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It is well known that the stationary solution in the unit 
topological charge sector of the Skyrme model is the hedgehog 
configuration or the so-called Skyrme - Witten solution 

+ + + 
U(r)sw = cos(F(r)) + i(,•N) sin(F(r)), (1) 

+ 
where N determines a direction in the isotopic space and !or 

+ + 
hedgehog configuration is specified by the vector N= r/r. In 
Eq.(1) F(r) is the chiral angle, describing the absolute value of 
the pion field. Function F (r) fulfills the following boundary 
conditions F(O) = N~. F( oo ) = 0. These conditions insure 
finiteness of the energy for a soliton with the topological number 
N, which is equal to baryon number B. In 111 it was shown that the 
only configuration that provides minimum the energy or the soliton 
with N=1 is that given by Eq.(1 ). However, for other sectors such 
a tonn is not obligatory. For example, 1n 12 ,31 the solutions, 
defined by the "k$" configuration 

+ 
N = ( cos(k$)·sin('6), sin(k¢)·sin('6), cos('!!) ), (2) 

where ('6,$) are the angles or vector r in the spherical coordinate 
system,have been considered. In Eq. (2) k is an integer determining 
also the topological charge. Some interesting properties o! states 
generated by these solutions were described in 12 •3~ In the sector 
with baryon charge B=2 this form or the solution gives ue low 
mass states 1n the range of aroun.d two nucleon masses. 
Quantization procedure generates rich spectra or rotational bands. 

In the present paper we propose a new form or the solution 
given by the next vector 

+ 
N = ( coa(~($))•Sin(T('6)), sin(~($))•sin(T('6)), cos(T('!t)) ), (3) 

where ~($),T('6) are some arbitrary !unctions. 
It will be shown that this ansatz is the generalization or 

. the hedgehog and "k$" -configurations. In some sense our ansatz 
gives an explanation or the origin and approximate character o! 
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the "last. As 1t will be seeri, Eq. (3) leads to a series of new 
solutions in baryon and topologically trivial sectors. Some of 
these new stateS are classically stable. 

Let us consider the Lagrangian density C for the stationary 
solution 

Here 
Eqs. 

where 

and 

~~ u+o~U are the left currents. After some 
(1 ),(3) and (4) lead to the expression 

tedious 

~- (T' )2, (<!>' )2. ~ + { 

2 2 

sin '6 r--

(4) 

algebra 

(5) 

(6) 

(7) 

In Eqs. (6-7) we use the symbol prime to denote the following 
derivatives 

~·- d<l> . T'- dT • F'- dF 
~-~· -oo· -ar 

Variation o! Eq.(5) with respect to<!>($) gives us 
q>' '=0, (8) 

that is <!>($) ~ k¢ + Const . 
We consider only solutions with a vanishing value of this 
constant. The number k must be an integer in order to obtain a 
single-value solution U(r) in the whole ~-space. 

Now we have the !allowing expression !or the mass or a soliton 

(9) 

00 "' 

~~ +Jct:x-x2 
Jd-6 sln-6 {<F' )

2
+ [:~~! k

2
+ (T• ) 2)S~2F }· (10) 

0 0 
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00 'It 

N4=r·Jctxx2 Jd~ strre { 

0 0 

+ sin F sin T ~. (T' )2 Sin F 2 2 } 2 

---;r- sin2~ ~ 
(11 ) 

where 1 = 'lt·F.(e and x = F'lt·e·r. 
In order to minimize the functional II 

F(x) have to obey the following equation 
the functions T(~) and 

01!_ 0 .oM_ 0 ~- ·~-, 

or more strictly 

(12) 

[ x2+ 2a·sin2F l·F''+ 2·X·F'+ a· (F' )2sin(2F)- ~ sin(2F)-
2 

-2·b· ~ sin(2F)= a, (13) 
X 

The coefficients a,b, and A,B in Eq. (13-14) are the following 

integrals: 

( 15) 

(16) 
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00 

A =I sin2F (+ + (F')
2 ) dX, 

0 

00 

B =I ·~4F dX. 

0 

(17) 

( 18) 

From Eqs.(9-11) and (15-18) we conclude that the !unction T(~) has 
to be some integer factor of ?C for ~ = 0 and ~ = >:. We consider 
only the con!:!£urations with finite masses, that is whY we have 
F(O) = N?t with integer N. Without loss or generality we take F( oo) 

=0. It is not difficUlt to prove that the asymptotic behavior or 
F is presented by 

F(x) ~ 
X • oo 

with p 

In the vicinity o! the coordinate system origin 

F(x) ~ •>N - a-xP, 
X • 0 

where 
p = >'"fi:28- 1! a ~ 4 

and 
P = 1 +~ 1 +160/a !or a~ 2b, 

·4 
a is some numerical !actor. 

(19) 

(20) 

It is clear that T(~) has the next behavior near the 
boundary or its definition domain 

and 
T(~) ~ .&< 
~. 0 

T(~) ~ >:·l- ( >:- ~)k. 
~ . "' 

(21) 

(22) 

Here l is an integer number. The solutions or the Eqs. (13 -14) are 
graphically represented in Fig.1, 2. !or some values or k and l. 
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F1g.1. Solution F(x) of Eq. (13) 
for 1=1 and k=2,3,4. 

Fig.2.Solution T(~) of Eq.(14) 
!or some values or L and k. 
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Now consider more carefully the structure o! the solitons. For 
that purpose let's calculate the baryon charge density 

JB 1 
0 (r) = -

24
1<" eovpo Tr (L,LpL0 ). (23) 

The straightforward calculation gives 

(24) 

Here we have used Eqs. (1) and (3) • Tha expression !or the 
topological charge density, Eq.(24), is the generalization o! the 
one for.·~· ansatz !rom 121and the Skyrrne- Witten ansatz. 

Eq. (24) inlnediately results 1n the expression for tha 
corresponding topological charge 
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F(oo) 
B =- - 1- [F(X) - s1n(2F)) •COS(T) 

4~ 2 F(O) 

T('K) ~(1<) 

~ 

~(0) ~(0) 

= ~ ( 1- cos ( 'l<l) ) (25) 

One can see now that for even I we have meson- like solitons. 
On Fig.3 the baryon charge distributions are schematically presen­
ted in the (X,Y) -plane ror solitons charecterized by the number 
k,N (F(O)= 1< N, F(oo) = 0) and boundary conditions T(O)=O, T('K)='I<l, 
I= 2,3,4. 

B =0 
l = 2 

B=b·Nk 
l = 3 

B = 0 
l = 4 

F1g.3. Baryon charge distribution on the (X,Z)-plane !or solution 
characterized by number N,k,I. 

Table 1.The classical masses calcUlated 1n the present paper with 
the generalized ansatz. In the last column the resUlts with the 
"k¢'-ansatz are presented !or comparing with the first column. 

k v 1 2 3 4 T('ft)~ 
1 11 .605 26.35B 46.332 71 .169 11 .605 
2 22.45B 45.536 73.533 106.609 24.829 
3 34.565 66.701 103.081 144.321 44.369 
4 47.675 89.310 134.450 70.176 
5 61.569 113.119 102.206 
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The calculated soliton masses for N=1 and some value of k,l 

are represented in Table 1 in units (~ F~ e) where F~=186.4 MeV 

and e = 2~. 
In conclusion, we shoUld like to emphasize that the soliton 

spectrum with "k¢"- mul tibaryon configurations has be'en extended 

up to N•k multi-baryon configurations for odd l. For example, a 

three-baryon state corresponds to the k=3, N=1, l=1 member of 

Tabl.1 with the binding energy about 7 MeV per baryon. Moreover, 

we have got the spectrum meson-like (N · k/2-baryon - N · k/2-anti­

baryon) configurations for even l. (See for example the k=2, N=1, 

l=2 case that corresponds to a two-baryon - two-antibaryon meson­

like configuration with mass about 4234 MeV). Some of the obtained 

configurations are classically stable objects which may be seen 

from Tabl.1. The mass of this object is less than the sum of the 

masses of its baryon components. The classical "binding energy• of 

these states may easily be obtained by using Tabl.1 

More complete analysis of the spectra will be published later. 
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