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It is well kmown that the stationary solution in the umit
topclogical charge sector of the Skyrme model 1s the hedgehog
configuration or the go-called Skyrme - ¥itten solution

UE)gy = oS (F(r)) + 1(T-N) sin(B(r), (1)

where N determines & dlrection in the isotopic space and for

hedgehog configuration 1s specified by the vector N- r/r. In
Eq.(t) F(r} 1s the chiral angle, describing the absolute value of
the pion field. Function F{(r) fulfills the following boundary
conditions F(0) = ¥r, P{ o } = 0. These conditions Insure
finiteness of the energy for a soliton wlth the topological number
¥, which 1s equal to baryon mmber B. In /'/ 1t was shown that the
only configuratlon that provides minimum the energy of the soliton
with N=1 1ls that given by Eq. (7). However, for other sectors such
a form 1s not obligatory. For example, In 72,3/ the solutions,
defined by the "k¢" configuration

= { cos(kp)-sin(®), sin(kp)-sin(®), cos(d) ), 2)

where (8,$) are the angles of vector r in the spherical coordinate
system,have been considered. In Eq.(2) k 1s an integer determining
also the topologlcal charge. Some interesting properties of states
generated by these soluticns were described in /2+3/ 1n the sector
with baryon charge B=2 this form of the solution gives us low
mass states 1in the range of around two nucleon masses.
Quantization procedure generates rich spectra of rotational bands.

In the present paper we propose a new form of the solution
given by the next vector

E

N = { cos(®($))-sin(T(8)), sin(®(9)) -sIn(T(8}), cos(T(®}) ), (3)

where &(¢),T(8) are some arbitrary functions.

It will be shown that this ansatz 1is the generalization of
.the hedgehog and "k¢" -configurations. In some sense our ansatz
glves an explanation of the origin and approximate characier of



the “last. As 1t wIll be Seeﬁ,'Eq.(B) leads to @ series of new
solutions in baryon and topologlcally trivial sectors. Some of
these new states are classically stable.

Let us conslder the Lagrangian density £ for the stationary
solution '

‘= Py Tr (L, L )+ — Tr (L,1,1 2. (4)
16 aze? e
Here I, = U'0 U are the left currents. After some tedlous algebra

Egs. (1),(3) and (4) lead to the expression

L=L,+ L, (5)
where
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In Egs.(6~T) we use the symbol prime to denote the following
derivatives oo 8@ . 0. o dF
Tt T @®wW I
Variation of Eq.(5) with respect to ${¢) gives us
@ =0, (8)
that Is (D) = ko + Const .
We consider only solutions with a vanishing value of this
constant. The number k must be an Integer in order to obialn =
single-value solution U(r) in the whole F-space.
Row we have the following expression for the mass of & sollton
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where 7 = ©-F,/¢ and X = F,.-e-T.
In order to minimize the functional M the functlons T(¢) and
F(x) have to obey the following equation

K _o;§E -0 (12)

or more strictly

[ X%+ 2a-8infF 1.F '+ 2.3-F+ a- (P )asin(ZF)— % sin(eF) -

2
-2.p SWF gynepy=0, . (13)
X

2 & +K%B m-g-zimn g JESERS: —Q—Jginfi(i'-“ T )%+

. 2n S1nT 2, sin(PT) _
+2.7 -ctgﬂ-[A—kB-m—%]-kA-s—n-(lf&l—O. (14)

The coefficients a,b, and A,B in Egq.(13-14) are the following
integrals:

b
2
a =I )2-BICT L y2) aing g8, (15)
319
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o sin“¢ :
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a= o [ L+ #0?) @, (17)

[£1]
4 .
B = I SIn'F ax. g (18)
0]

From Fgs.(9-11)-and (15-18) we conciude that the function T(®) has
to be some Integer factor of w for = O and # = n. We conslder
only the configurations with tinite masses, that is why we have
F(0) = Nt with integer N. Without loss of generality we take P( o)
=0. 1t 18 not difficult tc prove that the asymptotic behavior of
F is presented by

¥ 1iZa - 1
F(x) — with p=—7—" (19)

X _xp+1 *

In the vicinity of the coordinate sysien origin

F(x}) » =N-axP, (20)
X »0
where
p="1+23“1 . 1I 824
and
p-= 1 +/ T +76b7a , for az?ob,

4
a is some numerlcal factor.
It 1s clear that T(8) has the next behavior nesr the
boundary of 1ts definition domain

T(8) —» oK
f» 0 {21)
(22)

and K
M) - 1- (™~ B)™.
4

Here 1 1s an integer number. The soluticns oI the Egs.(13 -14) are
graphlcally represented in Fig.1, 2. for some values of k and 1.
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Fig.t. Solutlon F{x) of Eq.(13)
for 1=1 and k=2,3,4.

Pig.2.Solutlon T{#) of Eq.(14)
for some values of 1 and XK.
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Now conslder more carefully the structure of the solitons. For
that purpose let's calculate the baryon charge denslity

B - _ 1
Tolr) = 2412 “ovpo

Tr (L,,LPLO} .

The stralghtforward calculation gives

a0 dap

JB(I.) = 1 smay (Fr) gin TS'ﬂJ Q.E @ .
© oner? sin #
Here we have used Eqs. (1) and (3)

(23

(24)

.- The expression for the

topological charge density, Eq.(24), 1s the generalization of the

one for "k¢" ansatz from ”
Eq. (24)

/and the Skyrme - Witten ansatz.
immediately rTesults 1n the expression for the

corresponding topological charge



F(w) (%) d(w)
B=_1_ [F(x) _ sin(2F ] .cos(T) o =
an’ F(0) T{0) @{0)
= l—{zﬂ [ 1- cos( %x1) ] 25)

One can see now that for even 1 we have meson- like solitons.
(n F1g.3 the baryon charge distributlons are schematlcally presen-
ted In the (X,Y) - plane for solitons characterized by the number
kN (F(0)= % N, F{o) = 0) and boundary conditions T(0)=0, T{x)=ml,
1= 2,3,4.

Fig.3. Baryon charge distributlon on the (X,Z)-plane for solution
characterized by number N,k,1.

Table 1.The classical masses calculsted in the present paper with
the generalized ansatz. In the last column the results with the
"k¢"-ansatz are presented for comparing with the first columm.

k \\1 1 2 3 4 T(6)=0
1 11.605 26.358 46.332 71.169 11.605
2 22.458 45.536 73.533 106.609  24.829
3 34.585 66.701 103.081 144,321 44.369
4 47.675 89.310 134.450 T0.176
5 61.569 113.119 102.206




The calculated sollton masses for N=1 and some value of K,1
are represented in Table 1 in units (v Fp/ e} where F,=186.4 MeV
and e = 27. B

in conclusion, we shouid like to emphasize that the soliton
spectrum with "ko"- multivaryon configurations has been extended
up to N-k multi-baryon configurations for odd 1. For exampie, a
ihree-baryon state corresponds to the k=3, N=1, 1=1 member of
Tapl.1 with the binding energy about 7 MeV per baryon. Moreover,
we have got the spectrum meson-like (N.K/Z2-baryon - N-k/2-anti-
baryon) configurations for even 1. (See Tor example the k=2, N=1,
1=2 case that corresponds o & two-baryon - two-antibaryon meson-
1ike configuration with mass about 4234 ¥eV). Some of the obtalmed
configurations are classically stable objects which may be seen
from Tabi.1. The mass of this cbject 1z less than the sum of the
masses of its baryon components. The classical *pinding energy" of
these states may easily be obtained by using Tabl.d

More complete analysis of the spectra will be published later.
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