after the quanti-
zation procedure.

The numbers presented in Table 2 correspond to our calculations in

the chiral symmetry limit (pion mass m, is taken to be zero). The
variational procedure with the chiral symmetry breaking term

F2 2
Lr= —48"3 Tr(1 - U), (24)

which takes into account nonvanishing pion mass, gives us a possibility
to compare our numerical results for some of the solutions with those
from [15]. For this aim we choose the constants F, = 108 MeV and
e = 4.84 which used in[15]. Our results for diskyrmion mass is 1670
MeV and the skyrmion mass from[15] obtained by the so-called "hat”-
method is 1660 MeV. Our results and those from[15] for more weight
multi-skyrmion are in the following correspondence: 3-skyrmion - 2580
MeV and 2530 MeV; 4-skyrmion - 3572 Mev and 3452 MeV; 5-skyrmion
- 4635 Mev and 4420 MeV. Some descrepances in the calculated mass
values of the multi-skyrmions give us a possibility to estimate the errors,
probably introduced l))' the variational ansatz. '{‘he errors are less than
5 percent for B < 5. ﬁere, we have to present the virial theorem that
allows us to estimate our numerical errors in the framework of the ansatz.
The following quantity

A=vy-{{A,—4}-a+B-b-C} (25)
must be zero. Here A,, A3, C are given by

17 i : L7
AIZZ-O/S‘lnsz A2=[(F’)2'81n2F dz’ C=—2-0/(Fl'z)2 dz . (26)
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?kor th? qu)a.ntity A we obtain A ~ 1 MeV for the most "difficult” case
—4, 1=3).

Table 2 The classical masses calculated in the present
aper with the generalized ansatz

k/1 i 2 3 4

1 | 11.605 | 26358 | 46.332 | 71.169
2 | 22.458 | 45.536 | 73.533 | 106.609
3 | 34.585 | 66.701 | 103.081 | 144.321
4 | 47.675 | 89.310 | 134.450

5 | 61.569 | 113.119

The calculated soliton masses for n = 1 and some values of k, I
are presented in Table 2 in the units of (wF,/e). So we extended the
soliton spectrum up to n - k multi-baryon configurations for odd 1. For
example, a three-baryon state corresponds to the k =3, n =1,1 =1
member of Table 2 with the binding energy of about 5.4 MeV perbaryon.
Moreover, we also have the spectrum meson-like (N-k/2 -baryon - n-k/2 -
antibaryon) configurations for even 1. (See, for example, the k = 2, n = 1,
l = 2 case that corresponds to a two-baryon - two-antibaryon meson-like
configuration with the mass about 3192 MeV). Some of the obtained
configurations are classically stable objects which are seen from Table 2
(they are marked by the boldface letters). The mass of such object is less
than the sum of the masses of their baryon components. The classical
"binding energy” of these states may easily be obtained by using Table
2 for ar 1tra.rf' values of F, and e.

From Table 2 one sees almost linear dependence of the classical masses
on the baryon charge. Such a dependence dramatically differs from M ~
B(B + 1) that may be obtained for the hedgehog ansatz{16].

3. Spectra of Quantum States
. The purpose of this part is to obtain the quantum mechanical effec-
tive Hamiltonian in the framework of the collective coordinate method.
We use the breathing and rotational degrees of freedom as collective co-
ordinates and calculate the masses and binding energies of the lowest
states in this method.

3.1 Effective Hamiltonian in Terms of Collective Variables
Let us describe the important steps necessary to obtain the effective

Hamiltonian. Now the chiral fields are considered to be time-dependent
and of the form:

U(r,t) = ezp{i‘r‘ - I'i(t)- N*(Rlzy) - F(ze"\)} , (27)

11



where R(t) and I(t) are the spatial and isospin rotation 3x3 matrices,
and A(t) is the time-dependent parameter of the dilatational vibrations.
Inserting (27) into the Lagrangian in which the time components Lg of
the currents now play their impotant role, we have

F? 3 1 2 .
L=-M + E-/Tr(LoLo)d r o+ @-/Tr[Lo,Lk] Pr (28)

Performing the canonical transformation and determining canonically
conjugate variables

oL . OL oL

= — = - |'=—, 29
p 8,\’ aw‘! S 89‘ ( )

where the angular velocities §; and w* for the rotation and isorotation
are given by

R;:lej = €ijiSlk, I.ik(I_l)kj = eTkk , (30)

1

we obtain the Hamiltonian for k # 1

-2 fr2 o2

. P T S

H = M)+ + + -
N+ 20y ¥ 2000 + 20500

1 1 k? 1 2o
E{QT(» t o Q(A)} I (3

Here the symbols p, T and S are interpreted now as follows: impulse
p corresponds to the vibrational operator, T and S are the isospin and
spin operators. The vibrational potential M(]) is given by the following
expression

M(A) = M, - ezp(—)) + My - exp(}). (32)
For the inertial values m(}), Qr(}), @s(A), @(A) we have :
_ 27|' ! . e_3A
) = g [EF{
[ ] ‘l' . 9
_ysin*F ,in’T nal . .
b I [y Y snta}etie, ()

0

sin?T

stn2l

x . 4
:czd:c/sinﬂdo{—e_)‘ ssz(kz cos*T + (T')*)+
- z
0

O
=R
Ko
I
B
o'\.a

~3x
+sin2F[——e 1 +e? ((F’)2 + [k?

sin?T sinF

5+ (T’)’]7)](1 + cos”T)} (34)

sin
x oo x . ’ 6_3A
Qs()) = Fo /zzd:c/smﬁdﬂ{ssz-[ YRR
) °
- in?T sin’F sin?T
M 4 k237 Nz 2 2 "2
F N (F) + W+ (T ) | (R 2 cos™ + (T))
_e_lsin‘F(kﬁin‘T 29 4 (T }
i ~inig cos®d + (T)%) ¢, (35)
9 % - - 4 4
QM) = = / z%dz / sinodo{—e-*”—"ﬁkzs’_" 4
F,e J J z? sin20
i 2F[e'3’\ -3 (( k,sinzT N2 SIEFNT L,
sin'F | = +e (( ¥+ 0 + (T%] 2 )]sm T}. (36)

3.2 Spectrum of Few-Baryon States
It shoud be noted that Sif — k- T¢; = 0. It is a constraint for

the wave function of the quantized Skyrmion. More strictly, the wave
function is given by

<LR|TK,SM,L >= ‘/(2T @5 +1)
’ ’ ’ - 8x2

as in(3], and its parity is given as P = (—1)L. If we neglect the vibrational
degrees of freedom, we obtain the expression for the mass spectrum for
B=2(k=2,1=1)

Dy (I) - D3y _ir(R) , (37)

e4_[5(s+1) T(T+1) 1

F
E =-2.470.55 4+ — 2
STI = { HEE Y 183.0 83.2T3]} (38)

(for an arbitrary value of F, and e).

Now we present some numerical results for the calculated soliton
states with B = 2 (see Table 3.) and lowest multibaryon states with
B = 3,4 (Table 4.). The calculations were performed in the harmonic
approximation with the values of the constants: e = 4.84 and F, = 108
MeV (Mpua = 931 MeV).

13



Table 3. The calculated energies for the B=2 (k=2, I=1)

soliton states with isospin 7', spin garit.y S P. and quantum
number n=0 corresponding to the vibrational mode

0 0 1 1 1

SF ot 1t ot 1t | 2

E —2M,,. (MeV) [-214 [-172 | -154 | -118 | -53

Table 4. The lowest multibaryon states (k= 2,3, { =1)

B 3 3 ) ) )
T 1/2 | 3/2 0 0 1
S 3/2 | 3/2 0 1 0
T 1/2 | 1/2 0 0 0
"E — BM,,., (MeV) | -268.0 | -210.5 | -324.0 | -312.7 | -294.5

One can see that all candidates to the light nuclear states have very
high binding energy values. But nuclear state-like configurations should
not be identified with nudlei since a lot of quantum corrections is not yet
taken into account.

The calculation shows that the classically nonstable state k = 4,1 =1
has the binding energy +88 MeV and becomes stable when the quantum
correction is taken into account (see Table 4). This may have a more
general sense. ) .

At the end of this section, we give some remarks of technical nature
about the numerical procedure. One can see that A = 0 is not the stable
point (minimum of the effective potential) when we take into account the
rotations of a skyrmion. So Anis is to be obtained before the solution
of the Schrédinger equation is performed. In our calculations of the
quantum spectra of masses the role of such a procedure was not essential
except for the nucleon case. The contributions of vibrational degrees of
freedom as well as rotational ones are seen from Table 5 where we give
our results for Apmin, rotational energy E.,. (this value includes classical
mass), and energy of the vibrational phonon hwyg, for F, = 108 MeV
and e = 4,84. The values A\,;, = 0 correspond to the cases when the
procedure of \-minimizing the effective potential has not been performed.

Table 5. Spectrum of Tribaryons

Amin T S T3 E,.ot (MCV) hw,,,-,,,.TMeV)
0.0 |1/23/21/2 2461

-.027 | 1/2|3/2|1/2 2460 127
0.0 |3/2|3/2]1/2 2526

-0.071 [ 3/2 | 3/2 | 1/2 2519 125
0.0 (5/2|1/2]1/2 2601

0.117 | 5/2 | 1/2 | 1/2 2582 123
0.0 |5/2|3/2]1/2 2633

-0.133 | 5/2 | 3/2 | 1/2 2607 122
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3.3 Few Remarks about the Existence of the Nucleon- Antin-
ucleon States

The I = 2 solutions correspond to B = 0 states. Some of these states,
being correctly quantized should be considered as nucleon-antinucleon
bound states. One can see that the ”classical” mass of these states is of
the order of two nucleon masses (k = 2). So one hopes that if these states
will be stable after inclusion of the quantum corrections, the binding
energy will be small compared with two nucleon masses. The same is
true for the other cases with | = 2.

We have calculated the T = S = 0 states taking into account only
the breathing mode. In accordance to our numerical results, the states
which were stable before quantization remain stable and after inclu-
sion of the breathing mode. The state k = 1, I = 2 that was unsta-
ble before quantization procedure (Mg (k= 1,l=2)-2-M,(k=1,l=1) =220.7
MeV) performed is yet unstable (56.7 MeV). The states with k = 2, 3, 4,
I = 2 are stable. Some of these last states may appear as compound
states in the reactions with stopped antinucleons.

4. Conclusions

The bound states with baryon number B = 2,3,4 with the toroidal
structure have been investigated in the framework of the very general as-
sumption about the form of the solution of the Skyrme model equations.
The meson-like states with baryon number B = 0 have been obtained.
They are not of the toroidal structure. More complicated baryon states
consisting of toroidal solitons and nontoroidal substructures have been
obtained as well. Some of these last states may appear as compound
states in the reactions with stopped antinucleons. Tie searches for such
states are very desirable to confirm the chiral soliton picture of strong
interacting system.

We have constructed the effective quantum Hamiltonian taking into
account the breathing mode and rotational degrees of freedom. We have
shown that all the candidates to the light nuclear states have very high
binding energy values. But nuclear state-like configurations should not
be identified with nuclei since a lot of quantum corrections is not yet
taken into account.

Acknowledgements. We thank profs. V.G. Kadyshevsky and V.B.
Belyaev for very useful discussions of our results.
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Mano6apuouHeie cucrems B SU(2)-Mopmenu CxHpMma

B pamxax oueHb ofmero npegnonoxkeHHA OTHOCHTENBHO GopMbl
peumeHH ypaBHeHHWH Mopesin CKHpMA HccllegOBaHbl KI1aCCHYeCKH
cTabunbHbie COJNMTOHb ¢ OaPHMOHHBIMH uMciiamd 1,2,3,4, Hexoro-
pble H3 S3THX COJIHTOHOB HMEKWT TOpPOHOAJIbBHYW CTPYKTYDY, ODyIHe
*e — Gonee cnoxHyw. [lonyuyeH sddexkTHUBHBIFI KBAHTOBOMEXaHHUYeC™
KHH raMunbTOHHAH H €ro CHneKTp B MeTode KOJUIeKTHBHBIX IIepe-
MeHHBIX. Bce nojiyyeHHble COCTOSHHMA C KBAHTOBbLIMH UMCJIAMH Jier-—
yaHuMx sagep HMET SHeprHio c¢cBA3H Oolible SKCNepHMeH—
TanbHO HabGmogaeMoii. HekoTopele H3 MONIyUyeHHbIX COCTOAHHMHM, coO—
gepxauHx aHTHOQPHOHBI KAk CBOHM CTPYKTYDHblE eOUHMIbl, MOTYT
NPOABUTBCA B peaKUHAX C OCTAHOBUBUIMMHCA aHTHOApHOHAMHM Kak
fAJepHbie KOMMNAayHO—COCTOAHHMSA.

Pa6oTa BuinonHeHa B JlaGoOpaTOpPHMH TeopeTHUYeCcKOH ¢u3uKHU
OUau.

TIpenpuuTt O6HeAMHEHHOr0 HHCTHTYTAa ANEPHBIX HcenenoB aHHii. Jly6ua 1989
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The classically stable solitons with baryon number I,
2,3,4 have been investigated in the framework of the very
general assumption about the form of the solutions for the
Skyrme model equations. Some of the solitons have the to-
roidal structure and some of them are more complicated.
The effective quantum-mechanical Hamiltonian and its spe-—
ctrum are obtained by using the collective variable me-~
thod. All the states with quantum numbers of light nuclei
have the binding energy greater than the experimental one.
Some of the calculated states containing antibaryons as
substructure units should appear in the experiments with
stopped antibaryons as compound nuclear states.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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