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Unitary Scattering Theory of Low-Energy
Pions by Light Nuclei:Formalism

The unitary approach to the decription of pion-nucleus
scattering (UST) based on the method of evolution of the
system with respect to the coupling constant is presented.
The basic equations are formulated for the direct calcula-
tion of the pion-nucleus phase shifts. A new derivation
of the unitary multiple scattering series which makes the
UST formalism similar to the standard Watson theory is gi-
ven. An iterative solution of these equations rapidly con-
vergent at low energies (below 70 MeV) is considered. The
role of the second-order effects in the pion-nucleus scat-
tering at low energies. are discussed.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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1. Introduction

The unitary scattering theory (UST) of a distinguishable
projectile (pion) on a nucleus is based on the Kirznits method of
evolution system not with the time as is customary, but with the
coupling constant /1/. The UST approach for the description of
the pion-nucleus interaction has been developed in several earlier
papers /2_5/. We rest heavily on thé results reported there, and
present here briefly the general formalism. We shall discuss in

" detail only those aspects of the theory which are treated in a new
way.

The evolution method being applied to the problem of
scattering of a pion by a nucleus allows one to construct a
multiple scattering series conserving the unitarity of the
scattering matrix at each step of successive approximations. 1In
this paper we present a new derivation of the unitary multiple
scattering series which makes the UST formalism similar to the
standard Watson theory/s/. A thorough treatment of the pion
absorption effect has been performed in refs./4’5/. In practical
calculations we approximate the 4absorption correction to the
pion-nucleus phase shifts by the pz—term supposing the dominance
of two-nucleon mechanism for the pion absorption.

At low energies the iterative series is rapidly converging,
and only the lowest iterations need to be taken into account. The
range of convergence is established by the microscopical
caléulations of the second-order corrections. The consistency of
the theory with the unitarity provides a correct separation of the

potential effects from the non-potential (i.e. true absorption)
effects.

Our paper is organized as follows. In sects.2 and 3 we
discuss the basic equations of the UST approach. A new derivation
of the multiple scattering series is given in sect.4. In sect.5 we
present the expressions for the pion-nucleus phase shifts
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calculated in the first- and second-order approximations. The
convergence of the iterative scheme is investigated. The inclusion
of pion absorption is discussed in>sect.6. In sect.7 the procedure
of taking into account the Coulomb effects is preéented. in the

concluding section 8 we summarise the main results of our study.
2. Basic equations

We assume for a moment that the m-nucleus interaction has a
potential nature*, and write the Hamiltonian in the form

A,
H=K_ +H +AV, V=7 vE (2.1)

A 4oy TN
where Hy is the Hamiltonian of a nucleus, K. is the kinetic energy
operator of the pion, V;Nis the pairwise potential of the
nN-interaction, and A plays the role of the nN-coupling constant.
We assume to have solved the solution of the nuclear many-body
problem with the channel Hamiltonian

h=K + H . (2.2)
Let us consider the evolution of the system as A varies from

0 to the real value A = 1. The parameter A is‘here introduced

formally and is allowed to rise to unity at the end of the
calculations.

A central part in the present approach is played by the

matrix elements Vuv = <u| V |v> of the interaction potential
taken between the eigenfunctions |u>, |v>, etc., of the
Hamiltonian (2.1). In terms of these matrix elements the

observables such as phase shifts are expressed.

It 1is convenient to introduce the eigenfunctions of the
channel Hamiltonian (2.2): |wu>, lwv>, etc. In this space of the
asymptotic, A-independent states, the equation for the m-nucleus
scattering T-matrix takes the form/3'4/

‘;_ T(E,A) = V(A) - 2mi T(E,A) 8(E ~ h) V(A) (2.3)
N .

*
The problem of taking into account the pion absorption channel is

discussed in sect. 6.

with the boundary condition T(E,A=0)=0. The Hermitian operator
V(Ar) is defined so that *
v v=<u| V|v> = <wu| V(A) lwv>, o (2.9)

u
or equivalently

+
vy = 2™ @) valta,
where ﬂ(+) is the Méller operator for the given Hamiltonian H:

|u>=Q(+)|wu>. The evolution equations for ﬂ(+)(l) and V(A) have

the form
Loy =g o™ M@y van P (2.5)
da T
and
L vy =t 0 By ¢V @) vy + heel “(2.6)
a P )

with the obvious boundary conditions n(+)(x=0)=1 and V(A=0)=V.
Here G(t)is the Gréen function of the channel Hamiltonian h

¢ () = (E-h +is7 L, (2.7)

and ﬁc = ]w6><w6| is the operator of projection onto the given
state'of h. Thus, ﬁo in (2.6) fixes the space of the state vectors
from which the evolution of the systém starts.

Egs. (2.3), (2.5) and (2.6) are the basic equations of the
approach providing a complete description of the pion-nucleus

scattering (both the elastic and inelastic).
3. Elastic scattering: optical model

The standard procedure to treat the elastic scattering is to
introduce nuclear ground state and excited state projection

operators, ﬁo = |0><0| and 6 =1-p , into the basic equations.

0
A

It can be shown/3'4/ that the submatrix T, =P,T ﬁb describing the

elastic scattering satisfies the equation

%— T (E,A) = U (E,a) - 2mni T (E,2) f’os(E - h) U (E,}), (3.1)

The effective energy-dependent operator U, (E/2) is determined by

the system of equations

U (E,A) = V() - 2mi K(E,A) @ 8(E - h) V() C(3.2)
4 ke, = U, (E,A) + 2mi ﬁo 5(E - h) K(E,2) (3.3)
da



with the boundary condition for the auxiliary operator
K(E,A): K(E,A=0)=0.

In the matrix representation eq. (3.1) is written in the form

4 «-,o0| T, (E,A) |k, 0> = <k’,0| U (E_,A) |k,0> -
da (3.4)
Cf dk‘e
2mi [SK0 <ke,0) T (B,A) (k7,05 8( E - E (k')
(2n)

<k’?,0] U (E,A) |k,0>,
Here k and k’ are the pion momenta before and after the collision,
E = Eo(k) = mn(k) + wA(k) is the collision energy in the
pion-nucleus c.m. , measured from the ground state of the nucleus,
- 2 2,1/2 - 2 2,1/2
wn(k) ( kK + mn) , wA(k) (k™ + MA) , and m and MA are the
masses of the pion and the nucleus, respectively. We have

introduced here a more detailed potation for the asymptotic
pion~nucleus states: |y¥> = |n,k >, where n denotes the quantum
numbers of the states of the nucleus (n=0 corresponds to the g.s.)
We take into account relativistic effects at the kinematical
level. k

For the partial-wave phase shifts of the pion-nucleus
scattering eq.(3.4) reads™’

. g— 8(k,A) = -1 £ 2 (k) <k’,0| U (E,2) |k, 0>, (3.5)
A

where goa(k) = 1{2/[2112 dE (k)/dk ] is the 1level density of the
scattering states. In the non-relativistic case an(k)=MnAk/2n{
where MnA is the reduced mass of the w-nucleus system.

The problem of finding the m-nucleus phase shifts has been
reduced to the calculation of the matrix element
<k’,0|UO(E,A)|k,O>. In the present approach the non-Hermitian
operator U,(E,2) plays the role of an optical potential. In the
low-energy limit, when the pion energy is less than the energy of

the first excited state of the nucleus, the operator UO(E,A)=V(A)

* s . s
In relations, like (3.5), which have a general nature, we do

not.indicate‘ explicitly the angular momentum, spin, etc.,

indices.

2

is Hermitian, and the scattering T - matrix satisfies the two -

.

body unitarity condition.
3.1. The iterative solution
The simplest method of solving the system of egs. (3.2) and

(3.3) is the expansion of UO(E,A) in powers of the Hermitian
operator V(A). For the phase shifts (3.5) we obtain

1 ‘
s(k) = -1 £_. (X) Idh {<k',0|V(A)|k,0> -2mi I f

TIA

o n>o
A
Idh1<k’,0|V(xl)|k",n> $(E (k) - E_(k'")) <k’’,n|V(A) ]k, 0> + ...}

: s

0

dkll (3'6)

(2m)

where En(k) = Eo(k) + cﬁ , €_ 1is the energy of the first excited

n
state of the nucleus,measured from the ground state. At low

_energies, as we shall show below, it is sufficient to consider

only the terms linear and quadratic in Vv(a).
4. Multiple scattering series

In the standard Watson theory/s/, ,the multiple scattering
series is constructed on the scattering T =~ matrix. In the
present approach an analogous expansion is derived for the
many-body Hermitian operator V(a) (2.4). In this section we
present a new derivation’ (cf. ref./z/ ) of the series for
V(A) .

4.1. Pion-bound nucleon v-matrix

Let us introduce an auxiliary operator vi(h) which is

determined by the equation,

dyin =3 [ﬁa viay a G(-)(Eo) iy + h.c.]. (a.1)

da o

Here, i is the operator of antisymmetrization of nuclear wave
functions,and §a=[wa><wa| is the operator of projection onto Qpe
giQen state of the channel Hamiltonian h (2.2). Formally,
eq.(4.1) coincides with (2.6), but the boundary condition for
vi(x) is vi(x=0)=viN. The operator vi(x) is analogous to the
Watson operator Ty that describes the interaction of a pion with

a bound nucleon.



Representing V(A) in the form

A
V(A) =¥ vi(d) + V. (d), : (4.2)
i=1
where VC(A) is some connected part, and substituting it into
eq.(2.6) one can obtain an inhomogeneous equation for VC:
S a v () =% { B [ T oviay i G(_)(Eo_) via)y + (4.3)
da o i#j .
i (-) 4 (-) 3 ol
+')i: [v () 6'7(E) AV () + v (a) GUT(EY) A vi(d) ] +

* V() c(”) (Ej) V() ] + nee )

with the boundary condition VC(A;0)=0.

The very form of this equation suggests the iterative

procedufe for its solution. Thus, we obtain

V() =T Vi) + I [ v ﬁa Idhl via)) aAc?) (E,) vI(1) + h.c. ]
' s 7 o0 o (4.4)

It is important that at each stage of this iteration procedure

V(A) remains to be Hermitiah. Therefore, the T-matrix is unitary
at each step of the successive abproximations.
4,2. Free two-body u—matri#

The second step of the derivation of the multiblejscattering

series for V(A) consists in its expression in terms of the matrix

ul(A) describing the pion interaction with a free nucleon. This

matrix is determined by the equation /3.4/

d i _ o i (-) i + 4

ax U (A) = ZS[ PS u(A) g (ES) u”(A) h.c. ’ (4.5)
where ﬁs = |x5><xé| is the operator of projection onto  the
eigenstates of the free Hamiltonian H = Kn + KA P Ry is the»

+ .
kinetic-energy operator of the nuclear nucleons, g(’)(E) is the

free Green function
+ -
9(')(E)=(E—H0:ia) 1, (4.6)
i
. 1N
for vl(h) in eq. (4.1). In eq.(4.5) the matrix u' acts in the

The boundary condition for ul(l) H ul(A=0) = v is the same as

(A + 1l)-particle space.

R o

To derive the expansién of vi(k) in terms of ui(k) we write
vi(A) in the form (cf. with (4.2)) )

v vi(h) = ui(k) + vi(h), (4.7)
where vé(h) is the correction caused by the binding of the nucleon
in the nucleus. Substituting (4.7) into (4.1) we obtainA the
equation for vi(k) in a form similar to eq. (4.3). The iterative

solution of this eguation in powers of ul()) yields the desired

expansion :

A
vty = uiay + Idkl{ [ E p,ut(a) 2 c(™) (Ep) wi(a) -
0
- E p_uta)) oy vt ] + h.c. } T

Finally, one can obtain the multiple scattering series for
V(A) in terms of ul(A) by substituting (4.8) into (4.4). The first
two terms of this series can be written in the form

vy = v )+ v@ @y, v@ ey =v®B o)+ v@ @y (a9

where

(1 A i
v h) =T u ), (4.10)
i=1
vz () =§ Idh [z B.outay oM (Ey Wi + 4.11
1 1+ : 1 s S )9 s 1 (4.11)
+ h.c. ],
) L
2 = R S =) J
VU () i),:j=1' £d7\1 { [EPS ut(a) g (Es) u’(a) - (4.12)

e i (=) A5
EPU ut(a) 67 Auj(hl) ] + h.c. }

Here ﬁaand ﬁsare the operators of projection onto the eigenstates
of the Hamiltonian H and h, respectively. The terms V(l) and VS”
describe the pion scattering by two nucleons of the nucleus in the
impulse approximation. The corrections to the impulse
approximation caused by the nuclear binding and the Pauli

exclusion principle are included in the second-order term V(z).



5. Pion-nucleus phase shifts

Substituting (4.9) into (3.6) we obtain expansion for the
n-nucleus phase shifts. For the real parts of the m-nucleus phase
shifts the first two iterations are

Re 5(k) =8 (x) + s(i) (k) + s(g) (x), (5.1)

where the first-order approximation 6(1) reads

1
A,
s (x) = -n SN j'dx <k’,0] T ul(a) |k,0>, (5.2)
i=1
. 0 .
and the second-order corrections -552) and 6(2) are
1 .
(2) - - (2)
821y = —m e, 0 j'da <x,0] v oy k00, (5.3)
)

The operators szl are defined in (4.11) and (4.12).
1
The imaginary parts of the m-nucleus phase shifts arise in

the second-order approximation (see (3.6))

1 A .
mn 8™ ) = 2 epu 00 [ar Jan <0l v ) @ 8@ - i

0 0

vy k05, 59

where V(l)is defined in ' (4.10), and 6 is  the operator of
projection onto the excited states of the nucleus which provides a
correct threshold behaviour of the inelasticity parameters.

The  structure of the matrix elements in (5.2) and (5.3) is

analogous to that of the expressions for the first- and second

-order optical potentials ( see,e.g. /7.8/ ).

5.1 First-order approximation
To evaluate the ground state expectation value in (5.2) we
use the so-called "semi-factored" approximation following ref./7/.

In this approximation the expression for 6(1)reads/3/
1
1 -
sW ) = -me 0 pp@far Bk k0, (5.9)
0 - .

yhere Py (@) is the nuclear (matter) form factor, and u is the
free pion-nucleon u-matrix averaged with respect to the single

-particle density F{!)(p,p)

u(k’,kiA) = ﬁanF Fg;) (p,p) <k,p+p lu(nr) Ik’,.p+po-q>_ (5-6)
Here, p=-k/A + [(A-l)/éA]-q, q=k’-k is the transfer momentum.

In the first-order approximation the m-nucleon phase shifts
are purely real. Hence,we must consider the second-order terms in

the series.

5.2. Second-order approximation: real parts of the phase shifts
The real parts of the second-order term contain two terms
(5.3); The first term sz)describes the pion rescattering by two
nuclear nucleons in the impulse approximation, and the seéond one
Bgz) contains the nuclear binding effgcts.

The correction 652) can be calculated using the approximation

of factorization/3/

(2) _ dkll A 1
3 (k) = -2nA(A-1)e__ (k) P c . (@q’,q’’)x
' A LGf [Eo(m - Eo(k'w] °°
(5.7)
1 A
xj'dxj'dxl ﬁ(k,k",')\l) ﬁ(k",k':hl),
0o O

where q’'=k’’- 'k, q=k’’~ k’, the operator ﬁ denotes the principle
value integration, u is defined in (5.6),and

coo(q1’q2) = <0}exp(iq1rl+iq2r2)lo> ( 5.8)
is the two~body correlation function. An accuracy ~of the
épproximation (3.7) can be estimated as to be of about 20%/3/.
, The expression for 622) like (5.7) is .obtained if both the

approximations of factorization and completeness are used

(2) ak’’ A 1

8(?) (k)= -2n A(A-1)e_, (K) B -

2 nA J(zn):‘ [E PO-E (ke)-a

- 1 1 ’ LEA TS _é__ ’ rr

Eo(k)—Eo(k")]'[A'l Poo(MHCo (@, a’") - g9~ P, (a) P (a )]xu
1 2
xJ.dAJ.dAlu(k,k":Al)u(k",k';)‘l)' (5.9)
2 o

.
Here, the parameter 4 is a certain mean excitation energy of a

nucleus measured from the ground state. In the derivation of (5.9)



we have assumed that all excited states are degenerate, i.e.
En=E°+A for n > 0. The parameter A is a free parameter of the
theory. In generél it depends on the nucleus and the energy of the

projectile.

’5.2.1. On the binding effects in l'@!eﬁvr We shall show here that

Ar
the correction Egz)is small at least at low energies, and a good

approximation for Re En is given by the sum

A

=5) (2)
Re & (k) =877 (k) +38 " (X). (5.10)

From (5.9) it follows that Eﬁg) vanishes as A - 0. In other
words, one can say that 622) disappears in the static limit of the
theory, i.e. as m /M- 0 (see, ref/a/). There is also an additional
reason.which provides the smallness of this correction. Let us

suppose that the functions Poor € and U in the integrand of

(5.9) are independent on the variable k’’. For this case we obtain

-]
5(2)~Xdkllzkll[ 1 P 1 : ]:0
2 K- k02 - P K2 - ko2
0 (]

. 2 _ :
for an arbitrary values of k0= 2 MnA A (MnA is the reduced mass
of the m-nucleus system). Hence, the main contribution in the
integral (5.9) stems from the domains where integrand
functions vary substantially. For Poo and Coo these domains are
determined approximately as

R VS A W
where a is the nuclear size parameter, and for u

k2 173, A = 2q,

2 2
where a is the parameter determining the range of the nN-interaction
= 0.2 fm°. To estimate the off-shell behaviour of the u-matrix
in (5.9) analytically we use a rank-one separable potential with
the Gaussian form factor 7%/
) .t 2
gv(k)—k exp ( avk ).
To estimate the contribution of 6(2) to the sum (5.1), it is

convenient to compare the term proportional to (Cm)— Puo pm) in

(5.9) with 5{*, and the term linear in p_, in (3.9) with 8.

10

» Estimating these ratios we obtain the following parameters
. . 2. Lo k3 1/2
€= Alko and €, = 2 (SnN / k‘)-kd(lz) ’

respectively. Here, & is a characteristic value for the nN phase

nN
shifts at a given energy of the pion. The numerical values - for
sland €, can be obtained by setting A=20 MeV (sée ref./lo/),.
BnN/k =0.3 fm (for T“54100 MeV) and a=1.5 fm: €= 0.15 and
€, = 0.05.

The above analysis shows that in Re th the effects caused by
the nuclear binding and the Pauli exélusion principle, which are

included in agz), play a minor role in Resn at low energies.

A
However, these effects are very important for the inelasticity

parameters.

5.3. Inelasticity parameters
Using the approximations of factorization and completeness

(as for (5.9)), we obtain the following expression for Ims(” /3/:

(2) _ 2 dn’’ 1 -
Imdop (k) = 2m A(A-1)e , (K) e, (Ky) | {'A—"f‘ Poo (W *+ (5 11)

1 A
A by 5 ’ .
Coola’,a’") — 525 poo(q')poo(q")}xjdxjdx1 Tk, k77 3a,) UK/, KA
0o 0

where q =k’-k, q’ =k’-k’’, q’'=k’’'-k, k'’'= kyn'’; n’’is the unit

vector, and kA is determined by the equation i
E (k) - E(ky) ~4=0. (5.12)

It is worthwhile to stress that using the approximation of
completeness we suppose only excited states of the nucleus (but
the g.s.) to be degenerate. Hence, A is a certain mean excitation
energy of the nucleus.

Unlike ReSnA, the imaginary parts of the wmn-nucleus phase
shifts depend rather strongly on A at low energies

Ims (5.13)

na~ Enalkp) <Ky | o
An additional dependence on A stems from the functions entering

into the integral (5.11).

11



Due to the Pauli principle, there is a certain cancellation
between different terms in (5.11). If we neglect the correlations
caused by the centre-of-mass mbtion, than

In 8,7 Ky [ pfa) -8, (a”,a'")],
where Sy is the the exchange part of the correlation function.
From this expression it follows that the effects of the

nuclear binding and the Pauli principle manifest themselves

nontrivially in the inelasticity parameters. The effect of the
Pauli principle tends to cancel ImanA. On the other hand the

nuclear binding effect (the dependence of S on k tends to

A)
destroy this cancellation. An appropriate value for A can be

determined from the analysis of the scattering data /107,

5.4. Two~body matrix elements

The ultimate goal of the calcul&tions is to relate the
n-nucleus phase shifts to the nN phase shifts. This problem has
been discussed in detail in ref./3/.

Relations (5.1)-(5.9) in ref./3/ complete thé determination
of the considered lowest iterations for the pion-nucleus phase
shifts in terms of the nN phase shifts, the two-particle
correlation function and nuclear form factor.

5.5.Convergence of the iterative series

Calculation of the second-order corrections makes it possible
to determine the range of convergence of the considered multiple
scattering series. For tﬁe case of n—4He this has been
investigated in/3/. It was shown that it is sufficient to take
into account only two terms in the series at energies below
70 - 80 MeV. For more heavier nuclei such as '°c and '°0 the
problem of convergence become more actual.

In our calculations we use for 4He, 2c and ®0 the form
factors, correlation functions ' and single-particle density
calculated in the harmonic oscillator model . The nuclear size

parameters are determined from the scattering data/ll/.

12

r

5.5.1.Convergence for ReanA. Table 1 lists the results of

«

: . s 12
calculations of two lowest iterations for ReanA for the n-""C

Table 1. Real parts of the s- and p-wave phase shifts (in degrees)

for m -'?C : potential calculations

T, Mev | 51 802V 15 (1) 502 52‘) 5§2), 5p=aé‘)+a§”
14 -3.06 |-4.20 | -7.26 4.57 | 0.74 5.31
(~37.55)
5o -5.22 |-6.89 | --12.11 23.04 | 2.94 25.98
(-52.26)
68 3.79 . |-s.30 -1.51 31.92 | 2.87 | 34.79
(-62.87)

scattering. We observe a rapid convergence for the p- and higher
partial waves, but not for the s-wave.
Taking into account the particular isotopic structure of the

first-order term (5.5) for the s-wave

(1) [¢} 1}
5nA's 8 t28, (5.18)
where S;I zj'is the nN phase shifts, we present in table 1 (in
r .

brackets) the results of calculations when the sign in (5.18) has
been changed. We observe that in this case coﬁvergence in the
s-wave is restored. It is seen that the problem of convergence for
the s~wave is not of the dynamic origin but reflects the effect of
isotopic cancellation in the first-order term. The same result has
been obtained also for m-'°0.

Earlier/3/; it has been shown that for the n-‘He scattering
the second-order correction in the s-wave becomes dominant only at
energies below 30 Mev. From table 1 it follows that for heavier
nuc¢lei the pion rescattering effect in the s-wave must be takeﬁ‘
into account in the whole energy range up to 70 MeV.

6. Pion absorption correction
The generalization of any multiple scattering theory to the

case in which the number of particles is not conserved brings

13



about complications in the formalism due to an essential increase

/12,137

in the number of basic equations In the UST-approach the

problem of taking into account the pion absorption has been

/4.5/

considered in refs. where the coupled channel method a’la
Koltun and Mizutani/lz/has been developed. It has been shown that
the problem is effectively reduced to the consideration of pion
scattering by two potentials. The resulting expression for the

n-nucieus phase shifts reads as

Saa(k) = 8E2C () + 8255 (k), (6.1)

Here, sgzt is the phase shift caused by the pure potential
scattering. The method of its calculation is presented above. The

absorption correction has the form

1
52°5(k) = -m e _, (k) Idn <w,€2’ | Ry(E,h) |¢S{o>, (6.2)
0

where wé+é and wét)o

the potential interaction before and after the absorption. The

describe the distortion of the pion wave by

operator RO(E,n) describes all processes involving pure nucleonic
intermediate states. The dynamic parameter 7w, which varies from 0
to 1, plays the role of a coupling constant of the channels. The
exact system of equations for R, (E,n) has been derived in ref.”/%/.

Assuming the two-nucleon mechanism for the pion absorption

abs

one can approximate snA by the term proportional to pz(r) (p

is the nuclear density)/4’5/

abs 1+ £

8 (k) = A(A-1) k QZ(Q) [ B (k) + T (k)x-k9], (6.3)
A : 1+ 26/A ° °

where §=wn(k)/2M, W is the pion. energy, M is the mass of a

nucleon, sz(q) is the Fourier transform of the square of p(r)

(normalized to unity), q=k-k’ is thé momentum transfer, and k and

k’ are the pion momenta in the (n,2N) center-of-mass systen
k= (k-€P))/(1+§), k'=(k'-EP[)/ (1+E),

where P and P/ are the total momenta of the pair of nucleons (ih

the approximation in which they are "frozen": P, = -2k/A and
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o=P, — a)- Expression (6.3)  is obtained in the local density
approximation supposing the pion absorption.operator is of a short
range. The lowest s- and p-waves in the m-2N scattering have been
taken into account.
one can expect that the parameters Eo and E% corresponding
to the: short range part of the mn~nucleus interaction are
approximately constant in the 1low energy domain 0 - 50 MeV
(see refs. /5’10/). ' '

At low energies the complex parameters Eo and Eo we determine
from the - experimental data on the n-nucleus scattering
lengths (a, = limso(k)/k,-k + 0) and volumes
(a, = 1im61(k)/k3, k- 0). The experimeytal ; values’ for the
n-nucleus lengths and volumes can be determined from the data on

the strong interaction shifts and widths in the 1s- and 2p-levels

pot
0,1

of the pionic. atoms. The quantities a are calculated in the
frameéwork of the potential theory.

The parameters B and g, differ from the cérresponding
parameters of the optical potential by inclusion of the effects
associated with distortion of the pion wave in the elastic
channel.:

6.1. On the double counting problém
To avoid the problem of double. counting, the two-channel

12,4/ prescribes subtraction of the pole term in the

formalism/
elementary nN amplitude in the pll—channel when we calculate the
pure potential part of the m-nucleus phase shifts (6.1). Howevér,
if we use a local density approximation for calculating 8225 tben
this subtracﬁion procedure is not needed. This conclusion comes
from the diagram analysis of the iterative series for calculating
both the terms in the two potential formula (6.1). In the
expansion of 5i§s (in ternms of the nNN-vertex functions) there is
a class of diégrams which can be considered as iterations of the

Born pole term of the mN u-matrix in the p  -wave. Separating this
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diagrams, which are indeed of a "long-range" type, from 5z§s

and
adding thenm to Sigt, we get the iterative series for aggt in terms

of the full N u-matrix in the Py -channel.

) 7. Coulomb effects
A characteristic feature of the present approach is that the
formalism is developed for a direct calculation of the phase
shifts caused by the strong interaction. Therefore, the allowance
for the Coulomb interaction is hére the problem inverse to that of
obtaining the hadronic phase shifts from the phase shift analysis
of the scattering data.
We parameterize the pion-nucleus scattering amplitude as
usual
an(G) = fc(e) + fsc(a), (7.1)
Here, £(6) is the Coulomb amplitude, ahd foc is the

nuclear-~Coulomb amplitude

£ (0) =1} o280y (G2l _ 4
sc(® ~ R L (e o (7.2)

+
where the Coulomb phases SZ are’ calculated for the nonpoint charge
distribution in accordance with /14/. The total nuclear phase
shifts A% take into account the effect of the Coulomb distortion

of the pion wave. We use the formalism of approximate treating for

the Coulomb corrections which has been developed in rets./14:15/

* (*)

Ny =80 % 85y s (7.3)

2

+

where B;A p are the pure hadronic phase shifts and the Coulomb
r

corrections are calculated as

+ . R
Resp , = a, [dAy/dk + sin(2A,)cosh(2B,)/2k ] (7.4)

% + s
ImBR’l = a, [dBe/dk + COS(ZAt)Slnh(ZBl)/Zk J.

e = =
Here, a, ReanA,e, B, Im&nA,t , and
© 1
8, (0 =2 1" K Jdk’
0

k2 ch,6 2 ch, 2
;2__——_}(_’5 Idx Py(x) Fp(d) Fn (a”)
-1 (7.5)
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c h

is the Coulomb factor, q2=k? + k'2 - 2kk'x, .FAh and Fﬁ are the
charge form factors of the nucleus and of the pion, respectively,
and nt is thé,sémmerfeid parameter : 11t = tZ2a/B, a=1/137, B is the
pion velocity in the lab. c.m., Z is the charge of the nucleus.
The approximation (7.4) is valid if the Coulomb interaction can be
considered as a small correction.

8.Conclusion

In this paper we discussed the UST-approach and its
applications to the description of pion-nucleus interaqtidn. In
view of the formal developﬁent of the approach, we presented a new
derivation of the unitary multiple scattering series which makes
the UST formalism very similar to the standard optical model (in
the momentum space) based on the Watson multiple scattering
theory.

The calculational scheme of the UST-approach is much simpler
in comparison with that of the momentum space optical nodel /7-9,16/
because the UST equations are formulated on the pion-nucleus phase
shifts. This makes it possible to search for the dynamics of their
formation in'a straightforward way by calculating microscopically
second-order corrections.

In the present paper we developed an iterative method for
solving the basic equations appropriate for the study of
interaction of low-energy pions with‘light nuclei. Analysing the
second -order corrections we determined the range of convergence
of the iterative series (below ~ 70 MeV). At these energies it is
sufficient to take into account only two lowest iterations.

Calculating the second-order term in Resggt, we demonstrated,
the importance of the pion rescattering effect in the s-wave in
the whole energy range up to ~ 70 MeV. It has been shown that the
nuclear binding only slightly affects the real parts of the
pion-nucleus phase shifts, but plays very important role in the

formation of the inelasticity parameters (Imagzt). The effect of



the Pauli principle is also very important for Im65§t and tends to
cancel this quantity at low energies.
The author is indebted to V. B. Belyaev and D. A. Kirzhnits

for stimulating discussions and helpful advices.
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