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1. Introduction

Recently very excited nuclei can be produced in heavy-ion
collisions and their properties can be studied experimentally as
functions of temperature. Experimental evidences have suggested
that a nuclear system is thermally equilibrated rapidly after
formation of a compound nucleus from deep-inelastic nuclear
collisions andheavy-ion fusion /1/. The large nuclear state
density equally populates individual highly-excited states.
Consecquently, average properties of the system are usuaily
measured. It is why the statistical extension of different
microscopic approaches can be appropriate to be applied to sfu—
dy collective states at finite temperature. The first step in
tbis extension is the finite temperature RPA (FT—RPA)/2*7/.

To describe the fragmentation of collective states one should
inelude the coupling to more complicated configurations. Thus,
the investigations of the damping of giant resonances (GR) in
hot nuclei have led to the extension of the Nuclear Field Theory
(NFT)/B/ to finite temperature based on the finite temperature
Matsubara formalism /9/, the second FT—RPA/10/ and the finite
temperature Quasiparticle-Phonon Kuclear Msdel (FT-QPNM)/11’12/.
The latter is an extension of the QPNM/13/ for cold even-even
spherical nuclei to finite temperature where the damping of

GR is understood as the fragmentation of thermal one-phonon
states due to the coupling to (2p-2h) . configurations.
The structures of thermal one-phonons are calculated in the
FT-RPA and the FT-QPNM Hamiltonian for even-even nuclei can

be expressed in terms of these FT-RPA operators. Thus, we have
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obtained in Refu.”/ 11112/ the get of basic FT-QPHN equations for : and Hc(Q corresponds to the couplings of quasiparticles snd
hot even-even spherical nuclei. The calculations performed in phonons
our approach as well as in the NFTI have shown that the damping H —;_ZZ 1_‘}1 (t){[Q + Q ]B (jj’) + hc }
of the giant dipole resonances (GDR) in hot even-even spherical ‘ Q Api 3y "}71' A"‘I e '(4)
| .

nuclei is weakly dependent on tempexzture.

; In Eqs.(2)-(4) &, are the quasiparticle energies . o(+
In odd A nuclei the fragmentation of single-quasiparticle ] 4 j

states is mainly governed in the QPRM by the coupling to the and O(jm are the creation and annihilation quasiparticle
"quasiparticle @ phonon" states/13/. ‘The properties of excited operators, respectively. The phonon operators Q+ . and
states in odd A nuclei at zero temperature have beexn studied Q"}‘i are defined as /13/ e
in detail in many works within the scope of the QPNM during + _ 4 Z h
the last decade /See /13/ and refs. therein/. The extension Ox}li h { (JJ) - ¢ A (J])}
of the QPNN to finite temperature for hot spherical odd-A O { + }+
nuclei is however absent so far. Api = QA[H. : 5)
The aim of the present effort is to make the first step The pair creation (annihiletion) A*) A and scattering B, B+

towards the generalization of the QPNM to finite temperature quasiparticle operators are

for describing hot spherical odd-A nuclei. We shall derive the

+
set of the FT-QPNI equations in hot spherical odd nuclei for A (JJ’) Z(Jmn m’ I o, <., = [o(‘f@ o(“f]
, J 3T ) I -a
the simplest case with configurations not more complicated than mm : )
“gquasiparticle ® phonon" ones. : /A\ (JJ) = Z Gmim’ 1apd O( O( = [0(. ® °‘~]
mm’ oA (1)
2. Model Hemiltonian. Thermal vacuum and statistical ensemble + o~
B (JJ)"“Z(Jme |A}4>o( A, = [ e &)
. " ; mm* ) J AIJ (8)
Consider the QPNM (PFT-QPNM) Hemiltonian in the form 3 + e
B Gin=e" B (),
Hsz+HQ+HQ H AR (9)
_ [ (1 where the time inversed notation (9~ -() (9 for an ar-
where Ho( describes the motion of independent quasiparticles bitrary operator @AH is uased.
Z The notation T = {n,p]} denotes neutron and pro-
N = .
Hd = E] 3m Jm (2) ten components. The change T > —-T correagponds to
i f the Hamiltonian
HQ stands for the independent ;\ihonon part o e nam Nes p . However, in further consideration we will omit T
H 4 X )+ X (¢2) O+ O in the formulae for simplicity.
=—-= E _ — i i
Q 4 Apire (y)u yh ]4/2 AR At zero temperuture the functions X and yh
T 3)

in Eq.(3) are calculated from the RPA equations. Their explicit
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expressions have bcen given in Refs./n/. At finite temperaturc

i Al
X}‘ and Y have the form defined from the FT-RPA
equations, which can be found in Refs./6’12/.
Al
The abbreviation I;j’ denoten /13/
pe My-12 ) g,
i Ji° 31
)
wherc fﬁ’ are the reduced matrix elements for single

particle operators generating excitations.

The coefficient 5j3 in Eq.(10) is a combination of the
- -
Bogolubov coefficients 4 , 5 . It reads _ij' =L§z{7_, - L; V. .

In fect, in the Hemiltonian (1) we have neglected the term
containing the combinations ~ BB of operators B from
Eqs.(8)~(9). At zero temperature the estimation performed in
Ref. /147 hus shown the negligibly small contribution of this
term to the one-phonon energies calculated in the RPA., At
finite temperature a part of this term leading to new poles ia
included to the deyinition of the FT-RPA phonons and therefore
renormalizes the thermal one-phonon energies,

At zero temperature in general the ground state of odd-

~nuclei is teken as the mixed quasiparticle @ phonon vacuum 10)

That means
= ]
|0> loy lo>Q . (1)
where [O) is the quasiparticle vacuum
&
o |10) =
Jml 2‘ 0 (12)
and 10> is the phonon vacuum
Q
Q loy=0. (18)
Wi o

At finite temperature a statistical ensembe of quasipar-
.
ticle and phonon excitations is obtained. The vacuum (1)

can no longer serve as a reference state to define the normal
. . T4
product. Instesd of it the thermal vacuum |O,p> with g="T

4

the dnversed temperature must be used. Its explicit form is
/15/

given in Ref

It has been shown in 15/ that the statistical ensemble
~
average of an operator C? can be expressed as the vacuum

expectation value

<(§> = <O,pl(§®TIO,ﬁ>, (14)

where ~

<@>
W

(W)
exp (—ﬁHeﬁ)/Tr [exp(—ﬁHe”)] (15)

is thc ensemble average of opsrator’ C9 "« Hereafter the

n

il

ensemblg average (15) is always understood at finite temperature.

3. Equations for finite temperature Green functions in hot

spherical odd nuclei.

As has been mentioned in Sec. 2, the phonon operators (5)
have quasiparticle (fermion) structure. The exact commutation
relations for operators (5) as well as between operators (5)
and quasiparticle operators have been given in many works de-
voted to the QPEM. Taking into accounf these commutators is
equivalent to the exact inclusion of the Pauli principle

(See, e.g. /16-18/ ). The effect of the Pauli principle has

been the subject of many papers within the framework of the

QPNM. It belongs to the higher order corrections in the

perturbative expansion of the theory. Therefore, in the present
work, for simplicity, we will neglect it supposing the quasi-

boson structure for phonons everywhere if any special note is
not made. Thus, we have approkimately 713/

(0.0 1 = 6,6 .65,

Apd Y A AN Cpp (18)
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[Q,*n:ox,;'i>] ~ 10 :'p'i'] =0, ()

Api»
which is the well-known quasiboson approximetion. With these
+ .
- Q ‘er we also have
p1’ Capi

]'“’O -[+ O.]zO (1)

2 dJm ? AL

wideal bosona" C&

[C%nz’ ()Api
and consequently

(8,00 0l =0+ [B09, Quil=0- o

3
The quasiparticle operators o%m and c%m satisfy the

usual anticommutation relaetions for fermions.

The commutation relation between the quasiparticle opera-
tor and the scattering quasiparticle operator B from Eqe.

(8), (9) is

Loty , B O] = -8 Zamim 20 g (20)
Wé now use Eqs.(16 )-(20) for deriving the se% of equations
for the finite temperature Green functions of interest.
We define the two-temporal Green functions at finite tem-
perature that represent:

a) the processes with one propagating unpaired (odd) quasipar-

ticle

G

IM; TM

J

-+

o+
(t-t) = =10t )< [l (2D, Spyy c21)2
= Kogu(t);d; ()Y . (24)

b) the transition between the unpaired quasiparticle and the
coupling of a\phonoﬁ with a quasiparticle
—=F vz . , + ,
t-t) =-16(t-tH) ot (t) (&), &, (D
GJM,AII,-J"M’( ( )<[ TM OAZI P oTM ]>
+
=« (D) . &, @&
< JZ4< C%ZI & '( » '

i (22)

¢) the quasiparticle “scattering" with “emitting" an interme-

diate rphonon

—+,+ . -+ +
t-t) = ~10(t-t) L o~ ’
(t-t) = -18( )<[+JM(t>Qm(f), o, (1
4_ + .
=<ot (00 (0 o (0. (23)
Heregfter, the fixed indices are denoted by capital Latin

T, AL, T°M

lctters JTAM,..

letters AZ7, ..

for quesiparticles, and by capital Greek
for phonons, while the corresponding small
letters (Jm,..., Api,. .. ) ere used in the sums.
The diegrammatic representation the processes (21)-(23)
is shown 1in Fig.1, that illustrates the Eq.(33) (see below),
Functions (21)=(23) include all the forward proéesses with
the contribution of quasiparticle and quasiparticle phonon
configurations corresponding to the Hamiltonian (1)-(4).
By applying tbe estandard thermodynamic Green function
method /197207 o note that due to the RPA (FI-RPA) solutions
the parts (2) and (3) of the Hamiltonjan (1) can be unified

in the harmonic part

Fiﬁ Fix‘k fﬁQ = 2: w (}+ ()

api AL Tapd Tapd (24)

i

This form is wmore convenient for calculating the commutators

between the Hamiltonian (1) and the phonon operators (5) under
the approxiwation (16)~(20).

/’L\ :
T J r T i 7
a) b)

Fig. 1 Grephs summarized in Eq.(33)
- N V.-
a) The sum 3 T5(7iM) 3 * %
235 gm0
b) The sum 3 TY(Tir) N5t

Alj Ej wAi -n



Dy cloging the hierarchy with the Green functions (21)-(23),
719420/

we use the well-known decoupling procedure
<<ol NOLS (t)o(,,(t) o( A (D = .

= 8.6 <% TM J'M><<O(’/(t) L =66 n G_,+ (-t

3T mMm 3 mM T 7
r‘——“1
(BQHMa(ﬂarxw»z (25)

KL (f)d »=6,6.6,7 CR

MUz AI jm,Ime ]

=6 ¢ Q0

ATHE 8,z Yz

where

-1
[exp(pE)) +1] (26)

-1
Lew (pug)-41] (27)
are respectively the quasiparticle and phonon occupation

nwavers.

After a rather lengthy but straightforward algebra, we
outain the set of equations for the two teaporal Green functions
(21)-(23). Taking their Fourier images we ovotain for then the

get of equations

e —+t ey
(E B Q)G J’M’ 2[\%1 %,r <JMJm'AI-L>[G m,Aui; J’M’(q N GJI) Api; Tm’ ( l)]
= zi,‘;‘s 5MM' (28)
-~ M, -
(Ef“fu*q)@mﬂﬂﬂw'(q)_23‘%1—'”0/””',/1"}( " G"‘ 7”""(2),_9; ©

T s AE > (0 + ) G =0
L E-w - Q)GTMAZ[J,M,(q) 21% T IMIRINE S ( )Jm a2
(30)
-t -,
Expressing & and (& from Lqc.(29) and (30) of
this set through G and inserting them into Eq.(28), we ob-

tain one eguation with one unknown function

[(Fif’l)‘z rz(Jm)[ L T} L0t Vg ]]G_

44
™, J'M’(q 23 -7-7'6M’ ’

A3 Ej+wn—rz ej_w;\i-rl
(31)
where we use the notation /13/
[(in) = 22242 X
B 27 +4
(32)

We note that the Clebsh-Gordon coefficients have been suppressed
due to their syumetry .properties to give 1_'2 in the sum

in Eq.(31). In the howogeneous case ( S M and 77 M are
arbitrary) we obtain from Eq.(31) the secular equation for fin-

ding the energy Q in hot spherical odd nuclei. It reads

€ -7 —ZT(.TJM)[ n+9"1+ Al

E+w—q Ej—w.—rz

=0.
(33)

oA AL
It can easily be seen from Eq.(33) that in the case as
T-0 (nj->o, \Z\i - 0) Eq.(33) transforms completely into
the well-known QPNM secular equation for spherical odd nuclei
with the effect of Pauli principle omit*f;ed/I:3 ’21'/. The second
term in the sum in Eq.(33) containing the denominator
-1
~ E - L~
(J i n)

which take place only at finite tempsrature. The appearance

is stimulated by the processes (23)

of this term produces the new poles ( Ej - wAi ) at finite

temperature which can be located near zero. The questicn is
what contribution these new poles gove to the total strength
distribution. As we will see in Sect. 7, the results in a
schematic model can however shed light on this problem.

We notice that if we have in mind the fermion structure
of phonon onerators, we must use instead of (16) and (19) the

exact commutation relations. In this case, we can include the



Pauli principle between "quasiparticle @ phonon" componcnts,
as has done in Ref. /117 within the QPNM framework. Thus, in
the so—called diagonal in of approximation of taking

account the Pauli-pronciple between quasipakticle ® phonon"
configurations we would have in Egs. (31) and (33) I‘C]Ull)[1'+
;,f(jjli)] instead of I (J'Jll) . The denominators are

replaced by [Ej+u3\i+R(.7iAi) - rl] and [ ej-w,\i_ R(Jj)i) - q] s
respestively. The factor éZYbBAi)::._ 4 when the Pauli prin-
ciple is violated maximally and such “quaﬁgarticle @ phonon"
components are excluded automatically from the sum over (JjiXi).
The shift Iz(bﬁkﬂ of the poles appears due to the Pauli prin-
ciple. The explicit expressions for the factor _ A and the
shift R are given Refs./13’17/ and we do not repeat

them here

4, One -to-—one corresnondence to the conception of excitatlon

operators, Disprammatic reprasentation

The QPN uses the conception of multicomponent wave functions
obtained by acting the defined operator of excitatipn on the

corresponding pround state wave function. In even-cven nuclei,
this ground atate has been taken as the phonon vacuum ICﬁb

(13). In odd nuclei, it is the phonon vacuum of the.even-even corc
which serves the wave function for the ground atate /13/. As
has been shown in Ref./12/. in the FI-QPMM the fhermal phonon
vacuum lClP)b can serve as tbe thermal ground state in
hot spherical even=~even nuclei. The one-~to-one correspondence
between the Green functions obtained in that case and the pho-
non components of\the FT-QPNM excitation operator in hot spheri-
cal even-even nuclei has been established in Ref./11/. In the
present case of hot odd spherical nuclei, an analogous corres-
pondence can also be pointed out.

Thus, if we define the wave functions for e¢xcited states

above the thermal vacuum ‘CZP%S a

10

Y, = Q) lop

(34)

where

Q= C to, +Z (D wlde Q7] ~Ealkield] )

TMY Iv J”’ Aij

+
0 =0
Q! 13 Q<O‘P]Q7'My (35)
is the excitalion operator for hot spherical odd nuclei, then
the one-to-one correspondence between the Green functions

(21)-(23) and the coefficients C,D,F in Eq.(35) is

-
- ———— -

;v Ty

-, X
G

3AL; T G0, (36)
G-+’+ - AL

iy v (;&]; @).

Due to Eqs. (28)-(31) the Green functions (21)-(23) do not
depend upon the % -prcjection M.
At zero temperature the Green function G—+TP(23), and
consequently the coefficient f? » vanish. One then obtains
from Eqs. (34) and (35) the usual definition for the wave func-
tion of excited states with components not more complicated than
[6"e Q']  in spherical odd nuclei of the QPNM {T=0) 113/

The orthonormalized condition for the wave functions (34)

W (M) W, (m), .

leads to the following equation for the coefficients C 1) (ﬁd

and IT (]V)

C {1 n+Z[D (Jv)] (4-n) 1+, )+Z[F KON (-n)y, J=1
(38)

It is clear that as T—>O one obtains from Eq.(38) the well

knovn orthonormalized condition for the coefficients Céy and

A1
I% (7v) in cold odd spherical nuclei.

11



|

The wave functions for excited states at T =0 can be obta-
ined from Eq.(34) by putting Izli(JD):z O . In the case of
including the Pauli principle between "quasiparticle & phonon"
components in the diagonal in ;Z approximation, we have ins-

tead of Eq.(38) the condition

1
M 2
H(F a1} =1, O
713,17/

2 i
Gl R ZOnll (D] 5) - nptery) +

noich transforms in the limit T - O into

C {1+Z D@ 1+ Lol =1 .
T A (40)

Let us denote a quasiparticle by a direct line and a phonon

by a wavy line. The arrows on these lines indicate the processes

of creation or annihilatibn of quaziparticle and phonon (quasi-

hole and phonon-hole). The time always flows from left to right.
The point stands for the vertex I (JjAi) (32).

These diagrammatic elements allows us to dapict the
graphé gummarized in Eq.(33) as in Fig. 1.

In Pig.1 the part b) appears only at finite temperature. The

graphs including the Pauli principle between “quasiparticlegphonon

componenta in the diagonal in ;f approximation are presented

in Fig.2. .
It is clear from these figures that there is a difference from

hot even-even spherical nuclei, where the phonon scattering
effect appearing at finite temperature is in a higher order

in the perturbation expansion as compared to the main processes
with creatiné (ennihilating) two intermediamte phonons. In fact,
in hot odd epherical nuclei the graphs from Figs. 1b and 2b
are in the same order with the ones from Figs. 1a and 2a.

Therefore one can expect a more noticeable contribution of the

12

quasiparticle~phonon scattering at finite temperature in hot

odd spherical nuclei,

A 5 i '
T :: | :: T T Ef I i: ks
J ai . 7 A

2) b)

Pig. 2 Grsphs including the Pauli principle between

“"quasiparticle ® phonon" components

Z(Tiaid (1= n: +9,.

a) The sum Zrz(jin) [4+<Z(73 1)](1 ny+ ,\1)
Aij g tw; + R(Jjgi) -

b) The sum . ]_"2(33,\1) [i+:2f(7'in)] ( n; + vz\i)

Mj § - w; = R@n) -9

5. Formulae for the damping, spectral intensity and the

gtrength functions in hot odd spherical nuclei.

Formulae for the damping and the spectral intensity cen

be introduced by analogy with the system describing the inter-

action of electrons with the lattice in mettetls/I9 <0 '.22'/.
Thus, from Eq,(33) we obtain
1-n.+ V.. ) n. +y
2 .
La)=22T (lei)[ R e . ]
Nj (Ej+c3\i—r))+ﬂ/4 (&~ 0)"+ &4

(41)
for the damping of the elementary excitations in the system
of interacting quasiparticles and phonons, and

2.0 3
(0 exp(pn)+1)
2 2
E-n- +
=M )] 4 Y

J) =

J (42)

|

13



with the mass operator

' i-n.+V. n +v.
M (E)=E T i)y S ]
J Xij eE+w —-E e-w.—-E
3 Al 3 Al

(43)

for the spectral intensity.

Using %Eqs. (41)-(43) we derive the sirength functions desc-

ribing the fragmentation of single-quasiparticle gtates at fini-

te temperature as (See, e.g. /13/).
A
Crpy - L 2L+ g ()] |
J n 2 A 2
Le,-n-y@l+ 2 [+ @I (44)
713/

where in difference with the zero tewperature cesc in

we have

N T (Ej+wxi—q)(4—nj+v,\i) +E;'-w4\i—q)(nj+vr\i)
L —}Iﬁl" o] (ro )t + 874 (Ew -+ A4 ]

4-Nn; + ¥. rlJ + V.
= er" i b A S /\::
w Ej (JM)[(EJ"“"A{Q)Q”/; (&;-w ) +A74] :

The strength functions for the fraguentation of "quasiparticle @

/13/

phonon" states are defined as

D?Q_):ﬁi[CIv]D;i(Jv)]z [(q_?ﬁh Az/l']"i

(45)
for the process (22) depicted in Fig. 12, and
,,,2; _ A\ Al 2 _ 2 2, 1-4
]:' (;Z) = ZTJ—LZ):[CJVFJ' (fv)] [(Q r?jv)"'A/[*] )

for the process (23) depicted in Fig. 1b.
The functions in the r.h.s. of Eqs. (45) and (46) have

the form

14

(DY = P ey e s 1,
(47)

Mt 2 2 ¥
[F @] =T (ijl)(”j+‘ii)/(55' @) (48)

2
The function C] at the solution points of Eq.(33) is

»y
713,23/

2 -1

C]y =- [a'?(rl)/t!r)] ) ] ’
?_ZDJ

where JF(y)  ie the l.h.s. of Eq.(33) .

defined as

(49)

We can also define the total strength function describing the

fragmentation in the “quasiparticle @ phonon" gpace as

2 A { pi e M 2 2
= = + _ ;
D) ur,“/—;' Cfv[DJ.(Jv) ]:‘; (7»)“ [y r)]y)+A/4] (50)
It is easily seen that in the limit T — O all the Egs.
(44 )-(49) transform completely into the usuval formulae for
strength functions in cold spherical odd nuclei obtained earlier

within the QPNM frawmework /See, e.g., Ref./13//.

6. Schematic model

In general, to study the fragmentation of single-particle
or "quasiparticle ® phonon" states at finite temperature one
has to solve Eq.{33) for realistic hot spherical odd nuclei.
This can be done by modifying the computational procedure rea-
lized for cold nuclei in the program PHOQU?Q%{ithin the QPNH
framework. In thie paper however we do not attempt to solve this
task. In order to study the qualitative effects of the quasipar-
ticle-phonon scattering in hot o0dd nuclei and of the phonon

scattering in hot even-even ones/11/ we employ here an over-

simplified schematic wodel. Namely, we consider the excitation

operator (see Eq.{35))

15



!

+ -+ + + + O~
= X
Q = Cld" + DeQ]+Fl«eQl}
consisting of one quasiparticle df with energy € and

+
one phonon (} with energy w for the hot odd sygten,

Analogously, for the hot even-even system we take the cxcitation

operator formed by two phonons with energies u% and u% )

respectively
Q = R OI'* P[O:QDQ;] + S[QI@Q]- (52)

Acting (54) and (52) on the thermal vacuum [C{p:%) we ob=

+

even-even

tain the excitation in hot odd and even-even systems, respectivel;

¥For simplicity, we also assume the interaction vertices to be

independent of states and temperature. Each vertex therefore can

be characterized by an interaction parameter I’ for the odd

system and g for the even~even one. In this way we can give

an upper evaluation for the phonon scattering effect at finite
temperature in sn even-even system because in fact the vertices

L@’Z due to this effect are much smaller than l]l /See
Ref./11//. The graphs corresponding to this schematic model
are depictéa in F{g. 3a and 3b for the even-even and odd
systems, respectively. In this figure wegve also the associ-
ated propagators and mass operator.

The sccular equation in the given schematic wmodel takes

the form

(53)

(54)

for the hot even-even system, and

E=¢ ;E=w,¥=n,M=v,;G=T (55

J

for the hot odd systicm.

w+»~<:>-+»—&‘v-

s e

! @, +e - Wy -0
a)
£~ o prdoney RNty
E+w—n E~w-n
b)

Fig. 3 Graphs corresponding to the schematic model for
a) hot even-even system

t) hot odd system.

In Eqs. (53)~(55) and in Pig. 3 the occupation numbers are

n = [‘exp(}a&)a—i]'i
- 5
v= [exp (pw) —117" (58)
-1
11@: [exp (pwiw)—i] )
At T=0 (without scattering effect) Eq.(53) transforms into
v 2
Ea -n - S I =0 )
E,+E, -n (57)
which allows the solution
@ P
0) == E =+ +
7,0 = 3[28,+F, = (B} + 46") ], o

In Eq, (58) the solution Q:&)(O)E [2E1+ E,- (E:+461)1/2]/2-

is caused by the one-phonon (or single quasiparticle)component

17



whereas the second rzz(e)(o) solution is due to the two-
phonon {(or “quasiparticle @ phonon") term in the wave function
of type (51)-(52).

When the interaction is switched off, we obtain

(0) ‘ 0)
,0= E, y ,©@=E+E,, (59)

Therefore, we have the well-known inequelities for the repulsicn

of the energy levels under the influence of the interaction G:

@ (0) ©) @
@< (@ <n, (0 <N, 0. (60)
At finite temperature (T # 0) the solutions of Eq.(53)

are defined by Cardanc’s formulae

@) ) . |
Qi (T)=A+B+E, ; féj(T):—%(A+B):l:1-§—(A‘B) +E,, (e1)

where
A= [4G'E, tank (4pE) +/T 17

B = [$GE, tanh (4pE) ~/Q ]1/ ’

= -2 [ +3E,Gleth (4 BE) + Geth (L E,)] -
62)
- G"E:[ % cz‘/zz(—f,:pEz) - % tarz/zz(—;—pEi)] ' (e2
For (< O all the three solutions (61) are real. If the

interaction is absent at T% O we have

© © @ '
0 (D=E-E, <0 (1)=E{q (T)= E+E,.

l

(63)

N

Consequently, the inequalities analogous to (60) take

the form

) . (" .0
0, <M< <M TDD. oy

18

Ac we can see by comparing the cases with T=0 and TH#0 ,
at finite tempereture an additional solutien R (T)

appears which tokes the value Q:O)(T)E E,-E, when the inter-
action is absent and is shifted down with switching on the inter-
aciion. The appearance of this solution is due to the scattering

process at finite temperature.

7. Numericel results

Tel. 0dd system

The energies in thé hot odd system calculated from Eqgs.
(53) and (55) for five sets of values (EL:‘ £, E2,= w)

with different velues of the interaction parameter T
arc digplaycd in Pig. 4 ac functions ovf temperature.

Prom Tig. 4 it is clear that energy QG;)(T) converges
to the velue QEO)(T) = g (P)of the noninteracting systenm
with increasing T. Energy Qz D in the set I(w= 10
MeV, € = 3 MeV) at first decreases with T increasing up to
4 eV, then increases with T > 4 MeV. In the other set
( E1= £, Ez = w ) energy q(r)(T) in general raises
with increasing T . Energy r);r)(']‘) due to the quasi-
particle-phonon scattering at T+ O decreases with incre-

asing T . The solutions obtained in the aet Y(£= 10 MeV,

w= 3 MeV) turn out to be very sermsitive to the variation

of the interaction parameter [ . In the set [¥( e£= 7 MeV,

w= 6MeV), for example, energy Q:(T) goes in  the
negative region at L = 4 MeV while I° = 4.0 MeV and at
T ~ 5 keVwhile ' = 3.2 MeV.

The strength functions C;(Q)' D;(Q) and ‘P;z(rz) ,
calculated by Eqe. (44), (45) ard (46) are shown in PFigs. 5 and
6, while the total strength functions 2;02) ( 50)

are dispaled in Fig. 7. Prom these figures, one can see that

19



Fig. 4 inergies of the hot odd system in the schematic
model calculated from Eqs. (53) and (55) for five sets

(&, w)

I: €= 3 MeV, w=10 MeV
II: E= 6MeV, w= 7 MeV
III: €= w = 65 MeV
IV: £ = FMeV, w=eMev
V: e = 10OMeV, w = 3 MeV.

The full curves denote the results obtained with T'= O ;
the dot-dashed curves are the results calculated with T =2 MeV;
the dotted curves siand for the results of calculations with

T=32MeV and the dsshed curves display the results when
T'=4.0 MeV.
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S~
— T
g
we
03} ¥

2
Fig.5 Strength functions CJ_ (n)  celculated at
T=0,4,3 3and 6 MeV for sets I,IV,V from the hot odd

system of the schematic wodel in Fig. 4.
The full, dashed, dotted and dot-dashed curves denote

the results obtained at T= 4,3, 6 and 2 MeV, res-

pectively. The thick full curves correspond to
the results at T=0 . T'= 3.2 MeV.

the strength functions C; > , D;(Q) Wand F;(Q)

change not much at Té 4 - 5 MeV for the level Q;PJ(T)

arisen by the quasiparticle-phonon scattering in the case when
this level is localized near zero. In this case, the strength
functions F;(fz) corresponding to the quasiparticle-
phonon scattering at T# O , influence weakly the total
strength functions 2; (Q) for T4 -5 MeV, althrough
the amplitudes of F;_ (" increase remarkably with L .
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Fig.? The strength functions calculated

at T =04, 3 and 6 MeV (See Fig.5).
In the set ¥ ( £ = 10 MeV, w = 3 MeV), where the
value T = 3.2 Mev i_s quite strong, the peaks corresponding
T 2
to Q( )(T) and Q;T')(T) in the strength function CJ(Q)

ere fused in a single sizeable peak localized in B MeV at

low temperatures (Fig.5). However, as | increases, the level
(oY) Y
Qi (T) 1is pulsed up while rja( (T) 1is shifted down

(See fig. 4, the set ¥ ). Consequently, the broad peak at
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8 MeV splits into two peeke localized at f?d(I')(T) and Q;P)(T)
going eway from each other (Fig.5). We also see that the remar-
kable chenge with T is observed only for the high-lying
quasiparticle levels. In the set 1T (e= 3 MeV, w= 10 MeV)
the quasiparticle level £ = 3 leV is localized in the low-
energy region. In this case, both the strength fﬁnctinns

2 2
CJ_(Q) and DJ,(Q) change weakly with varying the

temperature. Por the sets ¥ and ¥ , where the quasiparticlc
energies are large and e > w y, the strength functions
2 2 2
nd d d st 1
Cj(rz) N Dj(l?) a 2J(Q) epend strongly

upon temperature. The amplitudes of their peaks incrcase noti-
ceably with increasing T up to 6 MeV; In general, with
the sppearance of the quasiparticle-phonon scettering in hot

odd system, the single-quasiparticle and "quasiparticle @
phonon" sirength functions can change much with T for the

high-lying quasiparticle levels ( £ > (,U) .

7.2. Even-even systei

In & hot even-even system one has to solve Eq. (53)

having in mind Eq.(54). The solutions (61) are displayed in Fig.

8 for five sets of energies ( Wy, w, ). The calculaticns
have been performed with the interaction parameters g o

= 1.2, 2.0 and 2.8 MeV, In the even-even system the intensity

the effeet obtained with g = 2.8 MeV is similar to the
° A

one in the odd system with the interaction parameter r

= 3,2 eV, This is why we have chosen the smaller values

for g in the cven-even system,

Lociking at Fig. 8, one can see that in contrast
with the 0dd system, where the single-particle cnergy rz
1

increases with T y in the even-even system the one-
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phonon enerqu_dcc‘rcasses with increasing T + The

phonon scattering at finite temperature leads to the appea-

rance of the additional level rla in the spectrun,
obtained in the set ¥ (wi = 10 MeV, w,= 3 MeV)
In sets I, I and r this level is negative.
In set T as w, is equal to  w, ’

the difference in Eq. (33) vanishes and such levels do not

appear{ ¥,~¥, = 0).

In even-even nuclei, the damping of giant resonances is
caused by the fragmentation of one-phonon states under the
influence of the couplinge to (2p—2h) configurations. Fragmen-
tation of that type is described by the strength
function of one-phonon component. In the given schematic model
this strength function has the form 'similar to C;_(Q)
for the odd system where however one has to change n to -V

2
The strength functions of this king calculated for sets 1T , IV

v to Y, € tow,,w tow, and T' to g following Eq. (54).

and Y from Fig, 8 with the value g ‘equal to I.2 MeV
are displayed in Fig, 9 at T =0,I,3 andéMeVThe noticeable
change with temperature in these strength functions is observed

only in set Y with the high~lying one-phonon state w, = 10 MeV

for sufficiently high values of T ~ 6 MeV . The value
g =1,2 MeV is large enough for the two-phonon component
in this set Y . Moreover, the phonon scattering leada to

the appearance of the additional level Qgg)(T) associated with
the peak in the region ~ 6— % MeV, whose amplitude rises up
with increasing T .

However as qompared to the hot odd system, the phonon
gscattering effect in the hot even-even system is much weaker.

(Compare Figs. 5 and 9 for set v J.
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Pig. 8 Energies of the hot even-even system in the

scheunatic model calculated from Eqs. (53) and (54)

for five sets ( W, , w, ):
1: w, = 3 Mev, w, = 10 MeV
II: w, = 6 Mev, w, = ¥ MeV
III: W= w, = 65MeV
1v: w,= ¥FMeV , w,= 6 MeV
Ve w, = 40 MeV |, w, = 3 MeV,

AN
The full curves denote the

results obtained with g=0 ;
the dot-dashed curves stand for the results of calculations

with ¢ =42 MeV and the dashed curves display the

results with @9 = 2.8 MeV,
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()" (Mev™)

¥ .2
CJ
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Fig. 9 Strength functious of the type C;(fz) for the
one-phonon component in the hot even-even system of
the schematic model calculated with ¢ =1.2 MeV
at T=0,1,3 and 6 MeV for sets I,IV and V

from Fig. 8.. The notation is as in Pig.5.

In the calculation performed above we have used the value
U2=W2~='= szor the hot even-even system. In this way, we have
intensificd the phonon scatteriqg effect. If we take into
account the fact that W'« U” , as it takes place in rea-
listic even-even nuclei (See,’ Ref./“/), it is not difficult
to see that the phonon scattering effect will be wuch weaker.

It is noteworthy also that we have also used the value
for the interaction parameter T equal to 3.2 MeV for the
hot odd system and g equal to 1.2 MeV for the even-even one,

These velues are in the same order with the single-quasiparticle
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or one-phonon energies. In practice, the vertices 112 and l]z
are much weaker than the single-quasiparticle and one~phonon
energies, respectively. Therefore, the scattering effects at
finite temperature are expected to be much weaker as compared

to the “upper limit*" in the evaluation performed here. An
example confirming this fect is shown in Fig. 10, where the
strength function C;(Q) for et V in the odd system
(Fig. 4) calculated with T =0.4 lleV, is dimplayed. This set
is just the one, where the quasiparticle-phonon scattering

effect is the strongest, It is clear that as compared to Fig.

5, the temperature effect in Fig., 10 is negligibly small.

-

Y

0 4 8

12 6 20
n (Mev)

Pig, 10 The same as in Fig. 5 with T =0.4 MeV,

8. Concluaion

In the present work, using the temperature Green function
technique we have derived the set of equations for the Green
functions describing the processes with one propagating quasi-
particle and the transitions from an paired quasiparticle to
the coupling of intermediate phonon with quasiparticle as well as
the quasiparticle-phonon scattering for hot odd spherical nuclei.
The secular equation obtained within the framework of the
FT-QPNM from this set defines the energies of excitations
whose wave functions coneist of quasiparticle and "quasiparticle

® phonon" components. We have discussed the disgrams associ-
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ated with these processes and pointed out the graphs appearing
exceptionally at finite temperature.

Ve have also established to one-to-one correspondence
between the defined Green functions and the comporents in the
FPT-QPNM excitation operators.

The numerical estimations performed in the oversimplified
schematic models for hot odd and even-even systeums have shown

that the scattering effects at finite temperature turn out to

be stronger for .odd asystem than for even-even one. In both

the types of nuclei, the phonon orquasiparticle-phonon scatte-
ring effects increase with increasing interaction and the

erergy of one-phonon or single-quasiparticle component. In hot

even-even nuclei the phonon scattering effect at T O may

be noticeable only at sufficiently high temperatures beginning

from T > 6 MeV. Therefore, at T < 6 MeV 1t can be neglec-

ted in calculations. In practice, due to the small values of

interaction parameters as compared to excitation erergies
scattering effects in hot spherical (odd and even-even) nuclei
are expectied to be negligibly small at moderate temperatures

( T < 6 MeV). The calculations based on the secular equation
obtained'in this work in realistic hot odd spherical nuclei will

be the subject of forthcoming studies.
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