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1. Introduction 
The two-phonon components of low-lying stales in even-even 

deformed nuclei have been discussed for a long lim6'1-9/ . These 

components can essentially influence the properties of low-lying 

stales such as the excitation energy, electromagnetic transitions, 

form-factors in transfer reactions, etc.. The question of 

two-phonon components became now very urgent due to a rich 

experimen'tal informatiorflO-lB/ on low-lying levels in 168 Er. This 

nucleus is considered now as a kind of a proving ground for 

theoretical models. Apparently, the experimental data in 168Er can 

hardly be described without including two-phonon components into 

consideration. 
One of the most obscure problems is the existence of 

low-lylng stales with dominating two-phonon components Cwe shall 

call them the two-phonon stales) in deformed nuclei. Still there 

are no reliable experimental data undoubtedly testifying to the 

existence of these slates. Theoretical models provide 

contradictory prediclions. The QPNM asserts that low-lying 

two-phonon stales should not exist in deformed nuclei since the 

violation of the Pauli principle in the wave function leads lo the 

shift of the strength of these stales towards higher exci lation 

energies/l-3/. Other approaches/4-9/, in particular, the 

microscopic mul tiphonon model CMPMJ /8/ and the self-consistent 

collective coordinate method CSCCMJ/9/ admit or at least do not 

reject the existence of these slates. Jl is to be emphasized that 

both schematic calculations in the MPM in which lhe multiphonon 

wave function is constructed of only two r-vibralional phonons in 

the Tamm-Dancoff approximation CTDAl and more realistic 

calculations in the SCCM in wh1ch the wave function is constructed 

of many phonons of different mullipolarily in the random phase 

approximation CRPAl provide similar results. The companson of 

these model§S/ shows thai the discrepancy between the QPNM 

predictions and those of other models is mainly. due to lhe fact 

that in contrast with the MPM and SCCM the QPNM disregards the 

interaction with mull!phonon configurations which lowers the 

energies of low-lying two-phonon stales. 
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In the present paper we show that the discrepancy between the 
models can be removed by laking into account in the QPNM the 
Interaction with complex configurations. For this purpose a 
multiphonon version of the QPNM is constructed. 

The analysis of the interaction of two-phonon stales wilh 
other configurations faces troubles within the MPM and SCCM since 
the SCCM has a rather cumbersome structure and the MPM deals with 
the numerical diagonalisalion of the Hamiltonian matrix without 
the secular equation In this connection, the second aim of this 
paper is to derive such formulas, which are on the one hand as 
simple as possible and on the other hand clarify the coupling 
between different configurations and can be used for numerical 
estimates. 

In sect. 2 the Hamiltonian and wave function are considered 
in a mul tiphonon version of the QPNM. In sect. 3 an analysis of 
the matrix elements between the components of the wave function 
wilh a different number of phonons 1s presented in de1 .. ail. In 
sect. 4 the secular equation is derived, the influence of 
mul Liphonon conf iguralions on the properties of low-lying 
two-phonon states is discussed and the comparison with other 
models is made. Summary and conclusions are expounded in sect. 5. 

2. The Hamiltonian and wave function 

The Hamiltonian has the form 
H=Hsp+H,•ir+Hmm' (j) 

where H lS the average field as the Saxon-Woods potential, ~ 
1 sp ·~a r 

is the monopole pairing interaction, 1\,. are the 1soscalar and 
1sovector mullipole-multipole forces. After calculating one-phonon 
excitations within the RPA, the normalised Hamiltonian (!) can be 
expressed through the phonon and quasiparticle operators 

H =' Ha + Hao + Hcxo =, ( 2 ) 

where 

-l/4z L99 .a~a- .. 
9=A~i , 9 9 

( 3 ) 

9':Aj:rt' 
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( 4 J 

( 5 J 

The following notation has been used in C3J-C5J 

Q+= 1/2 2{~9 A+Cq q ~J-¢9 ACq q -~J}, 
g qi q2 I 2 qi q2 1 2 

qlq2 

( 6 J 

where A+Cq, q2 ~l and BCq,q2 ~l are operators of the type a~ a~ and 
q1 q2 

a~ a with K
1 

+ K2 =~; a~ is the creation operator of the one-qua-
qt q2 q -

S!particle state with quantum numbe~q and energy e ; q=oq, K=aK, 
- q 
~=a~. K~O. ~~0; K is the angular momentum projection onto the 

nuclear symmetry ax1s; a="l; g=A~i are the mult1polarity and number 
of the RPA phonon; 2 is the summation only over neutron (T=NJ 

qlq2ET 

or only over proton (T=Zl one-quasiparticle states. The 

expressions for the functions L , 11 f9T can be determined from 
gg qtq2 

ref/2/. These funct1ons are the larger the higher is the col

lectivity of phonons. If the phonons are close to 

two-quasiparticle states these functions approximately equal zero. 

The term HQ generates quas1particle and phonon excitations. 
The quasiparticle-phonon interact1on HaQ couples the wave funct1on 

components d1ffering by an odd number of phonons. The term Hoa 

couples the components diffenng by an e'ven number of phonons. 

This term has earlier been neglected 1n the QPNM. By analogy w1th 
the princ1ple of cancellation of dangerous diagrams"16/ one can 

show that in the one-phonon approximation Hapwill be compensated 

by the first term of Hrt Further, we shal see that with the 
inclusion of the multiphonon wave function and Paull principle the 

interact1on Haa has not to be neglected. 
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The mulliphonon wave function is taken in the form 

WpCK~J=CR' 0 ' + 2 R'''6 _ _ a~+ 2 pK0 R' 2
' 6 -a+ a• 

g gl jlt,Kogt 9 9 J..llf-12 gtg2 f11+/J2,KO gl gii! 
' ' 2 

2 
K 

+ . . . + p 0 R< nl 6 a: . a: J I ) ' ( 7 J - .. - Ill ' ' ' J.ln gl'' . gn 11, +. · · +IJn,Ko o, gn o,. .. gn 

where R' n> is the n-phonon amplitude; I > is the RPA vacuum, 
9 1 • · 'gn 

i.e. Q I >=0; pis the number of the stale with given Krr. The 
- 0 

Kronec~er symbols connect the projections of phonon moments 
K 

onto K
0

. The coefficients p11° .. ·l1 are chosen so that the normali-
' n sation condition of the wave function is 

( 8 J 

where 
K K 

N ° =1 +% °Cg ... g 19 · · .g J 9 1 • • · 9
2 n t t n 9 J 

K 
The function X °Cgn ... 9, 19, ... gnJ appears only if the Pauli 
principle is violated in components with n~2. One can easily be 
convinced that 

K K p o =Po n-1/2 

f.ll · · · 1-ln IJI · · · lln 
( 10 J 

_K 
where the coefficient p11° .. ·I-' takes into account the cases when 

' n nonzero moment projections of some phonons are coupled to the 
total projection equal to zero Cfor instance, for the states with 
Krr=4+ composed of four y-vibrational phonons we have p:~99=!/~). 
For simplicity, we have omitted indices K

0 
and p in the amplitudes 

R' n> . and the Kronecker symbols in C9J. Further, the index K
0 9 1 • · ' 9 n 

will be omitted in the functions in C9l-C!Ol. 
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The wave functions C7J are not orthogonal because of 
nonorthogonality of n-phonon components 0~ .. . 0~1 >. Indeed, at 

< 10_ o o+ .. o+J >~9Ccg ... g, lg; ... g~J, o. o1 J 
9 n 91 ~< g'n n 

The above nonorthogonality will not effect the results given below 
since in what follows we shall use approximations at which 
nond1agonal quant1t1es of the type C11l are neglected. 

Note that the wave function C7J and Hamiltonian Cll are in fact 
the same as in the MPM. Therefore, the basic results given below 
are valid also for the MPM. There are several essential 
differences between our approach and the MPM: il instead of RPA 
the MPM uses the TDA, iil the Hamiltonian 1n the MPM in contrast 
with C2J-C5J is not expressed through phonon operators, iiil in 
the MPM a direct d1agonalisation of the Hamiltonian matrix is 
performed Cthe secular equation is not usedl. 

3. Matrix elements 

Now we derive expressions for the matrix elements 
g .. . g 

M ' "-p p , , <;' 6- - R 6-, -' R 
9 ;' ' · 9~- ~~ · ' ·l-In IJl · · · IJm L IJI • · · · + lln• o fll + · · · + !Jm' o 

a ... a 
' n 

a' ... u' 
' m ( 12 ) 

( 13 ) 

x< 10_ a o~ .... a~. I > 
gn 9, gs 9n 

taking account of the Pauli principle. For this purpose we use 
exact commutation relations Ctaking account of the quasiparticle 
structure of phononsl between the operators 1n C3J-C5J and C7J. As 
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an example. we give the commutation relations for the phonons with 
g•20i (for simplicity, we use index i instead of gl:. 

10 .10 .o• JJ=2 {~Ci i Ji i'JO +xu i Ji i'Jo• f, 
iii ,/ !2 3 i' 12 3 i' 

1 2 3 l 

[B(q q J.Q+]• 2 {b11 ' Q+ + c11
' Q }• 

>2 1 qq,• qq,. i, 2 1 2 1 

where 
i i 

~Ci i Ji i J•-1/22 a 2 
' 

1 2 3 4 q_1 q2. 

q1q2 

c 14 ) 

c 15 ) 

c 16. 1 ) 

c 16.2) 

c 17.1) 

c 17.2) 

c 17.3 ) 

c 17.4) 

It is seen from C16. 1J-C17.4J that the functions ~Ci i i i J and 
1 2 3 4 

~Ci i i i l are of an order of~· and~'¢, respectively. 
l 2 3 4 

In general, expressions for the matrix elements C12l-C13J are 
rather cumbersome. It is more convenient to consider these 
expressions for the wave function C7l formed by phonons of only 
one type with g•201. Then, the slate C7J has quantum numbers Krr·O~ 

0 
and the matrix elements C12l-C13J conserving all the basic 
properties of the general case acquire a simple and clear form 
convenient for analysis and numerical estimates: 
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M"=N Cn w + !1 l+ 6CL:Kln>, n n n 

M""=N n...1n+ll/2 'u + 6CU~l > +6Crcl, 
n n+t n-1 

where 
!1 =-l/8 L\1'Cn-lln 

n 

U=1/N < 10 HO+Q+I > 
2 g g g 

( 18 ) 

( 19 ) 

( 20 ) 

( 21 ) 

( 22 ) 

( 23 ) 

( 24 ) 

Expressions C18l-C22l, except for the terms with index n~1. hold 

at n~O. The forms of N and If'" for some values of n, we shall 
n n 

need in what follows, are given in table l.In (18)-(24) and table 1 

n 

we use the notation: M"=~ m g ... g 
c.--;;;-

n 

N=~ n g ... g 
-=---;;--

w::w 
g 

L=L gg • 

Table 1. Expressions for N and A"'" for some values of n in the 
n n 

approximation 9, =. . =gn =201. 

n -----------~~--------------- -------~~~~-------------------
0 1 -1/(8/27) L\1' 

1 1 -1/C8yf3!J LX 3C1+Xl 

2 l/2! (2!+\1') -1/C8~l L\1' 6C2+5\1'+3~l 
3 l/3! (3! +9\1'+3~) 

4 l/4! (4! +72\1'+66~+18~) 
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x~xcgglggl. x~XCgglggl, r~f9T . c~c99 ,6CFl is a value of an 
q1q2 qtq2 

order of F. As is seen from (18l-C24l and table 1, 
approximation g, ~ ... ~gn~201 all the functions arising due 
inclusion of the Pauli principle inlo consideration 
expressed through X. 

in the 
to the 
can be 

In C18)-C24l we have written down only the terms that are 
dominating in both the RPA and TDA. For the other terms which 
contain inverse phonon amplitudes ¢ and are absent in the TDA we 
give only the order of their magnitude. It is seen that in the TDA 
the Hamiltonian (2) couples the wave function components differing 
from each other nol more than by lwo phonons. For collective 
one-phonon slates , when lhe inverse ampl i ludes ¢ can be compared 
in magnitude wilh lhe direct ones '!1. lhe RPA should be used 
instead of lhe TDA. In lhis case. lhere arises coupling between 
components differing more lhan by lwo phonons. Also, additional 
terms including the functions X and a appear in the matFix 
elements C18l-C20). For instance, 1n lhe RPA 

M"~1/2! C2 + IDC2w - l/4 LX- l/2 LID, 2 ( 25 ) 

where the addition 1/2 LX~ 1/2 L'!13 ¢ is comparable in value with 
the leading term 1/4 LX~ l/4 L'!14

• 

The functions ~ and ~n+ 2 appear only if the Pauli principle n n 
is taken into account CX"0). Since -2~~0. for low-lying 
collective phonons C for which always L>Ol the functions ~ • and 
~n+ 2 may lake only positive values. The function ~ increases with n n n, lXI and L. It imp! ies the shift of the strength of the n-phonon 
configuration towards higher excitation energy. Just the positive 
shift ~n under the violation of the Pauli principle made it 
possible to conclude within the QPNM'1-3/ that low-lying 
two-phonon states should not exist in deformed nuclei. 

The underlined terms in C18), C20) and C22) are generated by 
the interaction Hbo· This interaction, earlier disregarded in the 
QPNM, couples the wave function components differing by an even 
number of phonons and results in the considerable additions in the 
diagonal matrix elements~· 
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Let us gel numerical estimates for Nn and~ .For simplicity, 

we assume that ¢9 «~9 , lhal means in fact the TDA. As are-
qtqz q1q2 

sull, we may neglect terms of the type 6CFl and coupling between 

the components diffenng by more than two phonons. Since the aim 

of the present paper is the study of two-phonon slates, il is 

sufficient lo conserve only the components with nS4 in the wave 

funct1on C7l.For the quantities L, U and ~we use typical values 

obtained in the microscopic calculations within the QPNM for 168Er 

and given in table 2 Cln these calculations the wave function 

contained only one- and two- phonon components and a large phonon 

basis was taken into account). 

Table 2. The values of L, U and ~ for some two-phonon states 

Slate L, MeV U, MeV ~ 

0~[3 4 0,2 -0,5 

o;r 20 0,5 -0.3 

+ 4rr 20 0,5 -0,7 

The quantities N , Mr+' and Mr+z as a function of ~are given 
n n n 

in figs. la-ld. It is seen from fig. la that for a certain value 

of ~ the quantity N" vanishes, i.e. the corresponding n-phonon 

component disappears. The larger n, the smaller the violation of 

the Pauli principle is needed for total disappearing of the 

component. The four-phonon component disappears approximately at 

the value of ~ obtained in the realisl1c calculal1ons Csee table 

2). This result confirms that in real nuclei the stales composed 

of n~4 phonons may be forbidden due to the violation of the Paull 

principle. 

Figure lb represents the shifts An which lake the large 
nH 

values. Figures lc and ld present the matrix elements Mn and 

nu 
Mn .It is shown that if the Pauli principle is slightly violated, 

the interaction between complex components is stronger than 

between the simple ones. In particular, the two-phonon component 

interacts more strongly with the three-phonon component than with 
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Mev Mev 
0) b) 

10 10 

5 

0 -10 -15 -10 -15 -20 
X X 

1.0 Mev 10 MeV 
c) d) 

-1.5 -20 

Fig. 1. The quantities Nn, 11n' ~" and~,. (figs. al, bl, cl and 

dl, respectively) as a functions of X. The calculations 

have been performed with formulas presented in table 1 and 

with C19l, C20l and C23l. 
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the one-phonon one. This indicates that in studying two-phonon 
states one cannot use only the components with nS2 in the wave 

function C7l. With increasing 19<1 complex components are 

suppressed more rapidly than the simple ones. As a result, the 

situation is reverse: the coupling between simple components 

becomes stronger than between complex ones. n+2 

It is seen from figs. lc and ld that the matr1x elements Mn , 
existing only if the Pauli principle is vwlated, are comparable 

n+• 
in magnitude with Mn This indicates once more the necessity of 

taking account of the interaction Hao· 
Figures la-ld, obtained for the case when the configurations 

are composed of the same phonons, prov1de a general and somewhat 

crude p1cture. However, this picture should be the similar also in 

the case when the configurat1ons are composed of different phonons 

if they are low-lying ones. It is known that the principal 

two-quasiparticle components of low-lying phonons are formed by a 
small number of quasiparticle close to the Fermi level. This fact 

leads to approximately the same violation of the Pauli principle 

as in the case considered above. Note that in figs. la-ld the 
dependence of L on 9( is neglected,which is incorrect in general. 

For instance, for two-quaslparticle stales Cwhen %~-2) we have 

L~. Thus, in the general case at 9(~ there should be a downward 

bend of the straight lines describing b and M' and some change of 
n o 

the curves for other matrix elements. 

4. Basic equations of the multiphonon version of the QPNH 

Let us consider the multiphonon version of the QPNM with the 

Hamiltonian C2l and wave function C7l including the components 
with 0SnS4 phonons of a different type. Then, in contrast with the 

accepted QPN~l-3/, the wave function C7l contains the components 

with n•3 and 4 and phononless Cn•OJ component. The latter will be 

shown to influence the properties of low-lying states essentially. 
Let us show that the inclusion of configurations with n•3 and 4 

leads to the appearance of terms in the secular equation which can 

be treated as a shift of the strength of low-lying two-phonon 

states towards lower excitation energies. 
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Using the variational procedure 

( 26 ) 

where ~ 

equations 
is the energy of the state with Krr . we get the system of 

0 

+ 

for the amp! itudes R' n> . 
9 1 ·' ' 9 n 

+ g' ~- g' 
' 2 3 

where 

P C~l=N Cw + .. . +w til -~l. 
gt'' 'gn 91'' 'gn gt gn 9 1 ·' · 9 n 

( 27. 1 ) 

( 27.2 ) 

( 27.3) 

( 27.4) 

( 27.5 ) 

( 28 ) 

From C27.1l-C27.5l one can easily derive the system of equations 
for R 1 •> . For this purpose, the sums of products of matrix 

9192 
elements of the same type are considered in the coherent 

has approximation that, for instance, for the amplitudes R14
' 

the form 91929394 
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As a result we have 

where 

l 
k k k k 

1 2 3 4 

l 

'\'R<2l FglgZ(,..,):;Q, 
L g' g' g' g' 'I 

g' g' 1 2 1 z. 

' 2 

k k k k 
I 2 31 4 

J J J -' 
CM ' 2 'J'P Cnl 

g g 
g 

k1ic2k31c:4 

k k k k -1 

CM·' .•, •J•pk k k k Cnl . 
JlJ2J3 1234 

( 30 ) 

( 31 ) 

( 32 ) 

( 33 ) 

In C31J-C33J indices j and k run the same values as index g. If 
the Pauli principle is neglected, the coupling of the two-phonon 

component with the n•O and 4 components disappear whereas with 
the n•1 and 3 ones is conserved: 

F
9

'
92 Cnl•P CnlC6 6 + 6 6 l 

g~ 9~ 9 1 9 2 9 1 • 9~ 9 2 • 9~ 9 1 • 9~ 9 2 • 9; 

( 34 ) 
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The secular equation has the form 

det IJF9~ 9~C~l 11=0. 
9,92 

( 35 ) 

In the QPNM/1- 3/, instead of C30J the system of equations for 
the amplitudes Rl'' is considered and the quantity P C~J is g g ,9 2 
shown to be a pole of the secular equation. In the present paper, 
since we investigate two-phonon states, the final system of 
equations is written for the amplitudesl\' 2

' . Note that due to 
91 92 

approximation of the type C29J, some deta1ls of the secular 
equation will depend on the type of the amplitudes for which the 
final equations are written. However, the basic properties of the 
secular equation to be considered below will not change. 

The secular equation C35J obtained in the approximation C29l 
may have extraneous roots. So, this equation is inapplicable for 
realist1c calculations but can be used for analysis and numerical 
estimates. 

The diagonal part of the secular 
written in the form 

equation at N >O can be 
9192 

9 9 
F ' •c 17J =N Cw + w + 11 - 11 

9192 9,92 9, 92 9192 
( 36 ) 

- l 

Earlier, in the refs. / 1- 3/ only the terms 
N Cw + w + 11 -1) - W' l CM

9
' 92 JP-' C1)J} C 37 J 9192 gt 92 9,92 9192 9 g g 

have been taken into account in the diagonal part. Let us consider the two-phonon component g, 9, with the 
strength mainly concentrated in the state with energy ~· It is 
seen from ( 36) that the interaction of the component g, g2 with the 
other components leads to the additional terms which can be 
treated as shifts with respect to the energycv +W +A . The 

91 92 9, 92 

15 



signs of the shifts are determined by the energy positions of 
these components with respect to ~· All the n-phonon states lying 
above C below) the state g, g

2 
in the excitation energy will push 

out the strength of this state towards lower Chigherl energies. 
Here, one can easily see an analogy with the well -known quantum 
mechanical example of mutual pushing apart of two interacting 
levels. 

If the two-phonon component considered is a low-lying one, 
the majority of components interacting with it lie higher in 
energy. These components will lead to a general coherent shift of 
the strength of g g towards lower energies and this shift 

1 • 
will cancel to a certain extent the shift~ arising due to the 

9192 
VIolation of the Pauli principle. Thus, the statemen(l-3/ that 
deformed nuclei should not contain low-lying two-phonon states 
which is based on the effect produced by the violation of the 
Pauli principle without taking into account the coupling with 
complex configurations needs revision. 

It is to be mentioned that equation (36) allows one to analyse 
some results obtained in the MPM and SCCM. For instance, the 
calculations within these models systematically provide that the 

o;r .state is higher than. the 4;~ state. This result is somewhat 
d1ff1cult to expla1n w1th1n the MPM and SCCM but it can easily be 
ir.terpreted with the use of eq. C36). Indeed, if the wave function 
C7J is composed only of y-vibrational phonons, then the o+ state 
will contain components with n=O, 2 and 4 whereas the 4+ state 
--components with n=2 and 4. Equation C36l will be 

( 38 ) 

k k k k 
_ 'I' CM, 2 , •J2p-• C~lll. 

L g g k k k k 
kkkk 12 1234 

I 2 3 4 

It is seen from C38J that the interaction of the component g,g
2 

with the phononless one that occurs only in the o•-states,shifts 
the strength of the c?r state towards higher excitation energy. 
which explains the above result.An analogous situation is expected 
for two-phonon o+and 2+ levels constructed of octupole phonons 
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with Af!L=311 and for two-phonon rf and 4' levels constructed of 
phonons with Af!i=321. 

5. Summary and conclusions 
The mul tiphonon version of the QPNM1- 3/ lakes into account 

not only the Pauli principle but also other effects important for 
the properties of low-lying two-phonon stales (coupling with 
mulliphonon configurations and phonon correlations in the ground 
slalel. Simple equations characterising the coupling between 
different components of the wave function and secular equation are 
derived. In virtue of the approximations made in this paper these 
equations cannot be used for realistic calculations but they are 
useful for clarifying the considered effects and for numerical 
estimations. They can serve as a starting point in considering a 
complicated nature of the interaction of configurations with a 
different number of phonons. 

Numerical estimates are obtained for the matrix elements 
coupling different configurations. The Hamiltonian term Q+Q+, 
which has earlier been disregarded in the QPNM while considering 
two-phonon excitations, was shown to be important. This 
interaction coupling configuration d1ffering by two phonons 
arises if the Pauli principle is violated. 

It is shown that if the violation of the Pauli principle 
shifts the strength of low-lying two-phonon states toward higher 
excitation energies, the coupling with mulliphonon configurations 
can give an opposite effect of the same order. As a result, the 
multiphonon version of the QPNM admits, in principle, the 
existence of low-lying two-phonon stales in deformed nuclei, which 
is in agreement with the ,results of other micros~opic models ;s,g;: 
However. these stales have not yet been observed experimentally. 
Apparently, in real nuclei the majority of low-lying two-phonon 
states, owing to the interaction with other configurations, are 
distributed over many levels. Then, the low-lying states will 
have, as a rule, small two-phonon components. The absence of 
low-lying two-phonon states may hold for many deformed nuclei but 
it will be caused more by the fragmentation of two-phonon states 
than by their pushing due to the violation of the Pauli principle. 

17 



This situation would not contradict the conclusions of the 
available models and the experimental data on the transfer 
reactions/13-15/ 

The author is grateful to Profs. V. G. Soloviev, 
R. Piepenbring. 0. Scholten and to Drs. A. I. Vdovin, V. V. Voronov 
and Nguen Dinh Dang for fruitful discussions. 
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