


1. Introduction

The two-phonon components of low-lying states in even-even
deformed nuclei have been discussed for a long timél—g/. These
components can essentially influence the properties of low-lying
states such as the excitation energy, eleclromagnetic transitions,
form-factors in transfer reactions, etc.. The question of
two-phonon components became now very urgent due to a rich
experimeﬁtal informatiodqo_lS/on low-lying levels in 168Fy, This
nucleus is considered now as a kind of a proving ground for
theoretical models. Apparently, the experimental data in 8Er can
hardly be described without including two-phonon components into
consideration.

One of the most obscure problems is the existence of
low-lying states with dominating two-phonon components {we shall
call them Lhe two-phonon states) in deformed nuclei. Still there
are no reliable experimental data undoubtedly testifying to the
existence of these states. Theoretical models  provide
contradictory predictions. The Q(PNM asserts that low-~lying
two-phonon states should not exist in deformed nuclei since the
violation of the Pauli principle in the wave function leads to Lhe
shift of the strength of these states towards higher excitation
energies/1" 7. Other approaches/4_9/. in particular, the
microscopic multiphonon model (MPM) 7 and the self-consistent
collective coordinate methed (sceMy’®” admit or at least do not
reject the existence of these states. It is to be emphasized that
both schematic calculations in the MPM in which the multiphonon
wave function is constructed of only two p-vibrational phonens in
ithe Tamm-Dancoff approximation (TPA) and more realistic
calculations in the SCCM in which the wave function is constructed
of many phonons of different multipolarity in the random phase
approximation (RPA) provide similar results. The comparison of
these model€®” shows that the discrepancy between the QPNM
predictions and those of other models is mainly. due to Lhe fact
that in contrast with the MPM and SCCM the QPNM disregards the
interaction with multiphonon configurations which lowers the
energies of low-lying two-phonon states.
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In the present paper we show that the discrepancy between the
models can be removed by taking into accounl in the QPNM the
interaction with complex configurations., For this purpose a
multipheonon version of the QPNM is constructed.

The analysis of the interaction of two-phonon states with
other configurations faces troubles within the MPM and SCCM since
the SCCM has a rather cumbersome structure and the MPM deals with
the numerical diagonalisation of the Hamiltonian malrix without
the secular equaticn . In this connection, the second aim of this
paper is to derive such formulas, which are on the one hand as
simple as possible and on the other hand clarify the coupling
between different configurations and can be used for numerical
estimates.

In sect. 2 the Hamiltonian and wave function are considered
in a multiphonon version of the QPNM. In sect. 3 an analysis of
the matrix elements between the components of Lthe wave function
with a different number of phonons is presented in detail. In
sect. 4 the secular equation is derived, the influence of
multiphonon configurations on the ©properties of low-lying
two-phonon states is discussed and the comparison with other
models is made. Summary and conclusions are expounded in sect. 5.

2. The Hamiltonian and wave function

The Hamiltonian has the form
H= ka + Hpair +H .. [
where H_ = is the average field as the Saxon-Woods potential, air
is the monopole pairing interaction, }hm are the isoscalar and
isovector multipole-multipole forces. After calculating one-phonon
excitations within the RPA, the normalised Hamiltonian (1) can be
- expressed through the phonon and quasiparticle operators

H=: Ho* Hy * Huq s ¢z
where
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of o with K + K =p; o is the creation operator of the cne-qua-
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siparticle stale with quantum numbersq and energy €y g=oq, K=ok,

p=op, K20, w20; K is the angular momentum projection onto the

nuclear symmetry axis; o=X1; g=aui are the multipolarity and number

of the RPA phonon; E is the summation only over neutron (r=N)
q,4d,¢"

or only over proton (r=Z) one-quasiparticle states. The

expressions for the functions ng. u 197 can be delermined from

ref/%’. These functions are the larger the higher is the col-
lectivity of  phonons. If the phonons are <close Lo
two-quasiparticle states these functions approximately equal zero.

The term H generates quasiparticle and phonon excitations.
The qua51partlcle phonen interaction H 0 couples the wave function
components differing by an odd number of phonons. The term
couples the components differing by an €ven number of phonons
This term has earlier been neglected in the QPNM. By analogy with
the principle of cancellation of dangerous diagrams/ “one can
" ghow that in the one-phonon approximation HO will be compensated
by the first term of HQ' Further, we shall see that with the
inclusion of the multiphonon wave function and Pauli principle the
interaction HOO has not to be neglected.



The multiphonon wave function is taken in the form
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wp(KfJ=<R‘°’+ Z Ry of +_§: p°* ¥ e _ _aQ g
g, g, ux’xo t g9, My, 9,9, iuxhuz’](o 9, 9
k ¢
+..+y p° R™ 6 oo Q@ (70
51...;}“ p:"'“n 9y 9y lu1-‘L""*"un’1{o 9, 9n

vhere R‘“’ g 1S the n-phonon amplitude; | > is the RPA vacuum,
g, "¥n

i.e. Q] >=0; p is the number of the state with given K. The
Kronecﬁer symbcls connect the projections of phonon moments
onto KO. The coefficients pzx“‘pnare chozen so that the normali-
sation condition of the wave function is

CERCRTIT (RTD)=(R )%+ E (R('H? Ng° + 2 (R332 N °
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The function « °Cg -9, 19,...9,2 appears only if the Pauli
principle is v1olated in components with n22. One can easily be
convinced that
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where the coefficient p °_ takes into account the cases when

Y
1 n
nonzero moment projections of some phonons are coupled to the
total projection equal Lo zero (for instance, for the states with

n_gt i i 5 e
K"=4" composed of four y-vibraticnal phoncns we have,pgggg=1/ 2).
For simplicity, we have omitted indices K, and p in the amplitudes
R‘"’ .and the Kronecker symbols in (8). Further, the index K,

n

w111 be omitled in the functions in (9)-(10).



The wave functions (7) are not orthogonal because of
nonorthogonality of n-phonon components QF ...Q%| >. Indeed, at
g g

1 n

g . .9.%q...g we have
<CjQ ... QF,...Q7>~%Kg .9 lg/...g) = 0. (11
g, g, 3, g
The above nonorthogonality will not effecl the results given below
since in what follows we shall use approximations at which
nondiagonal quantities of the type (11} are neglected.

Note that the wave function (7) and Hamiltenian (1) are in fact
the same as in the MPM. Therefore, the basic results given below
are valid also for lhe MPM. There are several essential
differences between cur approach and the MPM: i) instead of RPA
the MPM uses the TDA, 1ii) the Hamiltenian in the MPM in contrast
with (2)-(5) is not expressed through phonon operators, iii) in
the MPM a direct diagonalisation of the Hamiltonian matrix is
performed (the secular equation is nobt used).

3. Matrix elements

Now we derive expressions for the matrix elemenis
g ...9
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g 9 g
taking account ofnthe ﬁaulf principle. For ihis purpose we use
exact commutation relations (taking account of the gquasiparticle
structure of phonons) between the operators in (3)-(B) and (7). As
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an example, we give the commutation relations for the phonons with
g=20i {for simplicity, we use index i instead of gl:.

[Q.[Q 0% 11= 4%Ci, 1, 1i,10Q + %Ki, i 11,10}, (€ 14)
i i i ¢ i i

11. 2 l:4 1
[B(qq}@]—Z{b“' ¥ Q } ( 15)
2 1 i qa 11!
where
%o |i i )=-1/2) azie plits ( 16.1
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It is seen from (16.1)-(17.4) that the functions ﬁtl 1 1 1 } and

K(l i,i,1,) are of an order of v* and y*¢, respectlvely

In generai expressions for the matrix elements (12)-(13) are
rather cumbersome. It is more convenient to consider these
expressions for the wave function (7} formed by phonons of only
one type with g=201. Then, the state (7) has quantum numbers Kf=0f
and the matrix elements (12)-(13) conserving all the basic
properties of the general case acquire a simple and clear form
convenient. for analysis and numerical estimales:
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where
A =-1/8 LX(n-1n (e3)
U=t/ < [QHOQ1 > (24)

Expressions (18)-(22), except for the terms with index n21, hold
at n20. The forms of N_ and E:a for some values of n, we shall
need in what follows, are given in table 1.In (18)-(24) and table 1
n n
use the notalion: MEEMST?TE , NnENEZ::g 0RO L=ng ,

n

g-.
m

we

Table 1. Expressions for N_ and A:*a for some values of n in the

approximation 9;2"':9n=201'
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X=X(gglggd, *=X(gglag), r=r§Tq \ c=cggq ,6(F) is a value of an
12

order of F. As is seen from (18)*222) and table 1, in the
approximat ion g,= ..=g, =201 all the functions arising due to the
inclusion of the Pauli principle into consideration can be
expressed through %,

In (18)-(24) we have written down only the terms that are
dominating in both the RPA and TDA. For the other terms which
centain inverse phonon amplitudes ¢ and are absent in the TDA we
give only the order of their magnitude. It is seen that in the TDA
the Hamiltonian (2) couples the wave function components differing
from each other not more than by twe phonons. For collective
one-phonon states ,when the inverse amplitudes ¢ can be compared
in magnitude with the direct anes y, the BPA should be used
instead of the TDA. In this case, there arises coupling between
compenents differing more than hy two phonons. Also, additional
terms including the functions % and ¢ appear in the matrix
elements (18)-(20). For instance, in the FPA

ME=1/2! (2 + B0C20 - 14 I - 12 L1, ¢ 25

where the addition 12 L% ~ 1,2 Ly®¢ is comparable in value with
the leading term 1,4 L% ~ 1-4 Lyp*.

The functions 4. and Aﬁ*a appear only if the Pauli principle
is taken into account (%#0). Since -2<%<Q, for low-lying
collective phonons (for which always L>0) the functions 4, and
Az’a may take only positive values. The function A, increases with
n, Xland L. It implies ithe shift of the strength of the n-phonon
configuration towards higher excitation energy. Just the positive
shift 4, under the viclation of the Pauli principle made it
possible to conclude within  the QPNM®™3/that low-lying
two-phonon states should not exist in deformed nuclei.

The underlined terms in (18), {20) and (22) are generated by
the interaction FbQ‘ This interaction, earlier disregarded in the
QPNM, couples the wave function components differing by an even
number of phonons and results in the considerable additions in the

diagonal matrix elements Mi,



Let us get numerical estimates for N_ and M: .For simplicity,

we assume that ¢g §’w§ . Lhat means in fact Lhe TDA. As a re-
1 '2 1 e

sult, we may neglect terms of the type §(FY and coupling belween
Lhe components differing by more than two phonons. Since the aim
of the present paper is the study of two-phonon states, it is
sufficient Lo conserve only the components with n%4 in the wave
funclion (7).For the gquantities L, U and X we use typical values
obtained in the microscopic calculations within the QPNM for 1685,
and given in table 2 (in these calculations the wave function
contained only one- and two- phonon compopents and a large phonon
basis was taken into account}.

Table 2. The values of L, U and % £or some two-phonon states

State L, MeV U, MeV «
+ -
0@‘8 4 0,2 0,5
Oir 20 0,5 -0,3
i, 20 0,8 _ -0.7

The quantities N_, M "' and M*# as a function of % are given
in figs. la-1d. It is seen from fig. 1a that for a certain value
of % the quantity Ny vanishes, i.e. the corresponding n-phonon
component disappears. The larger n, the smaller the violation of
the Pauli principle is needed for total disappearing of the
component. The four-phonon component disappears approximately at
the value of % obtained in the realistic calculations (see table
2). This result confirms that in real nuclei the states composed
of nz4 phonens may be forbidden due to Lhe violatien of the Pauli
principle.

Figure 1b represents the shifts q‘which take the large
values.Figures 1lc and 1d present the matrix elements M:+‘and

:+2.IL is shown that if the Pauli principle is siightly violated,
the interaction between complex components is stronger than
between the simple ones. In particular, the two-phonon . companent.
interacts more strongly with the three-phonon compenent than with
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Fig. 1. The quantities N, A& , M'*' and M'*2 (figs. a), b), ¢) and
‘ d), respectively) as a functions of X. The calculations
have been performed with formulas presented in table 1 and
with (18), (20) and (23).
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the one-phonon one. This indicates that in studying two-phonon
states one cannol use only the components with ns2 in the wave
function (7). With inereasing |%| complex compcnenls are
suppressed more rapidly than the simple cnes. As a result, the
siluation is reverse: the coupling between simple components
becomes stronger than between complex ones. nes

It is seen from figs. lc and 1d that the matrix elements MA .
existing only if the Pauli principle is violated, are comparable

in magnitude with NE+!. This indicates once more the necessity of
taking account of the interaction

Figures la-1d, obtained for the case when the configurations
are composed of the same phonons, provide a general and somewhat
crude picture. However, this picture should be the similar also in
the case when the configurations are composed of different phonons
if they are low-lying ones. IL is known that the principal
two~quasiparticle componenis of low-lying phonons are formed by a
small number of quasiparticle close to the Fermi level. This fact
leads to approximalely the same violation of the Pauli principle
as in the case considered above. Note that in figs. la-1d the
dependence of L on % is neglected,which is incorrecl in general.
For instance, for two-quasiparticle states (when %#-2) we have
L+0. Thus, in the general case at %2 there should be a downward
bend of the straight lines describing 4 and Mj and some change of
the curves for other matrix elements,

4. Basic equations of the multiphonon version of the QPNM

Let us consider the multiphonon version of the QPNM with the
Hamiltonian (2) and wave function (7) including the components
with 0%n<4 phonons of a different type. Then, in contrast with the

accepted QPNM/1_3/, the wave function (7} contains the components

with n=3 and 4 and phononless (n=0) component. The latter will be
shown to influence the properties of low-lying states essentially.
Let us show that the inclusion of configurations with n=3 and 4
leads to the appearance of terms in the secular equation which can
be treated as a shift of the strength of low-lying two-phonon
states towards lower excitation energies.
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Using the variational procedure

6CCTNRTY H WRT -t RDIWRTII-13=0, ( 26

where 1 is the energy of the stale with Kf , we gel Lhe system of
equations for the amplitudes R;“’

£ 90
R+ Y RE M =0, (271
: 9,9, 9,9, 9,9, .
g; 9’ g’ g’ g
R;“Pg () +2 R;?’Q,Mg‘ >+ 3 R;?;,Q,Mg‘ 2730, (27.2)
1 1 glg’2 152 T4 g;g’ag’3 15253 Tt
| g. 9 g’ g’ g’
R(z) p (n) +R(0)MG +2R(33M‘1 Z+ E R({E){ 'Ml 273
9,9, 9,9, 9,9, & 9 9 g §9,99% 9%
g 9’499
+ za‘g:‘;, ooty g T =0, ( 27.3)
g;g'zg‘ag; 192%3%4 Y152
g.9.9 g 9.9
R(a) P (T?)*ZR(E)ME';: 34 E R(,E), 1 '23
9,9:9; 9,9.9, g, 9, 9 g, g9, 9,9: 5,9
g:9,9.9"
+ Y RM M2 374=0, ( 27.4)
S, ,91929394 9,9.9;
9,9,9,9,
(4} {2) g g .9_¢g
R P (n) + 3 R M} 22"
9,9,9,9, 9,9,9.9, ofg. 919 919;
(32} g 9,99 ’
+ g M 70 (27.8)
g f g, 919:9: 99,9,
where .
p (nlI=N Cw_ +. ..+ +A -m. (282
9,9, g,---9, 9 8n 9,8y

From (27.1)-(27.8) one can easily derive the syslem of equatiocns
forl?;z’ . For this purpose, the sums of products of matrix

elements of the  same type are considered in the <cherent
approximation that, for instance, for the amplitudes R'*’ has

¥, 9,9.9
the form 1T2Tav4
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g g, 9.9, a'aalg’ g .9.8.9

T RN M T M B RS g % @D
argg"g" gigzgag‘ glgaga 9,929, g, 29394 17273

g

1727374

As a result we have
g 9
DR Ty o (m=0, ( 302

where g;g; 1¥2 "1 %2

gigl - g;gz glga - i
F )l 2(m=P gzin)(d 5 s 6 )+ MMt

+
192 g, 9,09, 9,09, 8,:9; 9,9

v 792,897 _ e Y e ¢ 31

AR AR OIS S AUt i

g d, 450,

kK k k k¥ k k_k_ k. -1
- E Mgtga ] 4Mg§g’z 2 4pk ‘e x o,
k k_k_k 172 172 172 374
1 2 3 4
B B J J 3,453 g, -t
Mi:gz 3=Mgljgz z_z Mg1 2v3 g; ng(n)
172 172 g. ( 32)
R R R o
) o,
C Kk x .0 9,9, k ke ko k,
17273 4

P 3,34 -1

P {(m=P (m - S M2 2P ()

fleds et g ? s ¢ 33)

s ooaftR ot L m
- L : . n .
e xx x J,d2d, k Kk k,

In (31)-(33) indices j and k run the same values as index g. If
the Pauli principle is neglected, the coupling of the two-phonon
component with Lhe n=0 and 4 components disappear whereas with
the n=1 and 3 ones is conserved:

9,9
F ! 2(n)=P {(n¥(é ) , + 6 ] L)
9; 9, " 5 g, % . 9,%, 9 8,9, 9,49

9,9, 9, 95,7} SN S (N R S B e
SYMPEMCYRP () - M 2N ETP n. . {3)
; g 9 g " ; ? , 9,9, 9,9, 1,4,4,
LaYzx
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The secular equation has the form

gl 92 —
det|]Fglg;(n)||-O. ( 35)

In the GPNM1"3/, instead of (30) the system of equations for
the amplitudeSR;” is considered and the quantity g s (n) is

17 2
shown to be a pole of the secular equation. In the present paper,

since we investigate two-phonon states, the final system of

equations is writien for the amplitudeSRLZ; . Note that due to
1¥v2
approximation of the type (283, some details of the secular

equation will depend on the type of the amplitudes for which the
final equations are written. However, the basic properties of the
secular equation to be considered below will not change.

The secular equation (35) cobtained in the approximation (29}
may have extraneous roots. So, this equation is inapplicable for
realistic calculations but can be used for analysis and numerical
estimates. '

The diagonal part of the secular equation at Ng g >0 can be
written in the form : 172

9,9
F ' 2(p)=N {w_ +w_+ A - ‘ {368
gi 2 n g-t gZ gl ga gl gz n
-1 9922 -1 _ 9.9 a1 _ ‘Jt‘!aja 2n-1
+ Nglgz{(Mo 1% ;(M y PTG )33 5.5, } inizdacn)
JSJEJJ
k k_k_ k
- cmg‘gz TR L (M)
172 1 2 3 4
ktkzkzk-t
Earlier, in the refs. /13 only the terms
g g
N {w +w + A -n - N! (M 2P ()2 (373
9.9, 9, s 9,9, 7 9,9, g g g

have been taken into account in the diagonal part. '
Let us consider the two-phonon ™ component g ¢ with the

strength mainly concentrated in the state with energy n. It is

seen from (36} that the interaction of the component g,9, with the

other components leads to the additional terms which can be

ireated as ‘shifts with respect to the energyw. +w. +A . The
g, 9, ‘9,9,
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signs of the shifts are determined by Lhe energy positions of
these components with respect to n. All ihe n-phonon states lying
above (below) the state g g, in the excitalion energy will push
out Lthe strength of this state towards lewer (higher) energies.
Here, one can easily see an analogy with the well-known quantium
mechanical example of wutual pushing apart of two interacting
levels.

If the two-phoncn component considered is a low-lying one,
the majority of components interacting with it lie higher in
energy. These componenis will lead to a general coherent shift of
the strenglh of g9,9, towards lower energies and this shift
will cancelto a certain extent the shift A g arising due to the

violation of the Pauli principle. Thus, the statement13/ that
deformed nuclei should not contain low-lying two-phonon states
which is based on the effect produced by Lhe violation of the
Pauli principle without tLaking inte account the coupling with
complex configurations needs revision.

It is to be mentioned that equation (38} allows one to analyse
some results obtained in the MPM and SCCM. For instance, the
calculations within these models systematically provide that the

07 state is higher than the 4; state. This result is somewhat
difficult Lo explain within the gPM and SCCM but it can easily be
interpreted with the use of eq. (306). Indeed, if Lhe wave function
{7) is composed only of y-vibrational phonons, then the O state
will contain components with n=0, 2 and 4 vhereas the 4% state
—-—components with n=2 and 4. Equation (36} will be

g‘gz = _
Folg (Ml o fug +ag + 4 5 =7 (€ 38)
. 81942 1 _ K kKK e an1
Ny g (O k kEk k(Mg’gz PR e x (M
1 2 3 4

It is seen from (38} that the interaction of the component 9,9,
with the phononless one that occurs only in the 0'-states,shifts
the strength of the @ state towards higher excitation energy,
which explains the above resuli.An analogous situation is expected
for two-phonon 0%and 2% levels constructed of octupole phonons
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with Auc=311 and for two-phonon ¢" and 4 levels constructed of
phonons with aui=321.

5., Summary and conclusions

The multiphonon version of the QPNMi"B”takes into account
not only the Pauli principle but also other effects important for
the properties of low-lying two-phonon sitates (coupling with
multiphonon configuratiens and phonon correlations in the ground
stale). Simple equations characterising the coupling between
different compenents of the wave function and secular equation are
derived, In virtue of the approximations made in this paper these
equations cannot be used for realistic calculations but they are
useful for clarifying the considered effects and for numerical
estimations. They can serve as a starting point in considering a
complicated nature of the interaction of configurations with a
different number of phonons.

Numerical estimates are obtained for the matrix elements
coupling different conflguratlons The Hamilfonian term ¢'QF,
which has earlier been disregarded in the (QPNM while considering
two-phonon excitations, was shown to be important. This
interaction coupling configuration differing by two phonons

arises if the Pauli principle is violated.

It is shown that if the violation of the Pauli principle
shifts the sirength of low-lying two-phonon states toward higher
excitation energies, the coupling with multiphonon configurations
can give an opposite effect of the same order. As a result, the
multiphonon version of the OPNM admits, in principle, the
existence of low-lying two-phonon states in deformed rnuclei, which
is in agreement with the results of olher microscopic models /8:9/
However, these states have not yet been observed experimentally.
Apparently, in real nuclei the majority of low-lying twe-phoncn
states, dwing to the interaction with other configurations, are
distributed over many levels. Then, the low-lying states will
have, as a rule, small two-phonon components. The absence of
low-lying two-phonon states may held for many deformed nuclei but
it will be caused more by the fragmentation of iwo-phonon states
than by their pushing due to the violation of the Pauli principle.
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This situation would not <contradict the conclusions of the
available models and the experimental data on the transfer
reactions”13719/

The  author is  grateful to  Profs. V.G. Soloviev,
R. Piepenbring, 0. Scholten and to Drs. A.I. Vdovin, V.V. Voronov
and Nguen Dinh Dang for fruitful discussions.
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