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The effect of the ~uadrupole pairing on the energies and other 

characteristics of o+ - states in deformed nuclei was studied in a 

number of papers, e.g. II, 21• The monopole and quadrupole pairing 

affects also the two-quasiparticle energies of the states with 

V(T# o+ • The energies of the two-quasiparticle states in even-even 

deformed nuclei were calculated in many works by taking into account 

the monopole pairing. The two-quasiparticle energies are strongly 

aff~cted by the blocking effect 131 • Due to the latter the energies 

of a number of two-quasiparticle states go bellow the gap, which has 

-been demonstrated for the first time in ret.f4(It is of iilterest to 

study the effect of the quadrupole pairing on the two-quasipart­

icle states in deformed nuclei and to find the upper limit for the 
f<ZO 

quadrupole pairing constant ~~ from the experimental energies of 

the two-quasiparticle states with K ~ J • The present paper is 

devoted to the solution of this problem. 

Let us take the Hamiltonian of the proton (or neutron) system 

in the form: 

Ho =b iEr-;J-.A" ]a;.- ct~.- ~fJG"~G;o-frtlfrd ct.;.a;_ a'i_ a~\( I) 
f f ' '[ ,•• r' J , where ('j,)= ('?)- 2 $;:+.,.., 7 (~/ v~ are the single-particle 

energies and <j.U"' , ()=! 1 are the corresponding quantum numbers; 
+ 

a'l~and aJ~~""are the nucleon creation and ·annihilation operators; 

,f(~/ = < 'f 1/ f!, CrJ Y,0 ( o, 'I' J II'}> • 
First, w:e make the Bogolubov canonical transformation 

ar .. = u~ oi.'J" ~ cr- v~ o~.; _, 
and then find the mean value of .HQ with respect to the quasiparticle 

vacuum. B.r using the variational principle we derive the equations 

2: E c~ ~- .i\] u'l- vV Cu}-v; )~ { G~ ~G;·:fr~Jfr'f' Jjur v'i' = o,} (
2

) 

1-{'f, + v 'i = i . 

The monopole C(; and quadrupole C:n: pairing correlation :runctions 

are defined in the following way: 

(J) 
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Further, we introduce the state-depending functions 

6.'1- ~ C,- .,. fc~J C2"' 1 

Z_j_fi E<<>hl .. j 
U.q - + - J 

• 2 e '} 
2 1 I E<->J-A j v =- 1- -
'f, 2 E't-

and using eq. (2) we find the value for the quasiparticle energy 

- [ 2. - )"- J%. ccp= ll"'+(tr'fl-/\ . (5) 

After some simple transformations we obtain the following 
system of equations 

G~ ' c, • :fry,! c._>: 
J.=-L.. ' () ZC1: '1- cr, 6 

1 
c;.'o7: '> ( Cr + frcpCz;: (6I) 

= 2.-C L.. -oC~! - J .,_., 't- c;'f 

N = l. 11 - E ('j,}- ;l. j ) (6II) 
't- ( c'f 

where 
cal to 

N is the number of nucleons. Equations (6)-(611) are identi­
the equations derived in ref./l/ • The ground-state energy 

of the system consisting of an even number of nucleons and its 
wave-function has the form: 

4 z. 
c- c.,_ .. C = 2.. 2 EI'?!V; ,.,~ ,-,2o = 

a ~ ~~ cr~ 
(7) 

= f 2 £rep v; - ~ ~} r!n:+ G-~o -hJf(~'!] 

where a.~a- 41-; ~ 0. 
The values of C"~'~ and C2.11 (for the neutron system of 168Er) 

given in table 1 are calculated by the values of the constants ~n 
t' >o and ~~ obtained from the experimental pairing energies. 
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Table I 
The influence of the quadrupole pairing on the energkes 
of the two-quasiparticle states of 168Er nucleus 

Con:figu- Energy, MeV 

ration Expe without blockinp: with blookin 
rim en (j,.~= 0.5 Je~0 

0 0 

"Ill 

(fo iii til=- r;,i til 0 •o 
"t'=O out o" c non-

nondiag. diag. ' 
terms terms 

~J ~ 
nn 6JJ1+ 5211 1. 09 1. 71 1. 72 1. 79 r.ro r.06 
nn 6JJh 512t 1.77 1.90 1.90 1.72 1.6J 1. 5J 
nn 51Jl + 512t 2.27 2.J6 2.16 2. 20 2.14 2.02 
PP 52JI + 411l 1.91 2.2) 2.18 2.22 1.51 1.47 

G , MeV 0.122 n O.llJ O.llJ 0.12 o.nJ 
c , MeV 0.85 0.71 o. 71 0.85 o. 71 n 

n ' MeV -5.21 -5.14 -5.12 -5.21 5.14 

c2n' MeV/barn 0 J.2 J.7 0 J.2 

0 0 

·~ 
"' rt-
..; 

::I "1.) 
"-!> 

I. 04 
1.40 
1.89 
1.46 

0.102 

0.5J 
-5.05 

6.7 

>0 

It is seen from table 1 that when the constant Q~ increasest 
parameter C2 n increases too, Cn. decreases and the chemical potential 

.i\.YI remains almost unchanged. A similar tendency is observed in 

other nuclei under investigation. 
The description of the o+ - states in deformed nuclei is given 

in ref. 151 , where the quadrupole particle-particle interaction with 
both the diagonal f C'V) and nondiagonal fc 'j, q,') matrix elements 
is taken into account. The oondibon for elimination of the spurious 

solutions of the RPA-equations leads to two equations determining 
the functions c7: and Czr • The first one coincides with eq. (6) 
and the second one is: 2. 

•o{ -f<~JC"'" '> [j-('j,'f,')(Ur-U1'.,.V-r,V<t')]} 
i: G L - + L C" • (8) 

<: 'l- 2 Cn c'j 't'/,' 67- + c't' 
If one neglects the nondiagonal matrix elements :fcq.q,'J, eq. 

(e) transforms into eq. (6
1
). Our calculations of the two-quasi­

particle energies £~+ f~, are given in table 1. As can be seen 
from the table, the presence of the nondiagonal matrix elements 
leads to unsignificant changes in the quantities e'j- +- E.?- 1 l even 

,., zo 
for the greatest values of ~~ the change is of an order of 
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IOO keV. Thus, the nondiagonal matrix elements should be neglected 
and one should solve the system (6), (6, and (611). 

In oalculating the pairing and two-quasiparticle energies one 
should take into account the blocking effeota So let us write down 
equations for the two-quasiparticle state energies with blocking. 
For this, we first calculate the mean value of Ho with respect to 
the state 

(9) 

and then use the variational principle. In this way, for the quanti­
ties 

C-J~·'f•)= ().,l_ ur; v'l- , C,;:(t,'f•)=L J-r'f)u'J v'fJ (ro) 
1~r•.<J• 'f"f·,r· 

t.'t- (~, ~·) = C,I'M·! • fr~J C"('i, ~.), 8j rN,J=[A;rr,~·l'(friJ·41'1z 
we obtain the following equations: 

1 = ~;:- 2.. C,.l'i·~·! ~ fc~! f"-r:-(f,if,) 

~t~·,1• Cr;lf+J E.$ If•?•) 
(11 ) 

1= 

N=2+L {1.-
'~< t~,, ~· 

The two-quasiparticle energies take now the form 

(12) 

where 

(lJ) 

into the monopole Obviously, if C2r •0, eqs. (11)-(11 11) transform 
pairing equations with blooking, see e.g. 161 

T.he energies af some two-quasiparticle states of 168&r, 172Yb 
and l7S,l80st shown in tables 1 and 2 have been calculated with the 
monopole and quadrupole pairing taking account of the blocking 
effect. 
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78Rf 
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Table 2 
The influence of the quadrupole pairing on the energies 
of the two-quasiparticle states 

Energy, MeV 
Configura-

K" tion Ex:peri- Calculation with blocking 
ment 

(12~ 20 .ZQ ~(J :z..o 
17t'- 0 Gt' ~(}.2'5" dlo (}.;; ""0. 5" de0 

J+ nn 52H+ 512t 1.17 l.J2 1.27 l. 22 

6- nn 512t+ 6JJt 1.55 l.J6 l.J2 1.26 

c nn 6JJt+ 52U 1.64 1.69 1.69 1.68 

s- pp 4041+ 514t 1.15 1.19 1.25 l.JS 

s- pp 4041+ 514! 1.14 1.17 1.22 l.J5 

For the monopole and quadrupole pairing the blocking effect turned 
out to be as large for the states having one quasiparticle on the 
Fermi level and the other on the following level as for the mono-

rozo pole pairing. Since the constants of the quadrupole pairing er~ 
or quadrupole particle-particle interaction and the constants of the 
quadrupole particle-hole interaction have the same dimev.sion, the 

~q -quantities b"~ can be expressed through the isosoalar constant ~o 
of the particle-hole interaction with A_,M"' 20. It is s'een from the ,-.>o 
tables that with increasing \Jr and decreasing G'C" (in order to 
conserve the pairing energy) the discrepancy between the calculated 
and experimental values of the energies of two-quasiparticle states 
increases. The same occurs for the energies of two-quasiparticle 
states in other nuclei. 11 _ 

According to ref. 171 the states KL = 4~ and Liz in nucleus 
168Er with energies 1.094 MeV and 1.905 MeV, respectively, are not 
purely two-quasiparticle ones. It is observed that to the leading 
neutron component nn 63Jf+ 521t of the state q; the proton 
pp 52Jf+ 411. component is admixed; in the same way, a neutron com­
ponent is mixed to the leading proton component of the state 4; 
The RPA-caloulations with multipo1e-multipole force of the type 
). }"- • 54· give for the state 4; the following results s ., 2 for d€0 • 0.015 Fm /MeV- E~- • 1.05 MeV and its structure is 

f 5~ 2 nn 6JJt+ 521< 9J~, pp 52Jf+ 4llt 6 ~; for ae0 • 0.018 1m /MeV-
B..,- • 1. 0 MeV and the strUcture is nn 63Jf+ 521-L- S6'i6, 

' 
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pp 52Jt+ 4llt 12~; for cetv= 0.021 Fm2/KeV- E¥-= 0.9 MeV and the 

structure is nn oJJf+ 521~ 75~. pp 52Jf+ 411~ 22~. 
In the second state Lf; the situation is just opposite: here the 

leading component is the proton one pp 52Jf+ 411~ ; the neutron 

component is slightly admixed to it. About 97-98~ from the 

strength of these configurations is concentrated in the 4~-J 42- levels. 

The energy of the 42- state is considerably bellow the experimental 

value because of the rough description of t~e single-particle states. 

As follows from the experimental data 17 and numerical calcula­

tions the multipole-multipole interaction with ;L..o 2. affects the 

structure of the l(tr~ 4- states, if the neutron and the proton poles 

are near to each other. Such a 4- -state has a dominating two-quasi­

particle component and its energy lies bellow the pole not more 

than 0.1 MeV. As a rule the energies of such states can be calculated 

within the independent quasiparticle model with monopole pairing 

force. 
The comparison of the energies of two-quasiparticle states with 

the corresponding experimental data allows one to conclude that the 

constant of the quadrupole pairing or that of the particle-particle 

interaction With )\jA:.20 should not exceed the following value: 
r-12.1.) 2..0 

l:rz- < 0.5 Cle0 • 

2.o Go 

Since the quadrupole pairing with G.z-<.0. 5 .=Jeo does not affect 

essentially the energies of two-quasiparticle states, the poles of 

the secular equation in the RP.A. for K7T=t 0+ -states oan be calculated 

disregarding the quadrupole pairing. The values of the oonatant r;;" 
in the interval from zero to 0.5 ce:o oan be established more exactly 

in the process of description of the o+ - states in deformed nuclei 

within the quasiparticle-phonon nuclear model 
18

' 91 • 
Based on the above investigations we can conclude that in 

calculations within the quasiparticle-phonon nuclear model with 

inclusion of particle-hole and particle-particle interactions of the 

energies and wave functions of nonrotati anal states W1 th KlT t o+ in 

even-even deformed nuclei one can neglect the quadrupole pairing 

and take into account only the monopole pairing 1n the proton and 

neutron systems. 
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