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1. Introduction 

The unitary scattering theory (UST) of a distinguishable 

projectile (pion) on a nucleus is based on the Kirznits method of 

evolution system not with the time as is customary, but with the 

coupling constant /l/. The UST approach for the description of 

the pion-nucleus interaction has been developed in several earlier 

papers 12- 5/. We rest heavily on the results reported there, and 

present here briefly the general formalism. We shall discuss in 

detail only those aspects of the theory which are treated in a new 

way. 

The evolution method being applied to the problem of 

scattering of a pion by a nucleus allows one to construct a 

multiple scattering series conserving the unitarity of the 

scattering matrix at each step of successive approximations. In 

this paper we present a new derivation of the unitary multiple 

scattering series which makes the UST formalism similar to the 

standard Watson theor/61. A thorough treatment of the pion 

absorption effect has been performed in refs./4 , 5/. In practical 

calculations we approximate the absorption correction to the 

pion-nucleus phase shifts by the p2-term supposing the dominance 

of two-nucleon mechanism for the pion absorption. 

At low energies the iterative series is rapidly converging, 

and only the lowest iterations need to be taken into account. The 

range of convergence is established by the microscopical 

calculations of the second-order corrections. The consistency of 

the theory with the unitarity provides a correct separation of the 

potential effects from the non-potential (i.e. true absorption) 
effects. 

Our paper is organized as follows. In sects.2 and 3 we 

discuss the basic equations of the UST approach. A new derivation 

of the multiple scattering series is given in sect.4. In sect.5 we 

present the expressions for the pion-nucleus phase shifts 
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calculated in the first- and second-order approximations. The 

convergence of the iterative scheme is investigated. The inclusion 

of pion absorption is discussed in sect.6. In sect.7'the procedure 

of taking into account the Coulomb effects is presented. In the 

concluding section 8 we summarise the main results of our study. 

2. Basic equations 

We assume for a moment that the rr-nucleus interaction has a 

potential nature*, .and write the Hamiltonian in the form 
A i 

H = K +HA+ AV, V =Iv N' (2.1) 
rr i=l rr ' 

where HA is the Hamiltonian of a nucleus, Krr is the kinetic energy 

operator of the pion, v*Nis the pairwise potential of the 

rrN-interaction, and A plays the role of the rrN-coupling constant. 

We assume to have solved the solution of the nuclear many-body 

problem with the channel Hamiltonian 

h = Krr + HA (2.2) 

Let us consider the evolution of the system as A varies from 

0 to the real value A = 1. The parameter A is here introduced 

formally and is allowed to rise to unity at the end of the 

calculations. 

A central part in the present approach is played by the 

matrix elements vµv = <µI v Iv> of the interaction potential 

taken between the eigenfunctions Iµ>, Iv>, etc., of the 

Hamiltonian (2.1). In terms of these matrix elements the 

observables such as phase shifts are expressed. 

It is convenient to introduce the eigenfunctions of the 

channel Hamiltonian (2.2): II/Iµ>, II/Iv>, etc_. In this space of the 

asymptotic, A-independent states, the equation for the rr-nucleus 

scattering T-matrix takes the forn/ 3 • 4/ 

d 

dA 
T(E,A) = V(A) - 2rri T(E,A) 8(E - h) V(A) (2.3) 

*The problem of taking into account the pion absorption channel is 

discussed in sect. 6. 
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with the boundary condition T(E,A=0)=0. The Hermitian operator 

V(A) is defined so that 

vµv=<µI Viv>" <1/1µ1 V(A) II/Iv>, (2.4) 

or equivalently 
+ 

V(A) = n<+) (A) V n<+) (A)/ 

where n<+) is the Moller operator for the given Hamiltonian H:· 

1µ>='1(+) jl{I >. The evolution equations for n<+) (A) and V(A) have 
µ 

the form 
~ nC+) (A) 
dA 

and 

I nC+) (A) G(+) (E ) V(A) 
(j 

(j 

,.. 
p (j (2.5) 

.2... V(A) = I [ P V(A) G(-) (E ) V(A) + h.c. ] · (2.6) 
dA a- a- . a-

with the obvious boundary conditions n<+) (A=0)=l and V(A=0)=V. 

Here G(t)is the Green function of the channel Hamiltonian h 

G(±) (E) = ( E - h ± i8)-l, (2.7) 

and P " j l{I ><1/1 I is the operator of projection onto the given 
(j (j (j 

state of h. Thus, P in (2.6) fixes the space of the state vectors 
(j 

from which the evolution of the system starts. 

Eqs. (2.3), (2.5) and (2.6) are the basic equations of the 

approach providing a complete description of the pion-nucleus 

scattering (both the elastic and inelastic). 

3. Elastic scattering: optical model 

The standard procedure to treat the elastic scattering is to 

introduce nuclear ground state and excited state projection 

operators, P
O 

= I 0><0 I and Q = 1 - P
O 

, into the basic equations. 

It can be shown/3 ' 4/ that the submatrix T " P T P describing the 
0 0 0 

elastic scattering satisfies the equation 

d ,.. 
- T (E,A) = U (E,A) - 2rri T (E,A) P 8(E - h) U (E,A) 
dA o o o o o • 

(3 .1) 

The effective energy-dependent operator U
0

(E,A) is determined by 

the system of equations 

U
0

(E,A) = V(A) - 2rri K(E,A) Q 8(E - h) V(A) 

d 

dA 
K(E,A) = U

0
(E,A) + 2rri P

0 
8(E - h) K(E,A) 

3 
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with the boundary condition for the auxiliary operator 

K(E,A): K(E,A=O)=O. 

In the matrix representation eq. (3.1) is written in the form 

~ <k' ,OJ T (E,A) Jk,O> = <k' ,OJ U (E ,A) Jk,O> -
dA o o (3 .4) 

2rri J dk" <k',OJ T (E,A) Jk",O> o( E - E (k")) 
( 2rr)3 o 0 

<k'',OJ U
0

(E,A) Jk,O>. 

Herek and k' are the pion momenta before and after the collision, 

E E
0

(k) wrr(k) + wA(k) is the collision energy in the 

pion-nucleus c.m. , measured from the ground state of the nucleus, 

wn (k) = ( k
2 + m~) 

1
/

2
, wA (k) = (k2 + M1) 1

/
2

, and mrr and MA are the 

masses of the pion and the nucleus, respectively. We have 

introduced here a more detailed notation for the asymptotic 

pion-nucleus states: J 1/1> J n, k >, where n denotes the quantum 

numbers of the states of the nucleus (n=O corresponds to the g.s.) 

we take into account relativistic effects at the kinematical 

level. 

For the partial-wave phase shifts of the pion-nucleus 

scattering eq. (3.4) reads* 

d 
- o(k,A) = -rr C A(k) <k',oJ u (E,A) Jk,O>, 
dA rr o 

(3. 5) 

where crrA (k) = k2/[2rr2 dE
0

(k)/dk J is the level density of the 

scattering states. In the non-relativistic case 
. 2 

crrA (k) =MrrAk/2rr , 

where MrrA is the reduced mass of the rr-nucleus system. 

The problem of finding the rr-nucleus phase shifts has been 

reduced to the calculation of the matrix element 

<k',OJU
0

(E,A) Jk,O>. In the present approach the non-Hermitian 

operator U
0 

(E, A) plays the role of an optical potential. In the 

low-energy limit, when the pion energy is less than the energy of 

the first excited state of the nucleus, the operator U
0

(E,A)=V(A) 

*In relations, like (3.5), which have a general nature, we do 

not indicate explicitly the angular momentum, spin, etc., 

indices. 
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is Hermitian, and the scattering T - matrix satisfies the two -

body unitarity condition. 

3.1. The iterative solution 

The simplest method of solving the system of eqs. (3.2) and 

(3.3) is the expansion of U
0

(E,A) in powers of the Hermitian 

operator V(A). For the phase shifts (3.5) we obtain 

1 

o(k) = -rr c A(k) JdA {<k',OJV(A) Jk,O> - 2rri [ J ~·: 
rr 

O 
n>o (2rr) 

(3. 6) 

A 

fdA
1
<k',OJV(A

1
)lk",n> o(E

0
(k) - En(k")) <k",nlV(AJlk,O>_ + ···}, 

0 

where En(k) = E
0

(k) + c~, en is the energy of the first excited 

state of the nucleus,measured from the ground state. At low 

. energies, as we shall show below, it is sufficient to consider 

only the terms linear and quadratic in V(A). 

4. Multiple scattering series 

In the standard Watson theor/61, the multiple scattering 

series is constructed on the scattering T - matrix. In the 

present approach an analogous expansion is derived for the 

many-body Hermitian operator V(A) (2.4). In this section we 

present a new derivation (cf. ref.1 21 ) of the series for 

V(A). 

4.1. Pion-bound nucleon v-matrix 

Let us introduce an auxiliary operator vi(A) which is 

determined by the equation 

~ vi(A) = [ [P vi(A) AG(-) (E) vi(A) + h.c.] 
dA er er er 

(4 .1) 

Here, A is the operator of antisymmetrization of nuclear wave 

functions,and P =JI/I ><1/1 I is the operator of projection onto the er er er .. 

given state of the channel Hamiltonian h (2.2). Formally, 

eq. (4.1) coincides with (2.6), but the boundary condition for 

vi (A) is i i i ) . h v (A=O)=vrrN" The operator v (A 1.s analogous to t e 

Watson operator "i that describes the interaction of a pion with 

a bound nucleon. 
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Representing V(>.) in the form 
A . 

V(>.) = [ v 1 (>.) 
i=l 

+ Vc(>.), (4 .2) 

where Vc(>.) is some connected part, and substituting it into 

eq.(2.6) one can obtain an inhomogeneous equation for V : 
C 

~ V (A) = [ { P [ [ vi(A) AG(-) (E) vj(>-) + 
d>. c '1' '1' i"j '1' 

(4. 3) 

+ [ (vi(>.) G(-) (E) Av(>.) + V (>.) G(-) (E) A vi(>.) ) + 
i (J' C C (J' 

+ Vc(>.) G(-) (E'1') Vc(;>.)] + h.c. 1 
with the boundary condition Vc(>.=O)=O. 

The very form of this equation suggests the iterative 

procedure for its solution. Thus, we obtain 

A 

V(>.) = [vi(>.)+ [ ( [ P J d>. vi ( ;>. ) A G ( - ) ( E ) vj ( >. ) + h. c. ) 
i i"j 

(J' 1 1 · (J' 1 
(1' 0 

+ . • . (4. 4) 

It is important that at each stage of this iteration procedure 

V(>-) remains to be Hermitian. Therefore, the T-matrix is unitary 

at each step of the successive approximations. 

4.2. Free two-body u-matrix 

The second step of the derivation of the multiple-scattering 

series for V(>-) consists in its expression in terms of the matrix 

ui(A) describing the pion interaction with a free nucleon. This 

matrix is determined by the equation / 3 , 4/ 

~A ui(A) = rs[ PS ui(A) g<-) (Es) ui(A) + h.c.] I (4 .5) 

A 

where Ps lxs><xsl is the operator of projection onto the 

eigenstates of the free Hamiltonian H
0 

= Krr + KA , KA · 

kinetic-energy operator of the nuclear nucleons, g (±) (E) 

free Green function 

is the 

is the 

g (±) (E) = ( E - H ± io ) -l , 
0 

(4 .6) 

The b~undary condition for ui(>.) ui(>.=O) = v~N is the same as 

for vi(>-) in eq. (4.1). In eq. (4.5) the matrix ui acts in the 

(A+ 1)-particle space. 
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To derive the expansion of vi(A) in terms of ui(>.) we write 

vi(>.) in the form (cf. with (4.2)) 

vi(>.) = ui(>.) + v!(>-), (4. 7) 

where v!(>-) is the correction caused by the binding of the nucleon 

in the nucleus. Substituting (4.7) into (4.1) we obtain the 

equation for v!(>-) in a form similar to eq. (4.3). The iterative 

solution of this equation in powers of ui(A) yields the desired 

expansion: 

A 
vi(>.) = ui(A) + Jct>- { [ E P ui(A) AG(-) (E) ui(>.) -

1 (J' 1 (J' 1 
0 (1' 

- [ P ui(>. ) g(-) (E ) ui(>. ) ] + h.c. } (4.8) -S S 1 S 1 , 

Finally, one can obtain the multiple scattering series for 

V(>.) in terms of ui(A) by substituting (4.8) into (4.4). The first 

two terms of this series can be written in the form 

V(>.) = V(t) (>.) + v< 2 l (>.), 

where 

v< 2 > (>-) = v< 2 > (>-) + v(2) (>-) 
1 1 I 

(4.9) 

A 
ui(;>.), V <1 hi = [ 

i=l 
(4.10) 

A 

v<
2

> (A) = ~ Jct>-1 [ [ P ui(A) g<-) (E) uj(Al) + 
1 i"j O S S 1 S 

+ h.c. ] , 

(4.11) 

A 

v< 2
> (A) = ~ Jct>- { [ [ P ui(A) g<-) (E) uj(A) 

2 • ·-1· 1 s 1 s 1 
l.,J- 0 s 

(4.12) 

- [ P ui(A ) G(-) (E ) A uj (>.) ] + h.c. } 
(1' 

(J' 1 (J' 1 • 

A 

Here P(J'and Psare the operators of projection onto the eigenstates 

of the Hamiltonian Hand h, respectively. The terms v< 1 > and v<~l 
1 

describe the pion scattering by two nucleons of the nucleus in the 

impulse approximation. The corrections to the impulse 

approximation caused by the nuclear binding and the Pauli 

exclusion principle are included in the second-order term v< 2 l. 
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5. Pion-nu~leus phase shifts 

Substituting (4.9) into (3.6) we obtain expansion for the 

rr-nucleus phase shifts. For the real parts of the rr-nucleus phase 

shifts the first two iterations are 

Re c3 (k) = c3 (i) (k) + c3 (~) (k) + c3 <;> (k), 

where the first-order approximation .s< 1 l reads 

1 A 
.s< 1 l(k) = -rr c A(k) Jd;>. <k',OI [ ui(;>.) lk,O>, 

rr i=l 
0 ' 

and the second-order corrections c3C 2 l and .s< 2 l are 
1 2 

1 

.s!~;(k) = -rr crrA(k) Jd;>. <k',OI v!~;(A) I k,O>. 
0 

The operators vC 2 l are defined in (4.11) and (4.12). 
1 1 2 

(5.1) 

(5.2) 

(5.3) 

The imaginary parts of the rr-nucleus phase shifts 

the second-order approximation (see (3.6)) 

arise in 

1 ;>. 

Im .s<2 l (k)_ = 2rr2 crrA(k) JdA Jd;>.l<k' ,of v< 1 > (Al) Q cS(E - h)x 

0 0 

v< 1 > (;>.) I (5.4) 

where v< 1 > is defined in (4 .10), and Q is 

k,O> 1 

the operator of 

projection onto the excited states of the nucleus which provides a 

correct threshold behaviour of the inelasticity parameters. 

The structure of the matrix elements in (5.2) and (5.3) is 

analogous to that of the expressions for the first- and second 

-order optical potentials ( see,e.g. / 7 , 8/ ). 

5.1 First-order approximation 

To evaluate the ground state expectation value in ( 5. 2) we 

use the so-called "semi-factored" approximation following ref./7/_ 

In this approximation the expression for c3C 1>reads/3/ 

1 

c3(t)(k) = -rr c A(k) p (q)Jd;>. u(k',k;;>.) rr oo , (5.5) 
0 

where p
00

(q) is the nuclear (matter) form factor, and ii is the 

free pion-nucleon u-matrix averaged with respect to the single 

-particle density F(i) (p,p) 
00 

8 
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ti 

l, 

u(k' ,k;;>.) = J~ F(l) (p,p) <k,p+p lu(;>.) lk' ,p+p -q> (5.6) 
(2rr) 3 oo o • o . 

Here, p
0
=-k/A + [(A-1)/2AJ.q, q=k'-k is the transfer momentum. 

In the first-order approximation the rr-nucleon phase shifts 

are purely real. Hence,we must consider the second-order terms in 

the series. 

5.2. Second-order approximation: real parts of the phase shifts 

The real parts of the second-order term contain two terms 

(5.3). The first term c3( 2)describes the pion rescattering by two 
1 

nuclear nucleons in the impulse approximation, and the second one 

.s< 2l contains the nuclear binding effects . 
2 

The correction c3~ 2) can be calculated using the approximation 

of factorization/ 3/ 

c3 (k) = -2rrA(A-l)c (k) --(
2) Jdk'' 
1 rrA (2rr)3 

1 ;>. 

A( 1 p --
E (k) -

0 

E
0

(k',) )coo(q' ,q' ') x 

(5.7) 

xJd;>.Jd;>. u(k k'';;>.) u(k'' k'•;>.) 
1 ' 1 ' ' 1 I 

0 0 

where q'= k''- k, q=k''- k', the operator P denotes the principle 

value integration, ii is defined in (5.6),and 

C
00

(q
1
,q

2
) = <Olexp(iq

1
r

1
+iq

2
r

2
) IO> 5.8) 

is the two-body correlation function. An accuracy of the 

approximation (3.7) can be estimated as to be of about 20%/3/_ 

The expression for .s! 2 l like (5. 7) is ,obtained if both the 

approximations of factorization and completeness are used 

.s!2) (k)= -2rr A(A-l)crrA(k) J(::;: P( -E-bk_)_~_E_b_k-'
1
·)·-A· 

_ ___ l ___ )·[ A~l Poo(q)+Coo(q',q'')-
E (k)-E (k") 

o o 1 ;>. 

A 
A-1 Poo(q')P00 (q")]x 

xJd;>.Jd;>. u(k k''•;>. )u(k'' k'•;>.) 
1 

1 1 
1 ' ' 1 • (5.9) 

0 0 

Here, the parameter A is a certain mean excitation energy of a 

nucleus measured from the ground state. In the derivation of (5.9) 
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we have assumed that all excited states are degenerate, i.e. 

En =E
0 

-t-t. for n > 0. The parameter t. is a free parameter of the 

theory. In general it depends on the nucleus and the energy of the 

projectile. 

5. 2. 1. On the binding effects in ReorrA. We shall show here that 

the correction .s< 2lis small at least at low energies, and a good 
2 

approximation for Re orrA is given by the sum 

Re orrA (kl = o (tl (kl + o ?l (kl. (5.10) 

From (5.9l it follows that o.<;l vanishes as t. ➔ O. In other 

words, one can say that 0~
2l disappears in the static limit of the 

theory, i.e. as m /M ➔ o (see, ref/3/l. There is also an additional 
. 1l 

reason which provides the smallness of this correction. Let us 

suppose that the functions p
00

, C
00 

and u in the integrand of 

(5.9l are independent on the variable k''· For this case we obtain 

"' ( 1 
o !2l - J dk' ,2 k', -k-2------=_=---k-,-,;-2-_-k~~ 

0 

- 1 ' ) • 2 . - 0 
k - k' ,2 -

for an arbitrary values of k2 = 2 M A t. (M A is the reduced mass 
0 1l 1l 

of the rr-nucleus 

integral (5.9) 

system). Hence, the 

from the 

main contribution in the 

ntems domains where 

functions vary substantially. For Pao and C these 
00 

determined approximately as 

k', ~ 1/P) t/2, ;\. - a 2/2, 
1 

where a is the nuclear size parameter, and for u 
k" ~ 1/(;\. )

1
/

2 
;\. = 2a 2 I 2 I 

integrand 

domains are 

where a is the parameter determining the range of the rrN-interaction 

a "" 0. 2 fm2
• To estimate the off-shell behaviour of the u-matrix 

in (5.9) analytically we use a rank-one separable potential with 

the Gaussian form factor / 9/ 

gv ( k) =iexp (-avk
2

). 

To estimate the contribution of .s< 2 l to the sum (5.1), it is 
2 

convenient to compare the term proportional to (C
00 

- p
00 

p
00

) in 

(5.9) with .s< 2 l, and the term linear in p in (3.9) with o(t). 
1 00 

10 
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;~ 

.\ 

, Estimating these rat.fas we obtain the following parameters 

c 1 = ;\. 1k~ and c
2 

= 2 (orrN / k• )•k!•(;\.)
1

/
2

, 

respectively. Here, orrN is a characteristic value for the rrN phase 

shifts at a given energy of the pion. The numerical values for 

c 1and c
2 

can be obtained by setting t.=20 MeV (see ref./lO/), 

orrN/k"' 0.3 fm (for Trr"' 100 MeV) and a=l.5 fm: c
1

:< 0.15 and 

c
2

"' 0.05. 

The above analysis shows that in Re orrA the effects caused by 

the nuclear binding and the Pauli exclusion principle, which are 

included in o <
2
>, play a minor role in Reo A at low energies. 

2 1l 

However, these effects are very important for the inelasticit~ 

parameters. 

5.3. Inelasticity parameters 

Using the approximations of factorization and completeness 

(as for (5.9)), we obtain the following expression for Im.s< 2l / 3/: 

Imo< 2 >(k) 
rrA 

2 J dn' '{ 1 2rr A(A-l)crrA(k)crrA(kt.) 4rr A-1 Poo(q) + (5.11) 

1 ;\. 
A 

C00 (q',q'') - A-1 p (q') p (q") }xJd;\.Jd;\. o o a a 1 
u(k,k' 1 ;;\.1) u(k' 1 ,k' ;\) 

0 0 

where q = k'- k, q' = k'- k'', q' '= k' '- k, k' '= kt.n''; n' 'is the unit 

vector, and kt. is determined by the equation 

E
0

(k) - E
0

(kt.) - t. = 0. (5.12) 

It is worthwhile to stress that using the approximation of 

completeness we suppose only excited states of the nucleus (but 

the g.s.) to be degenerate. Hence, t. is a certain mean excitation 

energy of the nucleus. 

Unlike ReorrA' the imaginary parts of the rr-nucleus phase 

shifts depend rather strongly on t. at low energies 

ImorrA - crrA (kt.) - kt. . (5.13) 

An additional dependence on t. stems from the functions entering 

into the integral (5.11). 
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Due to the Pauli principle, there is a certain cancellation 

between different terms in (5.11). If we neglect the correlations 

caused by the centre-of-mass motion, than 

Im orrA":' kt. [ Pao(q) - soo(q',q")J, 

where S
00 

is the the exchange part of the correlation function. 

From this expression it follows that the effects of the 

nuclear binding and the Pauli principle manifest themselves 

nontrivially in the inelasticity parameters. The effect of the 

Pauli principle tends to cancel ImorrA. On the other hand the 

nuclear binding effect (the dependence of S on k.-.) tends to 

destroy this cancellation. An appropriate value for t. can be 

determined from the analysis of the scattering data /lO/ 

5.4. Two-body matrix elements 

The ultimate goal of the calculations is to relate the 

rr-nucleus phase shifts to the rrN phase shifts. This problem has 

been discussed in detail in ref./3/_ 

Relations ( 5. 1) - ( 5. 9) in ref / 3
/ complete the determination 

of the considered lowest iterations for the pion-nucleus phase 

shifts in terms of the rrN phase shifts, the two-particle 

correlation function and nuclear form factor. 

5.5.Convergence of the iterative series 

Calculation of the second-order corrections makes it possible 

to determine the range of convergence of the considered multiple 

scattering series. For the case of rr-4He this has been 

investigated in/3/. It was shown that it is sufficient to take 

into account only two terms in the series at energies below 

70 - 80 MeV. For more heavier nuclei such as 12c and 160 the 

problem of convergence become more actual. 

In our calculations we use for 4He, 12C and 160 the form 

factors, correlation functions and single-particle density 

calculated in the harmonic oscillator model The nuclear size 

parameters are determined from the scattering data/ll/. 
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5.5.1.Convergence for ReorrA· Table 1 lists the results of 

calculations of two lowest iterations for ReorrA for the rr-
12c 

Table 1. Real parts of the s- and p-wave phase shifts (in degrees) 

for rr - 12c: potential calculations 

Trr, MeV 

14 

50 

68 

0 ( 1) 0 ( 2) 
s s 

-3.06 1-4.20 

(-37.55) 

-5.22 

(-52.26) 

-6.89 

3.79 . 1-5.30 

(-62.87) 

0 =0(1)+ 0(2) 
s s s 

-7.26 

·-12.11 

-1.51 

0 ( 1) 
p 

4.57 

23.04 

31.92 

0 ( 2). 
p 

0.74 

2.94 

2.87 

o =o (1 l+o (2) 
p p p 

5.31 

25.98 

34.79 

scattering. We observe a rapid convergence for the p- and higher 

partial waves, but not for the s-wave. 

Taking into account the particular isotopic structure of .the 

first-order term (5.5) for the s-wave 

0 (1) 
rrA, s o0 + 2 o0 

11 31' 
(5.18) 

where o;I, 2 j is the rrN phase shifts, we present in table 1 (in 

brackets) the results of calculations when the sign in (5.18) has 

been changed. we· observe that in this case convergence in the 

s-wave is restored. It is seen that the problem of convergence_for 

the s-wave is not of the dynamic origin but reflects the effect of 

isotopic cancellation in the first-order term. The same result has 

been obtained also for rr-160. 

Earlier/JI, it has been shown that for the rr- 4 He scattering 

the second-order correction in the s-wave becomes dominant only at 

energies below 30 Mev. From table 1 it follows that for heavier 

nuclei the pion rescattering effect in the s-wave must be taken 

into account in the whole energy range up to 70 MeV. 

6. Pion absorption correction 

The generalization of any multiple scattering theory to the 

case in which the number of particles is not conserved brings 
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about complications in the formalism due to an essential increase 

in the number of basic equations/12 • 131. In the UST-approach the 

problem of taking into account the pion absorption has been 

considered in refs./4 , 5/, where the coupled channel method a'la 

Koltun and Mizutani1121has been developed. It has been shown that 

the problem is effectively reduced to the consideration of pion 

scattering by two potentials. The resulting expression for the 

rr-nucieus phase shifts reads as 

a (k) = apot(k) + aabs(k) 
rrA rrA rrA , • (6.1) 

Here, a~~t is the phase shift caused by the pure potential 

scattering. The method of its calculation is presented above. The 

absorption correction has the form 

a~~s(k) = -rr crrA(k) 

1 

Id~<¢(+) I 
k,0 

0 

(+) 
Ro(E,h) lwk, ,o>, (6.2) 

where ¢~+band ¢~~1
0 

describe the distortion of the pion wave by 
' ' 

the potential interaction before and after the absorption. The 

operator R
0

(E,~) describes all processes involving pure nucleonic 

intermediate states. The dynamic parameter~, which varies from 0 

to 1, plays the role of a coupling constant of the channels. The 

exact system of equations for R0 (E,~) has been derived in ref./ 4/_ 

Assuming the two-nucleon mechanism for the pion absorption 

one can approximate a~~s by the term proportional to p
2 (r) (p 

is the nuclear density)/4 , 5/ 

aabs(k) = A(A-1) k ~ 
rrA 1 + 2~/A 

"2 p (q) B
0

(k) + C
0

(k)•(IC•K'JJ, (6.3) 

where ~-wrr (k) /2M, wrr is the pion energy, M is the mass of a 

nucleon, p2 (q) is the Fourier transform of the square of p (r) 

(normalized to unity), q=k-k' is the momentum transfer, and Jc and 

It' are the pion momenta in the (rr,2N) center-of-mass system 

I<= (k-~P
0
)/(l+~), ,e'=(k'-~P~)/(1+~), 

where P
0 

and P~ are the total momenta of the pair of nucleons (in 

the approximation in which they are "frozen": P
0 

= -2k/A and 
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P~=P
0 

- q). Expression (6.3) is obtained in the local density 

approximation supposing the pion absorption.operator is of a short 

range. The lowest s- and p-waves in the rr-2N scattering have been 

taken into account. 

One can expect that the parameters B
0 

and C
0 

corresponding 

to the; short range part of the rr-nucleus interaction are 

approximately constant in the low energy domain o - 50 MeV 

(see refs. / 5 ,lo/). 

At low energies the complex parameters B
0 

and C
0 

we determine 

from the experimental data on the rr-nucleus scattering 

lengths (a
0 

= lima
0 

(k) /k,. k ➔ O) and volumes 

(a
1 

= lima
1 
(k)/k3

, k ➔ O). The experimental values for the 

rr-nucleus lengths and volumes can be determined from the data on 

the strong interaction shifts and widths in the ls- and 2p-levels 

of the picnic atoms. The quantities apot are calculated in the 
0, 1 

framework of the potential theory. 

The parameters B
0 

and C
0 

differ from the corresponding 

parameters of the optical potential by inclusion of_ the effects 

associated with distortion of the pion wave in the elastic 

channel. 

6.1. On the double counting problem 

To avoid the problem of double . counting, the two-ch?nnel 

formalism/1214/ prescribes subtraction of the pole term ~n the 

elementary rrN amplitude in the p11-channel when we calculate the 

pure potential part of the rr-nucleus phase shifts (6.1). However, 

if we use a local density approximation for calculating a:~s then 

this subtraction procedure is not needed. This conclusion comes 

from the diagram analysis of the iterative series for calculating_ 

both the terms in the two potential formula (6.1). In the 

expansion of a:~s (in terms of the rrNN-vertex functions) there is 

a class of diagrams which can be considered as iterations of the 

Born pole term of the rrN u-matrix in the p
11

-wave. Separating this 
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diagrams, which are indeed of a "long-range" type, from cS!~s and 

adding them to cS;~t, we get the iterative series for cS;~t in terms 

of the full rrN u-matrix in the p
11 

-channel. 

7. Coulomb effects 

A characteristic feature of the present approach is that the 

formalism is developed for a direct calculation of the phase 

shifts caused by the strong interaction. Therefore, the allowance 

for the Coulomb interaction is here the problem inverse to that of 

obtaining the hadronic phase shifts from the phase shift analysis 

of the scattering data. 

We parameterize the pion-nucleus scattering amplitude as 

usual 

frrA(B) = fc(a) + fsc(B). 

Here, fc(B) is the Coulomb amplitude, 

nuclear-Coulomb amplitude 
1 ., 

fsc(a) = TIJc r 
l=D 

A+ 
e2ia-i 

,_.._ 

• + 
e 2 i.t,.i - 1 ), 

(7.1) 

and fsc is the 

(7.2) 

where the Coulomb phases a-i are calculated for the nonpoint charge 

distribution in accordance with /l4/. The total nuclear phase 

shifts .t,.{ take into account the effect of the Coulomb distortion 

of the pion wave. We use the formalism of approximate treating for 

the Coulomb corrections which has been developed in refs.114 •15/ 

± - (±) 
.t,.l-cSnA,t+cSR,t' (7.3) 

where cS;A,l are the pure hadronic phase shifts and the Coulomb 

corrections are calculated as 

ReoR,l = a~ [dAefdk + sin(2Ae)cosh(2Be)/2k (7 .4) 

+ + • k ImoR,l = at [dBefdk + cos(2Ae)sinh(2Be)/2 J. 

_Here, Al = ReonA,t' Be = ImonA,t , and 

·~ 

., 
a± (k) = - 2- 11± k2 rdk' 

t n 1 k2 
0 

1 

k'~ fdx 
k' -1 

16 

Pe(x) F~h(q2) ~~h(q2) 

(7.5) 

. 2 2 2 ch ch 1.s the Coulomb factor, q =k + k' - 2kk'x, .FA and Fil are the 

charge form factors of the nucleus and of the pion, respectively, 

and 11± is the.Sommerfeld parameter: 11± = ±Za/~, a=l/137, ~ is the 

pion velocity in the lab. c.m., Z is the charge of the nucleus. 

The approximation (7.4) is valid if the Coulomb interaction can be 

considered as a small correction. 

a.conclusion 

In this paper we discussed the UST-approach and its 

applications to the description of pion-nucleus interaction. In 

view of the formal development of the approach, we presented a new 

derivation of the unitary multiple scattering series which makes 

the UST formalism very similar to the standard optical model (in 

the momentum space) based on the Watson multiple scattering 

theory. 

The calculational scheme of the UST-approach is much simpler 

in comparison with that of the momentum space optical model / 7 - 9 ,lG/ 

because the UST equations are formulated on the pion-nucleus phase 

shifts. This makes it possible to search for the dynamics of their 

formation in a straightforward way by calculating microscopically 

second-order corrections. 

In the present paper we developed an iterative method for 

solving the basic equations appropriate for the study of 

interaction of low-energy pions with light nuclei. Analysing the 

second -order corrections we determined the range of convergence 

of the iterative series (below~ 70 MeV). At these energies it is 

sufficient to take into account only two lowest iterations. 

Calculating the second-order term in Reo;~t, we demonstrated 

the importance of the pion rescattering effect in the s-wave in 

the whole energy range up to~ 70 MeV. It has been shown that the 

nuclear binding only slightly affects the real parts of the 

pion-nucleus phase shifts, but plays very important role in the 

formation of the inelasticity parameters (Imo~~t). The effect of 
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the Pauli principle is also very important for Im5~~t and tends to 

cancel this quantity at low energies. 

The author is indebted to v. B. Belyaev and D. A. Kirzhnits 

for stimulating discussions and helpful advices. 
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