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I In the theoretical description of nuclear or atomic colli- 
sions exhibiting a resonance pattern in the cross section 
a discretization of the continuum can be achieved by introduc- 
ing Gamow states, defined as solutions of the stationary 
Schrodinger equation with purely outgoing waves in the asym- 
ptotic region/l-4/. 

In the last years, the mathematical foundation and the 
praticable techniques for the use of Gamow states have been 
improved appreciably. 

Even if not square integrable, one can define a scalar 
product between Gamow states and a norm. Gwow states are 

1 orthogonal to each other as well as to bound states. Together 
with the bound states and specific scattering states with 
complex wave number k, located at a certain contaur in the 
complex k-plane, Gamow states form a complete set of basis 
states. Moreover, Gamow states have been shown ta have a large 
overlap with wave packets that are peaked at the resonance 
energyl5/. Further, a rigorous mathematical basis for the im- 
plantation of Gamow states in quantum theory has been founded 
by an appropriate extension of the Hilbert space, see, 
e. g. 7 , 8 / .  So, on a sufficiently explored basis, routine 

! calculations with Gamow states are possible now (compare, 
e. g . /9/ ) , in particular, if the well-suited momentum repre- 
sentation is used/lO*ll/ . 

This progress has stimulated the applications of Gamow 
states also in RPA-calculations of ph-excitations in nuclei 
taking into account quasibound configurations, so that the 
particle decay of resonances can be related to nuclear struc- 
ture properties/12/, as well as in other branches as atomic 
and molecular physics /l30 14/ or in an extension of the 
Hellmann-Feynman theorem/15/ known from solid-state theory 
and quantum chemistry. 

The concept of Gamow states has also been used for an im- 
plicitely time-dependent semiclassical description of the 
coupling of relative motion and intrinsic degrees of freedom 
in heavy-ion reactions at incident energies near the Coulomb I barrier /ll/. This ap aLves.a.truncated set of adia- 



batic single-particle states within a finite-depth two-center 
potential restricting the continuum to Gamow states. If in 
the initial situation a single particle occupies a bound state 
in one of the potentials, during the course of the collision 
Gamow states may be populated via inelastic excitations due 
to non-adiabatic effects in the relative motion of the colli- 
sion partners along classical trajectories. Consequently, the 
system starts to emit particles analogous to the radioactive 
decay. In a closed expression the instantaneous emission spec- 
trum may be composed out of Breit-Wigner type resonance con- 
tributions, which are determined by the occupation probabili- 
ties of the Gamow states and two real resonance parameters, 
the position E and the width of the Gamow states, with all 
quantities being time dependent. A similar formula has been 
employed by Cassing and Norenberg / l 6 / .  

The ansatz for the computation of emission spectra from 
quasistationary states in decaying systems suggested in/llnl6/ 
exhibits the lack of a rigorous foundation. In particular, 
the range of validity of this approach concerning.the degree 
of non-adiabaticity of the process or the limit of the ratio 
r/E for which bumps in the emission spectrum are no longer di- 
rectly related to the parameters of the Gamow state is unknown. 
This fact indicates that the relevance of Gamow states in the 
treatment of a quantum system which is driven by a time-depen- 
dent potential V is not yet explored satisfactorily. 

In general, this question is also related to the physical 
interpretation which can be ascribed to a specjfic eigenvector 
decornposition of the continuous spectrum of the Hamiltonian 
used in the rigged Hilbert space formulation of the quantum 
mechanics and references therein). In this approach the 
basis system given by the scattering states connected with the 
Hamiltonian (real energy eigenvalues) is replaced by a pole 
part consisting of discrete Gamow states with complex energy 
eigenvalues E -ir (T > 0) and a background integral of com- 
plex scattering states along a contour below the location of 
the poles. In an application for collision processes the Gamow 
state describes an exponential decay of the quasistationary 
(intermediate) state of the system (with a mean life time r = 
= h / r  ) for t > 0, independent of the mode of its excitation in 
the past (t<O). Memory effects are contained only in the re- 
maining background terms which express the specific manner in 
which the decaying state is created as well as deviations from 
the exponential decay law for times very short or very long as 
compared to the mean life time of the unstable state. So, the 
neglect of the complex scattering states in the expansion of 

a single-particle continuum wave function implies the assump- 
tion that the emission process is governed by the decay of 
the Gamow states according to an exponential decay law, while 
the particular process by which the decaying state has been 
prepared in the past and deviations from the exponential de- 
cay law can be ignored. 

In order to eliminate the role of Gamow states in time- 
dependent problems a particular model for a single particle 
moving in a binding potential has been formulated for which 
the emission spectrum predicted from a closed formula, which 
is based on adiabatic Gamow states, can be compared to the 
emission spectrum resulting from an exact solution of the 
time-dependent Schrodinger equation. This model makes use of 
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a representation of the potential in separable terms which 
turned out to be highly appropriate for finding exact solu- 

1 tions for time-dependent problems /17.18.19/. 
In Sec. 2 the underlying general problem and the formal 

expressions for the emission probability are explained in some 
detail. The Gamow states in a separable potential are discus- 
sed in Sec. 3 together with the techniques to solve the equa- 
tions. Numerical results for two specific patterns of the 
time-dependence of the separable potential are presented in 

1 Sec. 4, followed by some concluding remarks in Sec. 5. The 
units for length and energy are adapted to nuclear physics 
problems. 

2. FORMULATION OF THE PROBLEM 

The Hamiltonian for a single particle moving in a finite- 
range potential V which depends on a parameter X varying in 
time t during a limited interval O ~ t s  T 

is supposed to have the property that for all values of X the 
spectrum of H contains a continuous part so that the particle 
motion may be unbounded in time. In the initial state \$(to)> 
the particle occupies a bound state of H(to). Then, in the 
course of time the solution I$(t)> of the time-dependent 
Schradinger equation (k = 1) 



gains components leaving the potential region. A differential 
probability dW/dt for the emission of the particle with kine- 
tic energy c can be deduced from I$(t)> for t + + - .  

2.1. Emission from Gamow States 

An approximation for the emission probability dW/dc can be 
derived in terms of adiabatic states I$v> which are defined as 
solutions of the time-independent Schrodinger equation for 
given values of A, 

The solutions of the homogeneous Lippmann-Schwinger equation 
equivalent to ( 3 1 ,  

correspond to bound states for 

and to Garnow states with purely outgoing waves in the asympto- 
tic region for 

The notationin(6) stresses the fact that an interchange of the 
€-limit and the analytic continuation of the matrix elements 
of the Green Operator Go would give rise to solutions with 
the wrong boundary condition. The procedure expressed by equa- 
tions (4-6) has the remarkable advantage that it does not make 
use of any arbitrary long-range cut-off of the potential so 
that the occurrence of spurious resonances is avoided/30.! 

A complete and orthogonal set of basis states can be chosen 
to consist of discrete bound states I+:>, quasistationary Ga- 
mow states l$  (+) > and a continuum of complex scattering sta- 

i' tes. With the assumption that the continuum is dominated by 
Garnow states the solution of the time-dependent Schrodinger 
equation (2) can be expanded as 

I From the SchrGdinger equation a set of coupled first-order 
1 differential equations for the coefficients a,(t) , b,(t) can 
1 be derive2 which has to be solved with the initial conditions 

a,, = 6 bP = 0 for all 1-1 . During the course of the time 
particle emission occ1,rs due to the population of Gamow states 
by inelastic excitations from bound states or by pushing the 
position of the occupied adibatic states upwards into the 
continuum region. If one defines a time-dependent occupation 
probability n (t) of a Gamow state 6 t as n ( t )  = :  b[,(t) , 

CL I-1 
the exponential decay of each Gamow state with complex energy 
E t - I ,  (t) gives rise to a Lorentzian shaped contribution 
to the em~ssion spectrum. Integrating over time and performing 
an incoherent sum over all participating Gamow states one ob- 
tains a phasically transparent expression for the instanta- 
neous angle integrated emission spectr~~m at time t /I1,', 

dW (t) 2 t (t*)r2(t') 
---- = - 1 f dt ' ---- P ---- 1 ----- . 
d c 1-1 -- (~~(t.) -02+r;(t') 

A similar procedure using occupied Gamow states in a diabatic 
basis has been applied both for the angle integrated spec- 

, , 
trurn/l6: and for the double differential emission probabili- 
t:,, :29 / .  

2.2 Exact Emission Spectrum 

An exact solution of (2) can be found in terms of the time 
evolution operator r(t , to) 

which obeys the equations 

(-1 After defining the time-dependent scattering states :(!I; (t), 
withi the help of the Mijller operator Cl(-)(t) (for details 
see ; 19;) 



k2 
- - t  + 

2m 
= lim [r(t, r) rO (r,,t)l e 

r + m  
I k > 

the differentis1 probability for the emission of a particle 
with momentum k is obtained by projecting I $ (t)> into I$(,-) (t)>, 

k 

In equation (11) ro(t,t') denotes the free time-evoluation 
operator, ro(t, t') = exp(-iH ,(t - t ' )) . Due to the specific time- 
dependence of the potential as expressed in (I), for t >  T 
(V = const) one can simply insert 

where I@$) > is a stationary scattering state referring to 
the potential V(h (t > T)) . An angle integration in (12) yields 
the emission probability 

which has to be compared to the approximate expression (8) fc9r 
t :* T. 

3. MODEL WITH TIME-DEPENDENT SEPARABLE POTENTIALS 

For the present computations the attractive potential V 
appearing in (1) has been represented by a sum of separable 
terms (hne(t) > 0) 

The single particle states jnfm> are specified by the nodal 
quantum number n (which has been restricted-to be n = 0 in the 
following so that it may be suppressed in the notation) and 
the angular momentum quantum numbers e ,  m. The time-dependence 
of the potential results from the time-dependence of the pa- 
rameter A which mainly determines the binding energy of the 
f-state in the potential. 

Such a separable expansion of a potential invented by Re- 
vai /,? l/ and Gyarmati et al ./22/ has been successfully applied 
later on in various contexts as for the calculation of bo- 
und/Z3/ and Gamov states /24/in a deformed potential (including 
the Coulomb case /25/) for scattering states/26/ , for . the 
treatment of the two-center problem/20*11/ or for the repre- 
sentation of realistic nucleon-nucleon interactions/27/. 

3.1. Adiabatic Basis 

Due to the orthogonality of the partial waves P, m, the 
condition for the existence of non-trivial solutions of the 
secular equation, 

\ 

holds for each partial wave separately.Because Go contains 
only the momentum operator it.is convenient to work in momen- 
tum representation. If one chooses 

+ - 
(17) 

with g (k) representing a radial oscillator function in momen- 
0P tum representation, the matrix elements appearing in (16) can 

be calculated analytically for bound states (Go from (5)) as 
well as for Gamow states (Go from (6)) (for details see appen- 
dix A of/ll/ ). One should emphasize that due to the presence 
of Go in (4) the bound state possesses the correct asymptotic 
behaviour, although oscillator states have been utilizetl to 
expand the potential. Moreover, it turns out that it is not 
necessary to introduce complex separable terms (e.g., complex 
parameter A) in order to describe resonances as has been done 
by Baldo et al. /27*28/. 

In figure 1 the energy eigenvalues computed from (16) are 
presented in the complex k-plane (k = K, - i K i ,  K, 2 0)  o ole 
trajectories /31/ ) for the angular momentum = 0, 1, 2, 3 in 
dependence on the potential parameter (expressed in units of 
20.7 MeV), 

E = (K: - ~;)/2m, r = K , .  Ki/m. (18) 

The oscillator parameter used to calculate the functions g --- 0e 
in (17) is b = t/h/mo = 1 fm. For s-waves (e = 0) only vir- 
tual states (K, = 0, K i  < 0), which have no physical meaning, 



shown by the the numbers at 
the curves. 

I r l  
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and bound states (K, = 0, K i >  0) have been found in the region 
of the k-plane covered by the figure. Fore> 0 and sufficient- 
ly large values of he  all states become bound. But by lower- 
ing at a certain value ~ f )  a transition from a bound state 
to a Gamow state occurs. For example, if Ae = -2.0 the p-state 
is still bound (EB= -5.6 MeV) while the d- and the f-state 
appear in the continuum with a complex energy E = 5.07 MeV, 
I' = 1.45 MeV and E = 17.5 MeV andT= 5.8 MeV, respectively. 
Above this value 2 AhC), the poles tend to stay near J 

to the real axis so that the Gamow states give rise 
to sharp resonances in the elastic scattering cross section 
of a particle with kinetic energy 6 = k2/2m. The scattering 
state in (13) is given by 

Fig. 1. Pole trajectories 
of bound, virtual, and 
Gamow states in the coni- 
plex K-plane for separable 
potentials with angular 
momentum l? = 1, 2, 3. The 
dimensionless potential- 
strength parameter A is 

--f 

A e<k( err: > 
A (k)  = ----------- , ' 1 + Al<l?ml0(;)(k2)jlm> 

and the cross section for elastic scattering reads 

Fig. 2. Cross sections 
for the elastic scat- 
tering process from 
a separable potential 
with l?=2 as a function 
of the incident energy 
6 . The dashed curve 
corresponds to the 
scattering from a bound 
system with a potential 
strength =-2.7. The 
three full curves are 
the results for the 
scattering from poten- 
tials possessing Gamow 
states with complex 
energy E corresponding 
to A = -2.2 (I), 
-2.1 (11), -1.3 (111). 
For comparison the po- 
sitions of these Gamow 
states are indicated 
by dash-dotted lines. 

For demonstration, the resonance behaviour of the d-wave elas- 
tic scattering cross section is shown in figure 2 for various 
position of the pole along the trajectory given in figure 1, 
A2 = -2.8 (EB = -4.0 MeV), Az = -2.2 (r/E = 0.14), A2 = -2.1 
(T/E = 0.181, $ = 1.3 (T/E = 0.60). Because for Az = -2.8 
the pole represents a bound state, only potential scattering 
without forming a quasistationary state occurs, which gives 
a smooth background increasing with bombarding energy. If the 
energy eigenvalue becomes complex, sharp resonances are obser- 
ved, the position and width of which are directly related to 
the parameters of the Gamow state as far as T/E<<l. Already 
for I1/E = 0.6 the position and width of the resonances in the 
cross section disagree appreciably with the parameters of the 
quasistationary state. 

3.2. Exact Solution 

The exact solution of the time-dependent Schrodinger equa- 
tion (2) with the ansatz (15) for the potential can be found 
applying the techniques described injlg'. 



From the equation (10) a Volterra integral equation follows 
for r(t, t'), 

t 

r(t, t') = ro(t, t') - i r dtur0(t, t") v(A(~")) r (t ", t '1 (23) 
t ' 

so that I $ (t )> can be expressed as 
t 

I $(t)>=$(t,t )]$(to)> - i (d t ' r , ( t , t ' )V(A( t ' ) ) I$ ( t ' )> .  (24) 
0 

Inserting the separable expansion (15) of the potential, one 
obtains 

t 

I $(t(> = r  (t,t )\G(t )>  - i 2 ( d t ' r O ( t , t ' ) ~ e ( t ' ) I e m > X p m ( t ' )  
0 0 0 

(25) 
em to 

with 

Aeain, due to the orthogonality in the angular part of lem> 
the set of equations for the quantities %At) reduces to de- 
csupled VolTerra integral equations for each Xe,(t) which 
can be solved numerically after calculating the inhomogeneous 
terms and the integral kernels according to the appendix. 

4. NUMERICAL CALCULATIONS 

The numerical calculations have been performed for a single 
particle in a one-term separable potential with quantum num- 
bers n = 0, e = 2, m = 0. Initially, the particle occupies 
a bound state at E B  = -4 MeV, which correponds to the parame- 
ter value A (t = 0) = A, = -56 MeV. By decreasing A in time, 
a smooth transition of the adiabatic state from bound state to 
a Gamow state can be achieved for kc) = -50 MeV at t = t,. 
Such a time-dependence of A may be parametrized according to 

so that different regimes of the potential change can be dis- 
tinguished by the choice of F(t) as displayed in figure 3. If 
one uses the ansatz 

1 -- (1 - cos (2nt / r)) 
2 t<r 

F(t) = for 
0 tL 7, 

the Gamow state appears as a transient state only (case A). 
So, the system "irradiates" during a certain time period while 
it finally at t = T comes back to the initial bound state. For 

1 --(1-cos(nt/r)) 2 t <r 
F (t) = for 

1 t > _ r  

the system remains unbound also for t> T, with the position 
and width of the Gamow state being determined by the parameter 
A = A +AA (case B). For example, Ah = 16 MeV (26 MeV) gives i 0 
a final position of the Gamow state at Em = 5.1. MeV (9.6 MeV) 
with a width of r,= 1.3 MeV (4.7 MeV). In both cases the time- 
dependent occupation probability n(t) of the Gamow state has 
been computed as 

t 
n(t)= exp(-2 f dt'r(t')), t > t c  . 

Within this picture the 
behaviour of the system is 
governed by three time scales. Em 

The initial binding energy EB 
of the particle determines 
the period TB of the unpertur- 0 
bed internal motion of the 
particle, TB = ~ I E ~ .  Then, one 
has a "reaction time" T given 
by the time interval in which 

I 

Fig. 3 .  Illustration of the adiabatic 
basis for the types of dynamics used ' t 
in the numerical calculitions. Case A: 

0 I 
t, T 

The Gamow state i s  reached as a tran- 1 

sient state for a limited time inter- 
val. Case B: The Gamow state appears 
as the final state. The width of the 
complex eigenstates involved are E 

indicated by the shadowed area. 



the change of the potential between the stationary situations 
is performed. The ratio a = T B m  can be used to express the 
degree of non-adiabaticity of the process. The time scale of 
emission is fixed by the mean life time of the Gamow states 
involved, T = k/r, so that the ratio T/T finally determines 
the shape of the peak structure of the emission spectrum if it 
is calculated according to the expression (8). For both re- 
gimes A, B the numerical calculations have been performed for 
EB = -4 MeV corresponding to TB = 1.6. s. The reaction 
time T has been chosen to select the parameter values a = 0.3, 
0.6, and 1.3 for the non-adiabaticity parameter. The parameter 
A has been varied according to equations (27)-(29) in order 
to lift the Gamow state in the continuum until a maximum posi- 
tion characterized by Em and rm is reached. 

The emission spectra calcu- r 
lated according to the expres- 
sions (12, 14) based on the 
exact solution of the time- 
dependent Schrodinger equation 
and the approximate formu- 
la (8) making use of the con- 
cept of Gamow states are com- 
pared in figures 4 and 5. 

For case F (figure 4) a 
growing agreement between the 
predictions of both approaches 
can be observed if the reac- 
tion time T of the process 
increases, e.g., the parameter 
a decreases. For a slow pro- 
cess (upper part of figure 4) 
one can observe a coincidence 

Fig. 4. Case A. Differential emission 
probability varsus escape energy for 

I 

various vaiues of the non-adiabati- 
city parameter a defined in the text. 
Full curves: results from exact cal- 
culations including fully the con- 

I 
tinuurn. Dashed curves: spectra de- 
duced from an emission from Gamov 
states. The dash-dotted line marks 
the maximum real part Emof the comp- 

2 1 6 8 10 12 11  16 18 20 lex energy of the intermediate Gamow 

E [MeV 1 state (compare to figure 3 ) .  

of the peak position and a qualitative agreement, within an 
error of 302, of the width and the total amount of emission 
probability. The coincidence of the peak positions both in 
the exact and in the approximate Gamow state treatment is re- 
markable because the peak does not correspond to the position 
of E m  (compare to figure 3) for which the width has its maxi- 
mum value r,,.This means that for slow processes the emission 
prior or post to reaching the highest-lying Gamow state is 
not negligible. For a fast process (lower part of figure 4) 
the high non-adiabaticity creates a maximum in the emission 
spectrum which appears at higher energies than has been reach- 
ed by the Gamow state. In addition, a high-energy component 
develops in the exact spectrum, which cannot be covered by 
the decay of the Gamow state because the width r involved is 
too much small. Therefore, one can conclude that in such a 
case for several reasons the picture cannot be maintained 
that the Gamow state is occupied and then decays independently 
from the mode of its preparation. First, the mean life time 
of the Gamow state becomes less than the reaction time T. For 
example, the average values of the mean life time of the Gamow 
states involved t:urns out to be of about 6. s (r = 1 MeV) 

which can be compared 
to the reaction time 
T = 5 . 1 0 - ~ ~  s fora =0.4, 
but is significantly 
larger than the reaction 
time T = 1 . 1 0 - ~ ~  s cor- 
responding to a = 1.3. 
Second, due to the high 
non-adiabaticity of the - 

T .  process, in an expansion 
of l$(t)> in terms of 
an adiabatic basis the 
9trong coupling to the 
background parts of the 

Fig. 5. Case B: Differential 
probability versus escape 
energy for two different po- 
sitions of the final Gamow 
state marked by the dash-dot- 
ted line. In both cases the 

0 5 10 non-adiabaticity parameter 
E(MeVI is a =0.4. 



the change of the potential between the stationary situations 
is performed. The ratio a = TB/T can be used to express the 
degree of non-adiabaticity of the process. The time scale of 
emission is fixed by the mean life time of the Gamow states 
involved, T= k/r, so that the ratio T/T finally determines 
the shape of the peak structure of the emission spectrum if it 
is calculated according to the expression (8). For both re- 
gimes A, B the numerical calculations have been performed for 
EE = -4 MeV corresponding to T B  = 1.6. s. The reaction 
time T has been chosen to select the parameter values a = 0.3, 
0.6, and 1.3 for the non-adiabaticity parameter. The parameter 
X has been varied according to equations (27)-(29) in order 
to lift the Gamow state in the continuum until a maximum posi- 
tion characterized by Em and rm is reached. 

The emission spectra calcu- \ 

lated according to the expres- 
sions (12, 14) based on the 
exact solution of the time- 
dependent Schrodinger equation 
and the approximate formu- 
la (8) making use of the con- 
cept of Gamow states are com- 

I pared in figures 4 and 5. 
For case F (figure 4) a 

growing agreement between the 
1 predictions of both approaches 

can be observed if the reac- 

I 
tion time T of the process 
increases, e.g., the parameter 
a decreases. For a slow pro- 

I 
cess (upper part of figure 4) 
one can observe a coincidence 

Fig. 4. Case A. Differential emission 
probability varsus escape energy for 
various vaiues of the non-adiabati- 
city parameter a defined in the text. 
Full curves: results from exact cal- 
culations including fully the con- 
tinuum. Dashed curves: spectra de- 
duced from an emission from Gamov 
states. The dash-dotted line marks 
the maximum real part Em of the comp- 
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of the peak position and a qualitative agreement, within an 
error of 302, of the width and the total amount of emission 
probability. The coincidence of the peak positions both in 
the exact and in the approximate Gamow state treatment is re- 
markable because the peak does not correspond to the position 
of E m  (compare to figure 3) for which the width has its maxi- 
mum value r,,.This means that for slow processes the emission 
prior or post to reaching the highest-lying Gamow state is 
not negligible. For a fast process (lower part of figure 4) 
the high non-adiabaticity creates a maximum in the emission 
spectrum which appears at higher energies than has been reach- 
ed by the Gamow state. In addition, a high-energy component 
develops in the exact spectrum, which cannot be covered by 
the decay of the Gamow state because the width r involved is 
too much small. Therefore, one can conclude that in such a 
case for several reasons the picture cannot be maintained 
that the Gamow state is occupied and then decays independently 
from the mode of its preparation. First, the mean life time 
of the Gamow state becomes less than the reaction time T. For 
example, the average values of the mean life time of the Gamow 
states involved turns out to be of about 6. s (r = 1 MeV) 

which can be compared 
to the reaction time 

1 1 -  = ' - 1 1  - '  ' '  T = 5 . 1 0 - ~ ~  s for a =0.4, 
but is significantly 
larger than the reaction 
time T = s cor- 
responding to a = 1.3. 
Second, due to the high 
non-adiabaticity of the 
process, in an expansion 
of l$(t)> in terms of 
an adiabatic basis the 
atrong coupling to the 
background parts of the 

Fig. 5. Case B: Differential 
probability versus escape 
energy for two different po- 
sitions of the final Gamow 
state marked by the dash-dot- 
ted line. In both cases the 
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continuum (complex scattering states) also at higher energies 
obviously cannot be neglected. 

For case B the general shapes of the emission spectrum com- 
puted exactly and according to the ansatz (8) are in good 
agreement with each other. The peak in the spectrum appears 
near the final position of the Gamow state. 111 figure 5  some 
numerical results for case B are shown for an almost adiabatic 
process (a = 0 .4 )  taking into account two final positions of 
the Gamow states E m  , rm . For the higher-lying final quasi- 
stationary state a large fraction of the ejected particles 
are appearing before the final position in the continuum is 
reached. Consequentely, the peak in the emission spectrum is 
shifted to a position below the final position of the Gamow 
state. For a fast process (not shown in figure 5) the exactly 
calculated emission spectrum exhibits in addition to the do- 
minating peak a high-energy tail which in magnitude is compa- 
rable to case A (about 10% of the total emission probability). 

In all calculations one has to state a principal overesti- 
mation of the low-energy part in the Gamow approximation. 
This fact reflects (i) the neglect of the background contri- 
bution far from the peak region in the transient high-lying 
Gamow states and (ii) the fact that a Gaussian shape for the 
instantaneous differential emission probability is probably 
better suited for the large values of r /E  under considera- 
tion rather than the Lorentzian distribution used in the 
calculations. 

5.  SUMMARY 

For the first time the relevance of Gamow states for decay 
processes of explicitely time-dependent system has been in- 
vestigated numerically by employing the exact solutions of 
the time-dependent Schrodinger equation. The concept of Gamow 
states has been used earlier in order to describe semiclassi- 
cally the break-up of a bound system in nucleus-nucleus col- 
lisions. The treatment leads to a closed expression for the 
emission probability which is based on a physically transpa- 
rent mechanism of a radioactive decay with time-dependent 
decay parameters. Such a procedure is easy feasible compared 
to an exact incorporation of the continuum but suffers from 
a lack of rigorous foundation. 

In order to study this problem more quantitatively, com- 
plex quasistationary states have been investigated in angular- 
dependent real separable potentials with fixed angular momen- 

tum. The use of separable potentials allows to a large extent 
analytical work. Although not very relativistic, the sepa- 
rable potential gives a behaviour of the pole trajectories 
of Gamow states which is known from three-dimensional local 
potential with a barrier in the effective radial potential 
shape. It turns out that for r/E_(O.l the position and width 
of the resonance in the scattering cross section coincides 
with the parameters of the Gamow state. For r / E > 0 . 5  this cor- 
relation is completely lost which means that the lifitime of 
an intermediate state in the scattering process becomes too 
small in order to create a pronounced resonaqce pattern expres- 
sing an exponential decay law as well as a "forgetting" of 
the incoming plane wave. 

After constructing the adiabatic basis with Garnow states 
an approximate instantaneous emission spectrum has been compu- 
ted for two dynamical situations. In both regimes the particle 
initially occupies a bound state. Then, the potential has been 
varried in time in such a way that in the adiabatic basis a 
Gamow state occurs as a transient state (case A) or as a final 
state (case B). The exact solution of the time-dependent 
single-particle Schrodinger equation has been calculated for 
these processes in the framework of a time-evolution operator 
technique applied earlier in more complicated dynamical sys- 
tems. A comparision of the approximate and exact results sup- 
port the following statements: 

(i) For a small degree of non-adiabaticity and for a time 
interval during which the initially bound state stays in the 
continuum which is large compared to the characteristic life- 
times of the Gamow states the approximate spectrum reflects 
quantitatively the features of the exact solutions (peak po- 
sition, peak width, amount of emission). 
(ii) For the considered break-up of a bound system under the 

influence of external forces the physical relevance of a 
quasistationary state is maintained in contrast to a scatter- 
ing process, even for a ratio r / E k  0.5.  This result reflects 
the fact that its asymptotic boundary condition of purely 
outgoing waves is much more suited for the decay problem un- 
der consideration than for the scattering process. 
(iii) The non-adiabatic coupling to the background of high- 

lying scattering states, which basically cannot be reproduced 
by the emission from Gamow states, results in a high-energe- 
tic component in the emission spectrum. 

Finally, we can conclude that under certain conditions the 
use of Gamow states in explicitly time-dependent processes 
allows at least qualitatively the prediction of typical fea- 



tures of the emission spectrurri. Such a mechanism could be im- 
portant' in parameter-dependent systems known from molecular, 
nuclear, and solid-state physics. But a general mathematical 
investigation of this question is still missing. 

The assistance of G.Mutschke during the early stage of 
these investigations is gratefully acknowledged. 

Appendix MATRIX ELEMENTS 

We consider the inhomogeneity f and the integral kernel K 
of the Volterra equation (26), respectively. 

f = c:em~r,(t,t~)~+(t~)>. (A.I) 

K = < ~ m  /~-~(t,t,)l ern>. (~.2) 

With the use of the normalized bound state with energy EB 

=Np CO(EB) ( Pm > , (A.3) 

1/ 2 
c - ( <  ~ r n  / G: (E,)IP~ >I- , (A. 4 

as the initial state and using the explicit form of ro(t,tO) 
and Go(EB) follows for f 

2 
- i A- Zln ( t  - t  0 )  p2 -1 

f =Np<fmle r[EB- F m I  \em?. (A. 5) 

Introducing the oscillator wave functions (17) in momentum 
representation 

from (A.5) one obtains integrals of the type 

(A. 7) 

which obeys the recurrence formula 

with the basic integral 

The integral kernels are found in a similar way. 
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