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nyn~wee B.B., Conoe4oea o.n. E4-89-432 
TeopHR npoTOH-npOTOHHOH peaK4HH C 3¢¢eKTOM nonRpH3yeMOCTH npoTOHa 

3¢¢eKT nonRpH3yeMOCTH npoTOHa B pp-pacceRHHH He pp-peaK4HH paCCMaTpHea
eTCR nocpeACTBOM BKn~4eHHR B pp-e3aHMOAeHCTBHe nonRpH3a4HOHHOro. noTeH4Hana. 
B paMKax MeTOAa ¢a30B~X ¢YHK4HH nony4eH~ YA06H~e HH3K03HepreTH4eCKHe .npeA
craeneHHR ¢YHK4HH pp-pacceRHHR. 3TH npeACTaeneHHR HCnonb3Y~TCR AnR AeTanbHOro 
aHanHTH4eCKOro H 4HCneHHoro aHanH3a MaTpH4HOro 3neMeHTa pp-peaK4HH, 3anHCaH-, 
Hero B CTaHAaPTHOM HMnynbCHOM npH6nH*eHHH. ~OKa3aHO, 4TO AnR acTpQ¢113H4eCKH 
HH3KHX 3HeprHH KBaApaT 3Toro MaTPH4HOro 3neMeHTa H BKnaA nonRpH3a4HOHHOro 

· noTeH4Hana B ¢aKTOP s,j MOryT 6~Tb annpoKCHMHpoeaH~ nHHeHH~MH ¢YHK4HRMH 3Hep
' rHH E, a 4aCTb 3Toro BKnaAa,CBR3aHHaR C o6naCTb~ pacCTORHHH KBa3HK~aCCH4eCKH 
, AOnyCTHM~X AnR pp-pacceRHHR, HMeeT EB/_3-noporoeoe (E .. O) noBeAeHHe. 

Pa6ora e~nonHeHa e fia6oparopHH reopeTH4eCKOH ¢H3HKH OH~H. 

IlpenpHHT 061,e,nHHeHHOro HHCTHTYTB 11J1epHblX HCcne,noeamdt. ,lly6Ha 1989 

Pupyshev V.V., Solovtsova O.P. E4-89-432 
Proton-Proton Reaction Theory with Proton Polarlzabll lty 

The effect of proton polarlzablllty In pp-scattering and In pp-reaction 
Is considered with Including a polarization potential Into pp-Interaction. 
Convenient low-energy representations of the pp-scattering function are 
derived within the variable phase approach and are used for a detailed ana
lytical and numerical analysis of the pp-reaction matrix element considered 
In the standard Impulse approx·lmatlon. · It Is proved that for low astrophysi
cal energies this squared matrix element and the contribution from the pola
rization potential to the factor s 11 may be approximated by ll"ear functions 
of energy E, while the part of this contribution associated.with the region 
of distances quaslclasslcally avoided for the pp-scattering has the EB/3 
threshold (E .. Q) behaviour. · 

The Investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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1. Introduction 

As is known111 , a significant discrepancy between the predicted 
(7.9 ! 2.6 SNU) and measured (2.0 ! O.J SNU) capture rate of the solar 
neutrinos in the 37c1 -detector exists. The predicted capture rate is 
more sensitive ( ~ S-512121

) to the cross section factor SH of the 
initial reaction pp--dev of the solar pp-chain /J/. Therefore the 
investigations of any corrections to the above .factor are important. 
One of these corrections is due to the electric polarizability/4/ of 
a proton. 

After the work/5/, where an unsuccessful attempt to take into 
account of .the deuteron polarizability effect on the pd-radia-tive 
capture was made, the question about the role of nuclear polarizabi
lity on the solar nucleosynthesis reactions has been place in focus 
of attention. In a series of papers / 6- 111,stimulated by works/5,12 , 13/ 
it was shown that contrary to the claims of these works the nuclear 
polarizability has a sma11·effect on the cross sections of nucleosyn
thesis reactions. However, the polarizability effects on these inelas
tic process were studied in the framework of various low-energy appro
ximations, namely: the WKJ3/6 ,7I, simple oftical model /S/ and the Born 
19- 111 ones. Moreover, in all the works/ - 11 / a series of intermediate 
approximations were used without a-detailed inspection of their appli
cability range. Numerical results of the recent work1141 , where it has 
been shown that the contribution from the proton polarizability to the 
factor SH is_ smaller than 2•10-6, have confimed the results obtai
ned previously/6- 111, however, they do not contribute anything new to 
the issue. Aleo, it is necessary to e~ress ~that the authors of works 
16- 111 concentrated their attention on estimations of upper bounds of 
nuclear polerizability effects on total cross sections to nucleoeyn
thesie reactions. The question about this effect on the low-energy be
haviour of the S-factors is still open. 

In view of all the above reasons it is necessary to analyse the 
low-energy expansions of the S-factors, with taking into account of the 
nuclear polarizability effect and using as few assumption and approxi
mations as possible. In the present work we realise this. program for 
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the factor Sf{ as follows. In Sec. 2 we describe the model used for 
pp-reaction and, in Sec. 3 we formulate the problems under considera
tion. In Sec. 4 we derive and analyse the low-energy representations 
of the pp-scattering function, pp-reactior. matrix element and of the 
contribution from the proton polarizability effect to the factor S11 • 
In Sec. 5 we construct a perturbation theory for this effect. In Sec. 
6 we report same results of numerical investigation of the factorS1f 

and in Sec. 7 we summarize our main results. 

2. The model for pp-reaction 

We use the standard model/15 •, 161 in which the factor SH is pro
portional to the square of a dimensionless radial matrix element usual
ly denoted by A • In the impulse approximation the definition of A 
is /16/ 

00 

/\=(if 3 /8Ti:K[i<~>)H2 i U(K,t')'IJ"(t')dt' (1) 
0 

Here tJ =0.2316 fm- 11171 is the inverse deuteron radius, K is the 
two-proton relative momentum corresponding to the c.m.s. energy E= K2 , 

2 ' ell is the Coulomb barrier factor and 9 = ii 2 KR ' where R =28.81 
fm 7171 is the Bohr radius for one proton. In the asymptotic region 
( r - = } the 3 S 1 deuteron radial function 'lJ" behaves like 

exp(-0 r- } and the i5
0 

pp-scattering ra,dial function U. is defi
ned to have the form: 

U.CK,t') = cos8°cK) Fa CK,t-) + sinOcK> 4-0 CK,r-> , (2) 

where r, and Go are the S-wave regular and irregular Coulomb func
tions 181 and O is the phase shift.relative to the pure Coulomb 
phase shift and caused by interaction V • 

Physically, V is a sum of a abort-range nuclear potential V5 
and a polarization potential VP , which is due to the proton polari
zabiiity 'effect and decays like ,--1/ as r- o0. For the nuclear poten
tial we use only the fact that it satisfies the conditions 1171 : 

ei.m t'nexp('1Vr/R
0

)Vso·>=O, n=0,1,... (3) 
t'"-+00 

and therefore119/ may be put equal to identically zero in the region 
l"">'s , where 's is any finite radius called the action radius 

/17 20 21/ ' ' of this potential. For r~~ the explicit form of the polar-
r,ization potential is unknown, therefore we are com'J)elled to limit 
ourselves to the usually used 15- 14/ representation 

Vp<r->=(-<(./Rr-")0(r--rp) , c
4
> 

2 

\ 

where .t. is the electric polsrizability for one protoi 41 , 0 is the 
step function1181 and l"'p is an arbitrary but fixed radius, of course, 
such that rp ~ 's 

3. The problems under consideration 

We denote matrix elei:ent (1} by /\P. or by A when potential. (4) 
is present ( V = V5 + Vp) or absent ( V = V5 ) • 

For the temperature 1.5•107K corresponding to the solar interior 
the most effective energy of pp-reaction in c.m.s. is ~ 6 keV and 
for E ~ 20 keV it is found 13/ that 

J\2(E)=/\2(0)(1:AE(MeV)) +0(E 2 ) (5) 

and 

J\2(E) = (r.08 ~ 0.18 )( 1 +2.2 E ( MeV)) + 0(E 2 ) (6) 
,;. 

The constants /\
2
l0} and A are known1~2/ with uncertainties 1231 

due to: 2.5% - uncertainty from the nuclear, potential V
5 

, 2% - uncer
tainty from the exchange mesonic currents and some other effects ex
cept the proton polarizability effect that generates the additional 
interaction Vp • 

As is known 124~all the special effects caused by long-range 
asymptotics (4) of the potential V =V5 + Vp are associated with the 
region r>✓ rc , where 'i: = {IK2R is the Coulomb classical turning point 
125/. When K-0 , the dominant part '¼ ( t is' an abbreviation of 
"tail"} of the phase shift O is due to the tail ( t' >,, 'c ) of the 
potential Vp • In the Born approximationl251o;is given by-~he 
formula/24/ 

oD 2 
tan°t-=-K-i S VpO">J=;cK,r-)dr-, 

Ii; 
(7} 

which provides the first term of the low-energy expansion of tand 
exactly: 

2 tandcK> = tan~CKl + 0cKC0 > = - ~6ciK 5 /1SR2 + O(Ks> 

When V = V5 and V5 satisfies eqs. ( 3), the threshold ( K -0 
behaviour of tanO is described by the law / 25, 26/ 

2 i 2 0 )-1 
tandcK)=-KC

0
c~)(a- +(K/2)(2R/3-re)+ (1< 4 ) 

(8} 

) " 

(9) 

Since laws (8} and (9) are quite 
mediately: what is the threshold 
threshold behaviour of the part 

different, two questions arise im
behaviour of Ai and what is the 
Ct of the contribution 

:i 



((E) = ( /\p(E)/J\(E)) 2 
- 1 { 10) 

from the potential VP to the factor S11 caused by the tail { r- >... t'c ) 
of this potential? We attempt to give a mathematically rigorous proof 
of the facts that as K -0 

. /\~ (E) = l\~(O) (1 + ApE<MeV)) + O<E 2) ( 11) 

where Ap is independent of the energy, and 

ct ( E) = ( Ap<0}/3 Aco) )2 ( d.. / 2. 
213 R 3 ) r(f/3) (KR )"

1613
( 1 + Oc ~ H 3

)) , ( 12) 

where r is the Gamma-function1181 , and rJ.. and R are the parameters 
of potential (4). 

Along with proof of eqs. {11) and {12) we recover some known re
sults within the variable phase approach120•211 which is more adapted 
for solution of all our problems. One of them is to find a rough suf
ficient condition unsuring the applicability of. ,the Born approximat~on 
over potential (4) for the evaluation of the functions U. , (\P and C • 
This condition being established analytically makes the constructions 
of the works/9- 111 mathematically corre~t. To explain this critical 
statement we remind two facts. First, the Born approximation may be 
incorrect1271 even it provide a small correction to any studied func
tion. Second, all results of works/9- 111 were actually established 
within the Born approximation. As shown numerica11/ 28 •291 , this app
roximation is good for the celculation of the phase shift caused by 
the polarization potential. However, this res.ult has been used in 
wo;ks 19- 11 / to assume that the Born approximation is quite suitable 
for the construction of the scattering wave functions. Therefore it is 
necessary to prove analytically that this assumption was valid. The 
assumptions of all works/6- 11 / se.em to be correct in the low-energy 
limit. However upper bounds of the energy region, where the approxi
mations used in these works are suitable, have not been found. There
fore, using the results of refs. 16- 111 one can estimate contribution 
(10) if and only if the enerf. of pp-collision is sufficiently small. 
However, according to refs.I •141 , contribution {10) is a growing 
function of energy. Hence, for completeness it is necessary to give a 
justifical answer to the question: what is the upper bound of contri
bution (10)? We estimate this bound by high-accuracy calculations of 

A and /\p • · 

4 

4. The theory 

To obtain eqs. (11) and (12) we derive the suitable low-energy 
representations for the pp-function in the presence of polarization 
potential (4). 

4.1. Low-energy expansion of the PP-;funct:i.on for I"< Ii:. 
At first we prove that in the region 1""< ti: the pp-function has a fol
lowing low-energy expansion!: 

ucK,t->= KC/9)( ~K2nun<I"> + AlLCK,I"'>) , (13) 
where the residual term41L vanishes like K11 as K-0 • 

To derive eq. (13) and to give a simple method for evaluation 
of the functions u4 and u1 , we use one of the methods of the 
able phase approacn20 •211 • In this method the phase functions 

C are defined as solutions of two coupled equations/211: 

ar- S(K,I"') = - K-t Vo•) UcK,r-) ~ (K,t') 

ar ccK,r-> = K-t Vo·>UcK,n~
0

cK,r-> 

with the bilinear form 

UcK,r>=ccK,t->F;;cK,t') + scK,r> 4-/K,1"') 
and boundary conditions: 

S<K,0)=O , C<K,0) = 1. 
Using the relations . c2. 

SCK,l"')=K 
0

C~)SrtCK,t"), CCK,I"')= CSCK,1"') 

vari-
S and 

( 14) 

( 15) 

( 16) 

where sn and CS are the phase functions of ref J JO/, we 
form U of (15) multiplied by the norm factor 

get that the 

NcK> = cosocK>IC<K,..o> 
( 17) 

where the phase shift O is defined by 

lanO<K>= sc1<,o0.>1ccK,o0) ( 18) 

provides the pp-function U satisfying eq. (2). 
As it will be clear below, the knowledge of the first three 

terms of low-energy expansions of the function S for I""< r'c and the 
function c for any r is quite sufficient to obtain eq. (13). To 
find these terms, we use the method that is more similar to the me
thod of ref.1191, and based on the Bessel-Clifford expansions 1181 

for the Coulomb functions. The above expansions may be written as 
2 

F;,<K,t") = KC
0

<!'.)> ( L K
2n.fn<r-> + Af<K,r>) , (19) 

n.=0 

5 



f 2 

4-o(K,i-) = C~(~l( Ea "2n8nlr-) + ASCl',l"'l) (19) 

The residual terms Af and AS of (19) of the order K6 if of course 

t'<l""c. The Bessel-Clifford functions fn and 3n with n=0,1,2 may 
be easily found explicitly (for instance, by using the results of 
ref.1311) and read as 

fn.cr) = R- 11
(X R/2)

3
n+i{ rh.+1 ( Ono-S-ni/3) + (2 I,_,l!ix+ I5 !18) <\2l' 

(20) 

ocr,=(2/Rn+f)(xR,2lrz+i{K (o +5. !3)-(2K /Sx-K /18)6 J 
on tt+i no nf 'I s n.2 , 

where Ih. and Ktt with n=1,2,.are the regular and irregular modified 
Bessel functions ofX=2.Vt-/R

1

• Let us look for the solutions of 

problem (14-16) as 
2 2 

scK,t-> = KC0 c9>( L K2nsn.<""> + aSc1<,r>) 
h.=0 

C(K,I"') = 
2. 

L K
2n cnw> ... aCCK,I"') 

n=O 
Inserting forms (19), (21) and (22) into (14) and (15) 

three sets ( ~=0,1,2) of equations: 

i\ .. snci-> = - V<t•> I: Ueo•>f ct-> 
e+m=h. m 

a,. en ct->= . Vm L Ue ct-> 9met"> 
with the functions e+m.=n 

uh. (l") = r: c Cp(t-) fmcn + Se(I") 9m(t")) 
f+m=h 

and boundary conditions 

snc0,=O , CnW>=1. 
generated by eqs. (16) and ansatz (21) and (22). 

we obtain 

(21) 

(22) 

(23) . 

(24) 

(25) 

One detail is to be stressed: when we introduced representations 
(21) end (22) end derived eqs. (23-25), we assumed that the residual 

terms AS end AC are of the order K Ii • The fact that this assump
tion 1s correct for r- < l""c follows immediately from the ,equations 

for AS end AC which can be got along with eqs. (23). Since the sys

tem of equations for AS end AC is more long end is not used below, 
we do not write it. 

Clearly, expansions (19), (21) end (22) generate the expansion 

for the unnormalized pp-function (15) in the form 
2 

UcK,t") = K C;,c!)>( L Kzn UnO"> + AUn,,i-,) 
n=O 

(26) 

where the functions Vn- with l'l=0,1,2 are defined by eqs. (24). 

6 

·.; 

I 

• As is knowi 181 , in the region ,.. < t"c the expansions ( 19) ra-

pidly converge with K--0 , therefore expansions (21), (22) and (26) 

are quite suitable for t'< r-, and when t'< re • their residual terms are 
of the order K6 by construction. How we must derive the lo·N-energy 
expansion of norm factor (17). To make this, we study expansions (21) 

and (22) for r » t'o , where t'o is assumed to be a finite and arbitra
ry radius satisfying the .. condition 2. Vt'

0
/R' >> 1 • Also we assume 

that the energy is sufficiently small, namely, such that t'c >r's 
Due to both the assumptions, we can use for r >/ t'o the asymptot ice 
forms 1181 for functions (20) and asymptotic form (4) for the poten

tial V. Substituting these forms into (23) and (24) and changing the 

variable t' by X=2Vr-tR', we found the solutions of eqs. (23) for 

r » r-0 as series of elementary functions. In particular. we estab

lished that due to the long-range behaviour of polarization poten

tial (4) _the functions Sn with n=O, 1,2 diverge like 

sncr->=c
0

<o0)(&ci./JrR2 )(Rt2ln x 3n-6 exp(2x) (27) 

as r--c,c>, while the functions Cn with n=0,1,2 are finite at 

r"= oo and satisfy the relations: 

cn<t->/CnC00) - f = 32c1./SR3x5 
+ O,x-'10> , (28) 

where t' ~ r
0 

• As follows from eqs. (27) and (28) representation (21) 

loses its meaning when r--.= , while representation. (22) is well-
defined for any t' and therefore l\CCK,t-) = O(Kli) also for any t' • 

We proved the last statement actually by the way more similar to the 
one used in ref.1321 devoted to investigation of the low-energy be~ 

haviour of the phase shift caused by long-range potentials in the 

absence of the Coulomb one. 
Now, using eqs. (27) and (28) we get that the function 

a<r-0 ) = -s0 <1"0>lc0 ct-0 ) ~ - (c;. R / 87t r;,3 ) ex p('f V r-
0 

IR' ) (29) 

diverge as "'o - <><> , while the function 

'e<,..0>= 2R/3 + 2 (c1 <r-O) + S/t'O)/a(r-O) )/s
0

(r-
O

) (30) 

has a finite limit 2R/3 at r-
0 

= oo • 
Result (29) is well-known. After report l 33I it has been discus

sed by many authors16 •28- 30 ,34- 361 • To explain these statements, let 

us put the potential V to be identically zero for t' > l"'o , where r-0 
is a finite radius. For·this potential, owing to eqs. (14) and (21-

-23) the functions S, C as well as the functions Sn, en with n.= 
O, 1,2 and AS, AC are equal to their corresponding values ,at ,.. = r

0 
Hence, we may replace S<K,oo) and C(K,oo). in eq. (18) by their 

7 



expansions (21) and (22) written at I"= i-0 • Thus, we get the ex pan-
e ion of tan8 for the potential Vo•> 0c t-0 - t') which satisfies eqs. (J). 

Hence,we may compare this expansion with eq.(9).As a result,we get 
that:Cl(r-0 ) of (29) is the scattering length (denoted byil..(O,r-

0
) in 

ref.lJ
4

/ and plotted in Fig.5 of ref./JO/), r
0 

of (JO) is the 

effective radius for our truncated potential. Due to eq. (29) act'
0

) 

diverges as r-0 - oe> • Hence, the definition of the scattering length 
aa the low-energy limit of the left-hand side of eq.(9) divided by -Kc; loses ita meaning for the potential V with asymptotic (4). 
This fact is known1241 and we only reproved it within eqs. (14) by 
the way still more. similar to the one used in refs./JO,J4/• Surpri
singly, r:e ( oo) of (JO) ia finite and therefore the low-energy ex-

. 2. 
pension of tan& contains the term behaving like K.3 C

0 
as K -0 , 

i.e. the effective radius defined aa a limit of eq.(JO) aa ,..
0

_ c,.0 

baa the meaning. Tr.is definition is quite different from that one 
used in work/J5/. In this work tanb of the left-hand side of eq. 
(9) wee replaced by the integral of eq.(7) and the effective radius 
was actually considered as a low-energy limit of the second term of 
the asymptotic ( K-. 0 ) of this integral divided by the factor 

3 2 . 
K C0 • Since the asymptotic expansion of the integral of eq.(9) 

does not contain124/ the terms with Kn c; threshold behaviour, 
the authors of work /J5/ have found .that the standard definition of 
the effective radius loeea ita meaning for the potentials V with 
asymptotic (4). 

For the first time, the receipt of construction of the finite 
scattering length and effective radius for the potential with tail 
(4) in the presence of the Coulomb field was given in ref.1241. Re
cently, another definition of.the scattering length having a physical 
meaning for the above potential has been introduced in ref./JO/. 

To prove eq.(13), we do not need redefinition of any function. 
Really, according to eqs. (7) end (18) the ratio S(K,1")/C(K,I"') has 
a finite limit at r-= oo , therefore cos8'no of (17) is a well
defined factor. Moreover, we have shown that the denominator of frac
tion (17) has a well-defined expansion 

2 

C(K,o<>) = L K2ncn(oo)+ 0(K4> (31) 
n.=0 

and due to eqs. (28) written at r-= "'c , the contributions to the 
constants Cn.(oo) ( n=O,1,2) from the tail ( f-'~rc ) of potential (4) 
behave like K

5 ea K- O • By using eq. ( 31) and the fact that 
cos&= f+·D<KiD), following from eq. (8), we obtain for norm factor 
(17) the low-energy expansion: 

8 

'_. 

N<K) = cf~-> - K
2 ct< <>0)/C~(oo) + OcK") (32) 

Further, mul~iplying N<K)of (32) by U of (26) we have the required 
result (13) with 

up•)"'Uolr-)/Co(oo)' (33) 

U'f'r> = ( Ult:'> -ci < c:,,O> uo'r>) / c0 (oa) 

•11here Uo and ui are defined by eqs. (24) and may be easily evaluated 
after solving problem (23-25), which has no special numerical diffi
culties. To complete the analysis of expansion (13), we stress that 
its residual term is of the order Kq, by construction, and also we 
represent the asymptotics ( x = 2Vr-/R '>) 1) form of functions (33): 

• 
( R2n+i 3n/ ) V • un{t') = x. (f+23n) x /Ml • o4 ) 

exp ( x) ( 1 + 0 ( x-i)) , n = 0, 1. 

obtained with the help of eqs. (26-28). 

4.2. Low-energy representation of the pp-function for r>..'c 

As a second step, we derive the low-energy representation of the 
function u for r >.. re >.. 's • To do this we rewrite problem ( 14-16) in 
the equivalent integral form: 

. ,.. 
scK,r-> = s\~) - K-i ~ VmUcK,t> ~<1<,hdt 

r 'c 
CCK,t') =d{\ +K-i5 v,ouo,,t),o(K,t>dt , 

(35) 

where the values of phamfc functions S and C at I"= t'c are · denoted 
by s<0> and C(O) and may be evaluated by using expansions (21) and (22). 
To analyse the solutions of eqs. (35), which are the Volterra-type 
integral equations/ 371, we use the usual iteration method138(. We put 

s<0 'and c<0> to be zero approximations and to obtain the res;_,_lts 
c111+i) <rn+ :I.) th 

S and . C of (rn.+ i) -iteration, we shall substitute 
the results s<m>and c<m> of m.th-iteration into the right-hand si-
de of eqs. (35). The series of these iterations converge uniformly 
to the exact solution of system (35), if all its integral operators 
ar, contracting mappings137 •381• In the usual wa/381 , i.e. using 
the midpoint theorem, one can show that this condition is fulfilled, 
if 

where 

ECK):ewt(ll( p (Bn..O) < 1/2 
n= i,2,3 'c 

t' 

, 

Bn. (K,'i:, I")=- K-i s V<!) ( F;, (K,l) 4-o (K, t) crn.i -
'c 

9 

(36) 



r; (K,t) s-n.2. + ~~ <K,t) sn3 > d t 01, 
i 

and the metrix on the ( 1r. oo] -class of functions, depending on K 
parametrically, is definet'as /37/ 

pt!(A,B) = max IAcK,t->-B<K,t->I (38) 
C r>✓ 'c 

Let us show that irieq. (36) is valid for sufficiently small K • 

Using the bound/39/ 

IF;,cK,l"'l (F'0 cK,t)+i40 <K,tl)I ~ K~2TLr-t~ (39) 

which is valid for any K, r and t we obtain from eqs. ( 37) with 
n=1,2 that 

.Pr:<Bn,o) ~~7t.!2° (ol../Rt-~) (40> 
C 

In the region r,;..rc the Coulomb functions are not greater in order 

of magnitude than their values at r-= r-c 1181 , therefore 

.P (P. 0)=0(hu6 ) .P. u; D)=O(ni/6 ) (41) 
"c o• -.i • 'c o• J • 

By applying the second eq. (41) to eq. (37) with n. =3 we find that 

Yr.<B
3
,o):Oc9v3, (ot/3KRt/). (42) 

C 
Thus, due to bounds (40) and (42) we may replace condition (36) by 
more rough condition 

ecK) .!- '-faui (d/Rr;) < 112, (43) 

which is valid, if K satisfies the inequality 
,r:-=, -1.l'I 

K < ( '4 2:,1, d... R ) (44) 

that we assume for all the subsequent constructions. The first of 

them is a result of the first iteration of eqs. (35), which read as 

co co> ( B ) ro> B c ) 5cK,I") = SCK) f- i (K,'7:,t") + C(K) 2 K,t'c,t' , 

c1> co> < B . ) co> B Co<.,r) = CCK) f + i (K,tc,t-> + S<K) 
3 

(K,t'c,I"') 

Continuing the iteration procedure we find by induction that 

{ <m)) cm) l dcm> 
max ;,./s, s , p'c (c,c > J ~ ti<.) , 

where 

(45) 

(46) 

(47) 

(ffl) J d CK>= (ern/(i-E))max{p (Seu 5<0>) p (Cm, d 0
') (48) 

Cm) 'c • , le. . • 
To estimate d CK> , we come back to eqs. ( 14-16) and introduce a fi-

nite matching radius r-0 assumed to be sufficiently large ( r
0 
~ 's , 

2Vt'o/R' >> 1 ) to use, for l"'>--t'o , forms (27) and (28). Then, 
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due to eqs. (22) and (28) we have 
i. 

C(K,t-) = L ,K 211.cl'l(oo).( {+ Oo-·s ' 2 >) -t- OcK") 
. n=O 

(49) 

where, cf course r:; r0 • Inserting form (49) into the first equation 

of set ( 14) we get an equation or.ly for S(K, t-). Solving this _equation 

for t' ,;.. r0 we find 
i 

s\a..?, = S<K,r-0> - L K2nc1/
00 ) exp ( B1 (K,~,r-c>) (50) 

r. n=O 
)cat B

2 
(K,r-0,t> exp( - B

1 
CK,r0 , t >) ( 1+ 0 ct-512

) + O(l<lf)) d t , 
t'o . 

where Btt ( n=1,2) are defined by eqs. C:37). Due to eqs. (4) and (19) 

integrals :t 81 of (50) have a finite nonzero limits as K - 0 and 
• · · co> 

therefore to find the thr~shold behaviour of ScK) we may replace 

in eq. (50) the exponential functions by the constants. After this 

substitution we get in the right-hand side of eq. (50) the integral 
. /2 / 2 8

2
(K t' t'.c) which behaves 4 like K C

0 
as K-0 . Next, , o• 2 

owing to eq. (21) we have S(K,1"'
0

) = 0(K C
0

) • Hence, from eqs. (22) 

and (50) it follows that 

sW, ~ c~~', 0(K cic9)) ( 1 + 0cK2 )) . (51) 

Now, by using ineq. (36) and eq. (51) we get from eqs. (45) and (46) 

that both metrics of (48) are of the order ldf,(ECKl+ OcKC:c9>>)l , 
hence 

("'' I co, m ( 0 c2 > I \ d (I<.) = C E. E + < K O ) Ci - E) ( 52) 

Thus, due to eq.(47) the functions s<rn> and c'"'> reproduce the 
. dcm> 

exact solutions S and c of eq8 • (35) within -accuracy and 
d(m) 

<Kl vanish by law (52) as K-+0 • Using these results and eqs. 
(15) and (17) we obtain the low-energy representation of the 

0

pp-func-

tion, corresponding to mth -iteration of system (35). This repre-
sentation reads as 

UCK,t-) = U~'tr-> + All~"i/.1'-) = (53) 

N(m> ( (ffl) F (M) r ) cm> 
CK) Co,,t'> 0 (1<,r-> + ScK,r-> ~o<K,r-> + 11u cK,I") , 

where t'»'c ,;'s , the momentum K satisfies ineq. (44), the norm 
factor N<m> is c;lefined by eqs. ( 17) and ( 18) in which S and C 

are replaced by .s<m> and ccm), ·respectively, and the residual term 
satisfies the relation 

.Pr: ( .1Ucm>, 0) = 0 ( ~t/G d~~;) 
C: 

(54) 

obtained with the help of eqs. (41) and (47) • 

II 



Before to go further, we make one useful remark. Of course, if 
V= V5 , then in the region r >-- r, > r5 the pp-function is repre-

sented by eq. (2) and therefore in this case formulae (53) and (54) 
may be not used. However, if V = V5 + V p - and I"~ t"c. > 's , one has 
to use the approximation uzu_<ml with ulm)of (53) or another 

equivalent approximation, because in this case the low bound rminCK) 

of the region I"~ t"m.:n(K) , where U is close to its asymptotics 
form (2), is an order of magnitude of several l"c and depends on the 
energy. A detailed discussion and a numerical proof of this fact are 
given in refs.129 • 301 • 

4.3. Threshold behaviour of the functions "! . C and ct 
Owing to eqs. (2) and (34), the functions U and Uh. ( 11..=0,1) 

have quite different asymptotics. Hence, in the region r ~ I" the 
C 

function U, cannot be approximated by a finite sum contained in the 
right-hand side of eq.(13). However, representation (13) is quite 
suitable for evaluation of the integrand Uti of eq.(1), for two 
apperant reasons 1371• First, the contribution clt'(K) from region 

r~r-c to /\p of (1) is negligible as K-0 •. Really, using for 

t'>--r'c >r-
5 

the formulae IYCr>"'" exp(-((1") , representation (53) 
at tn=i , eqs.(45), (46) and rough bounds (41), we find that 

i '" 
Je(K) = 0 {,1' 6 K-t c; <9> exp <-r 'c)) = 0 ( K-

213 exp ((.1l:l2-olK)/K R))5 55) 

Second, owing to eqs. (34), the products u.no .. > lfcr-) with n=O, 1 
decay exponentially as I"'-+ oo • Hence they are functions integrated 
on the interval ( 0 , oo ). 

For the above reasons we may insert U of (13) into (1). Thus 
we prove the first required result (11) and find the constants: 

H2o--
/\p(0)=(~3/8Ji.) ~ u

0
c..->'lfmdt' 

-t -112 °c,,<> A = Apco>(x 3/2Jl) · S U1,Ct·>1fcr-)dt"' 
p 0 

(56) 

Next, combining eq. (5) with eq.(11) we e~tablish the low-energy 
asymptotics of contribution (10) in the form 

CCE>=(/\pco>//\<0>) 2 (1+ CAp-A)E+ 0(E2))-i. (57) 

Let us study CCE). Let r0 be an arbitrary radius, such that r-0 >.,t'p 

and x0 =- 2 \Jr-
0
/R

0

»i. Then, owing to eqs. (28) the contributions from 
the part ( t">_..r

0 
) of potential (4) to the ·constants c0 C o0 ) and 

c1 (oo) are of the order xf • Hence, in eq.(33) these constants 

may be replaced by c0 cx0 ) and . c1 cx0 ) within x/ accuracy. 
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Further, the contributions from the region r- ~ r0 to integrals ( 56) 
are exponentially small(~ exp (X0 -Kt'0 )) •• Clearly, for the above 
reasons contribution (57) from potential (4) to the factor SH is 
mainly cause!i by° a -short-range (r-p .$ r- ~ r-p+ R) part of this poten-
tial. This conclusion agrees with one of the main results of refs. 
/ 9- 11 /. Now, let us assume potential (4) to be absent. Then one can 
step by step repeat all the constructions of subsection 4.1 and deri
ve eq.(13) with u0 and u 1 which may be evaluated after solving 
problem (23-25) with V=V

6
• Thus, one can get eq.(5) with /\(0) and 

A represented by corresponding integrals (56). Note, that .in both 
the cases ( V=V5 +Vp or V=V5 ) the function u

0
, owing to eq.(13), 

is a limit cf l.t /K C0 as K- 0 and is a solution of the Schrodinger 
equation(n=c=m=1. ):, 

H u.<K,r> =(a~+ i< 2 + t/t-R -Ver-,) u<K,I"> = o (58) 

at K=O • The polarization potential is attractive, hence Vp+V
5

>,,¼, 
for any t- • Using this inequality and applying the well-known theo
rem (see Sec. 6 of handbook / 4o/) to eqs. (23) with tl= 0 and to eq. 
(58) with K=O we find that for any r the function u

0 
corres

ponding to V = V5 + VP is greater than the function u0 correspond-
ing to V=V5 • Therefore, from eqs. (56) we get /'\p(O)>A(0) and 
hence, owing to eq.(57), C<o)'>O • Th_us, in the low-energy limit cont
ribution (10) behaves like the linear function (57) of energy and has 
a non-zero limit at E= 0 • These results agree with the WICE-predic
tion represented in Fig. 6 of ref./6/ and disagree with the result 
(14) of ref.181 according to which contribution (10) has to vanish 
like E5 

as E-o • As is noted/9/, the work181 contains an error lea
ding to the E5 

threshold behaviour of C • When this error .is taken. 
into account, one find again that ClO) >O • Of course, for the rea
s.on that t"'c---. oo as K-0 the part ct of C associated with the 
tail (t'>;.r'c) of potential (4) must vanish as K--+0 

Let us derive the formula for Ct by subsequently representing 
every functions F = S', C, N, U, Ap,C as a sum F'= F' 10'+ ~ such that 

t' rr <O> r = r if potential (4) is truncated at r = l"'c • Along this way 
we represent phase-shift (18) as 

b=S'0 J+ ~ = a . .la.n. (s'0';c<0
') + ~ 

Then norm factor (17)"becomes 

N =Nco>+ N = cos5<0 }c<0' + {cos~/Cc'0'+c )- N'0,) 
l £ ' 

.. (59) 

(60) 

(0) . 
where clro = C(K,o0) - C ci<> • Decomposition (60) and the identity 

U= NU with U of (15) generate the representation 

13 



IL= ulO>+ut = 

N'0'Wt u 0cr'c-l"'> + ( Ni N-~ 0 c'c-t-> + u 0 o·-'c)) 

where the third term may be approximated by 

ing U of (61) into (1) we have 

ILcm> of 

A = A'0>..- A = Nc0> N-i A + c N wi A + ) 

(61) 

(53). Insert-

(62) p p pt p i P ae , 
where ae is given by eq.(55). By substituting Ap of (62) into 

(10) we find the decomposition ( = C'0 >+ ct , where 

C'0)= (A;'//\ )2- i = ( 1 + Ni/ N(D) r2 
( /\p / A )2 - 1 (63) 

is the contribution from the part (I"'< le) of potential (4) to the 

factor Su and 

ct = (i- (1+ Nt/N<0>r2
) ( Ap/A)2 + Oue) (64) 

is a part of total contribution (10) associated with the tail 
( t' >/ l"c ) of this potential. 

Now we describe the threshold behaviour of all the terms of 

eqa., (59-64). According to eq.(51) 5t~~; of (fi behaves like KC~ • 
Using eqs. (8), (28) and ( 31) we find that N of (Go) behaves 

. NCO) like a linear function of energy and co>,/: O • Aa follows from eqa. 

(46) and (47) with ITl =1, the part Ci of C satisfies the condition 

dco d'n . N ICi(K)I ~ CK) with CK) of (52), therefore t of(60) is of 
d, (i) • . . . NCO) N the order of • Applying the results obtained for and t 

A CD) ( (0) 
to eqs. (62-64) we find that ''p · and behave like linear 

functions of energy and have nonzero limits at K =0 , while Apt and 

C d CD t are of the order of + 'c£ and hence vanish as K-0 
not slowly than OcKq) which follows from eqa. (43) and (52). 

The leading terms of the asymptotica of the functions °t , Ct , 
Ni , Apt and ct cannot be found without inspection of the' second ite

ration of eqs. (35). After dropping the terms associated with sc0 > 

of (51) and therefore behaving like KC~ this iteration yields: 

s~~>.oo) = cf~~ ( B2<K,t,,oo) + B2/K,rc,e><>)- B12(K,'c, 00)), (65) 

,2, ,o, C B -1 82 . B ) Co<,oO) "'CcK) 1+ /K,t;:,o0) +.2 :t_<K,'c,oo) + 23CK,lc,"'°) , 

where we have introduced the integrals 
~ 

Bnrn (K,l"c,r-) = ~ BnCK,t"c,t) ot B11/K,'c, t) d t (66) 

with nm.= i2,2i,23 • Using dehnitions (37) and bounds (40..:42) we 
immediately find that the last two terms of both eqa. (65) and integ-2 . 
rals (66) vanish not slowly than B2 (K,fc,oo) as K.-.0 

14 

Continuing the analysis along this way, we prove the important ata-

tem~nt: for any m >, 1 the contributions ;from ( m+ i )-th intera-

tion to S<K,oo) and CCK,oo) vanish like or rapidly than the 
. . th 

squared contributions from m -iteration as K-0 • According to 

this fact and ·eqs. (45), (~6), and (51) we may write eqa. (65) in the 
form 

S<K,=>=S/Kl+OC.iC!)=cWl, (B2 <K,fc,oo) +O(B;)) (67) 

CCK,oo)=cW,(1+B1 cK,'c,oo)+0(8!)) • (68) 

where · 
5t'K) = .S(K,~) - st,l) . 

Since Ci~J = C<O,=) '#- O and by definition (37) integrals B1 · and 

B2 of (67-68) vanish at K.=0 , therefore the leading terms of low

energy aaymptotica of the functions S/K) and Cf.(K) are proportio
nal to the leading terma of aaymptotica of the integrals B

2 
and B

1
, 

respectively. The asymptotica of all integrali; (37) as K-0 may be 
found by the method described in detail in ref. 1241 , as well as by 

application to these integrals of the standard atatior.ary phase me
thod 

1411
• For these reasons we give only the final results: 

Bi(K,'j;,00)= (Cc<./9)/ZS"'
3 R3 Hc113)(KR)1b'

3 (1+0(~i/3 )) , (69) 

BncK,r'c:""> = (-1 )n+ 
1 

( 16d 1<5"/15 R2 ) ( 1 + 0 (, il3 )) • (70) 

where, of course, K-0 , r is the Gamma-function and n =2,3. Ac

cording to eqa. (69) and (70) all the integrals of eqa, (65-68) va

nish more slowly than OcKC~) as K- 0 , namely, for this reason 

C2 .· we cancelled all the terms of an order of K 
O 

when we have derived 
eqa. (65) and (67),(68). 

Now, inserting froma (67) and (68) into (18) and uain' e~.(70) 
with n=2. we recover results (7) and (8) proved in ref/24 , .Next, 

ct::: c<
0
> B1 , owing to eq. (68), therefore when K -0 , Nt of (60) 

reads as 

Nt = (-11c'
0'>( B1 +&; + 0( B!)) . (71) 

By compariaor. of eq.(8) with eq.(69) we find that B
1 

vanishes 

more rapidly than ~ but more slowly than Sf • Hence, the func
tions Nt of (71) and Apt of (62) behave like (KR)iG/3 as K-0 
and inserting Nt of (71) into (64) we obtain the representation 

2 . 
Ct=2(/\P//\) (B1 + OCB!>) c72> 

Using eqa.(5), (11) and (69) we get from eq.(72) the leading term 

(12) of asymptotic of Ct. Thus, the second requ:red result is proved. 
For comparison, let us replace the polarization potential by any 

short-range potentialAV5 ~ expC-J-lr-) satisfying eqa.(3), fol'_ ins-
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tance, by tha vacuum polarization potentia/ 421 or by the electron
screening one 1161 • Then, repeating step by step all the construc
tions, described above, we find that the contribution from the tail 

(r-:,,,rc) of t,.vs to the factor SH falls not slowly than O(Kl/exp(-µt;)) 

as r..-0 , i.e. more rapidly than Ct of• (12). Hence, eq.(12) descri-
bes one special effect caused by the t'-1/ long-range behaviour of po
tential (4). However, in contrast to .the pp-scattering this effect is 
not dominant in the pp-reaction. 

5. Perturbation theory for the polarization potential 

In subsection 4.2 we have ac·tually constructed a perturbation 
theory over the tail (r:,,,t',>t'p) of potential (4). by construc-

tion, rnth -order of this theory is generated by m
th

-iteration of 
eqs.(35). Now we generalize our perturbation theory when total poten
tial (4) is a correction to the Coulomb potential. This generaliza
tion on the basis of iterations of eqs.(35) seems to be clear and 
therefore we describe only the most essential details. 

For the reasons to be clear below we formally replace le by Ip in 
all the formulae of subsection 4.2. Then 5co> and Ceo> stand for s 
and c at r- "l"'p and in the framework of rnH1._i teration of eqs. ( 35) 
the pp-function is represented by eq. ( 53) for any t' >, l"'p • Of course, 
this representation is mathematically correct if and only if momentum 

K and the parameters of potential (4) satisfy a possible condition 
that provides uniform convergence of iterations to eqs.(35) in region 

r->,l"p. When r'p >,t'c one can use conditions (43) or (44). For suf-
ficiently small K , of course, t'p < re and c_ondition (43) with r-, 
replaced by t'p loses the meaning, because when we derive it, we have 
used relations (41) which after replacement of r, by t'p become 
incorrect if 'i:>t'p. So, for the more general case, 1-'p<rc , one 
has to study the convergence problem for iterations of eqs.(35) more 
thoroughly/37{ namely to take into account the fact that the func
tions s and c belong to quite different classes {s! and {c1 
The {sJ -class, owing to eqs.(21) and (51), is formed by the func
tions with the KC~ dependence for r-<l"'c , while owing to eqs.(22) 
and (31) the {cJ -class is formed by the functions having a nonzero 
limit as 1<-0 for any I" • In the intervai t'pi-t"'i-c,,O the integ-
ral operators of eqs.(35) form·a contracting mapping, if any func-
tions Os e{s! and S-c e. [c1 obey the inequality 

1381 : 
I" 

ma.x \Pr. ( S ( i\ B2 (K,t'p,t)OCCK,h-c\ Bi(K,l'p,t)S°SCK,l>) dt, 0) , 
p ~ . 
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r- . 

P ... p ( i ( c\ B1CK,r-p,O SccK,t) +at B3CK,t'p,t) OSCK,t>)d.t, o)}< (73) 
p 

. m<X.xf_pr: (OSCK,r>,0), .Pr1 (OCCK,t-),0) 1 , 
where the functions Bh. ( K,~, r-) w!.th n. e.1 ,2, 3 and the metrics are 
defined by eqs.(37) and (38) in which r-c is replaced by rp. 

If I< is sufficiently small, then I Oc I> los I for any I"' ' 
2 . 

because OSCK,t-)=0cKC0 )when r-<"i: and bSCK,t-)~K0 when t',.,r'c , and 
when r..-0 due to eqs.(19), the integrals Bkcr<,r-:p I"') with l'\.=1,2 

.. • 2. -1 
converge, while the integral B3cK,t'p,r) behaves like (KC

0
) • Using 

these facts and applying the midpoint theorem/33/ to integrals of 
(73) we may replace condition (73) by the set of more rough condi-
tions: 

.Pt) Bn,O).< i/2 , n=1,2. , 
... p 

(74) 

Yt/ ~ i\ B3 <K,r-p,t> S-sc1<,bdt,0) < ( 112)y,-/&c1<,r>,0) (75) 
When K-0 p and r- is fixed, then: Oc of ( 75 ) tends to a nonzero 
constant, the integral of (75), owing to eqs.(19), (37) and defini
tion of {s} -class also tends to a nonzero constant if t'p < t'c and, 
owing to eqs.(41 ), (68) and (70) vanishes like or rapidly th~n (kR).,613 

until rp:,,,t"c. Hence, if l"'p:,.t'c and K is such thatplc(B
3
cK,'c,..,),0)<1/2 

then ineq.(75) is valid and, therefore when ,..p,.,t'c conditions (74) 
and (75)·are reduced to those early used ineqs.(36) or (44). For 
the case t'p < Ye under consideration let us assume that ineqs.(74) 
are valid. Then, according to required ineq.(75), tha convergence 
problem is reduced/ 33/ to proving the fact that contributions from 

. B rm+i> cm+i.) the iteration terms associated with 
3 

to S and c are 
smaller than the corresponding contributions from similar terms to 

5Ctn>and ctm>. These contributions to the first iteration results 
(45) and (46) are obviously bounded by 

w-cK) = 1 ta.nstfl)Pt.J B3cr...i-r,,..>. o) \ , <11) 
where :,co) is defined by eq.(59) and is the phase shift caused by 
nuclear potential ¼ , because now s'0

' .and C co> are S and C at 
t'=l"'p and by assumption t'P:,. 's • Further, by .induction one can show 

that the above contributions to S c,n+i) and C cm+ i) decrease with 
growing m if bound (77) is smaller than one-half and ineqs. (74) 
are valid. Thus, instead of condition (36), we have established one 
of the rough conditions 

E<K) .. tna.x {.rr: (B-1 .o),pr: ( B2.0). w-l < 112 
p p 

(78) 

that provides convergence of the iterations of, eqs.(35) for any -i 

rH'p and anyrp>O. Appling ineqs.(39) and inequalityl(;.01~C
0 

1391 to· integrands of (37) we find that e of (78) satisfies the 
inequality 
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j. 

c(KH G"max\3Vnli, lta.no~~~/Kt'pC~c.9>1~ , (79) 

where <>=ol/3t'/R is a dimensionless combination of potential (4) 
6

(0) 
parameters to be used below. Further, when Dul. represented by 
eq.(9), ineq.(79) reads 

ecK>~ O'mal({3V1c:t2 , I a../rp + 0cK2 ) I J < i/2 • (80) 
Obviously, the right-hand aide of ineq.(80) is bounded to one-half 
if K arid o are sufficiently small. Hence we have solved the third 
problem of Sec. 3. 

Now, assuming that: ineq.(78) is valid we repeat step by step 
all the construction of subsecti'on_4.2. So, for s<m) and c<m> we 
have again ineqs. (47) and (48) with 'c replaced by rp • Analogous
ly, we find that both metrics in eq.(48) are bounded by the functiop 
ld~\(E:lK>+OcKC!>)\ and therefore the function di~~ determined 

the accuracy of tn.
th-iteration of eqs.(35) satisfies eq.(52) with 

E(K)of (78). Hence d\'/:~ ....... o as m.-c,,:> • However, ECO)foO {contrary 
d on) 

to e of (36)), hence _ <Ol * 0 for any finite m • This important 
fact is caused by the following apparent reason: the integrals 

Bn.CK/'p,r-), n=f.~ do not vanish as K-0 and· therefore the contribu
tions from any iteration of eqe.(35) to the functions S and C are 
in general nonzero for any K and t' • 

Let by definition F'"~/F'(.s<m>,cO•ll)be a functional F'CS,C)of the 
th m -order of the developed perturbation theory. Then, for I'"< t'p 

the pp-function in mth-order of this theory is u.Cm)= NC"'> U with U 
defined by eq.( 15), where S and c. are solutions of problem ( 14-16) 
in the region I'"~ r'p , where Vs V

5 
• For r- :i,. r'p the function u.<m> 

is represented by the firs.t _term of eq. (53). 
As a next step we replace U by u. cm, in eq. ( 1) and we insert 

A<rn) /\ A(mJ the obtained integral p into (10) instead of p • Thus we get /\p 

C(m) • A C th and i.e. p and in the m -order of perturbation theory. 
Usually, the first order of any perturbation theory is called the 
Born approximation. Using eqs.(17), (18), (45),(46)/53) one can easi
ly get the pp-function in the Born approximation, i.e. the function 

u.d.>. Comparing ll <1> with the pp-function obtained in the Born app
roximation19-111 fpr the Volterra-type equation (see eqe. (5.27-5.31) 
of ref.1101) one may verify that our representation.of u.<iJ is equi
valent to ·the one used in these works. Therefore, if K and Ir sa
fisfy ineq.(80), the assumption of refs.19- 111 is correct, i.e. the 
Born approximation may be tiaed for evaluation of AP (1) and C (10). 
However, using this.approximation one has to keep in mind that it 
cannot provide exactly the leading term of aeymptotice as K-0 of C. 

Ill 

' Due·to this fact (as was explained above caused by the structure of 
integrals B11 (K,t'p,i-> with n.=1,3) the :(inal and complete answer 
to the last question of Sec. 3 cannot be given within any n/~order 
of the constructed perturbation theory. For this reason it is neces
sary to perform high-accuracy numerical investigations of ~p and A 
working beyond the scope of any perturbation theory, for instance, 
by the way described in Subsections 4.1 and 4.3. 

6. Numerical results 

Due to the facts that the polarization potential VP of (4) is 
neglegible and long-range correction to the Coulomb potential numeri
cal investigations of effects caused by VP are no so simple as it 
may seem at first sight. _Therefore it is useful to reconsider the 
moat essential details of the way that has been used for numerical 
results reported below. 

As input data we have used: the 3$1 -deuteron function 'Ii cor
responding to the RSC-potential/43/, the same tS0-potential as V

5 
and potential (4) with d.. = 10-3 rm3/ 4/ and t'p equal to its minimal 
possible value 4 fm that corresponds to the usually used/ 17/ value 
for the interaction radius of V5 • For these c:J.. and t'p , accord
ing to refs.16 •7 •9- 11 • 141 contribution (1~). is .of an order of 10-6• 
Hence the numerical investigation of expansions (5) and (11) has to 
be performed with a high-accuracy. For· this reason eqe.(14) and (23) 
were numerically integrated in the intervals o~ r- $. 30 t"c and 
0~t'~ 100 R, respectively. The upper bounds of these intervals were 
choosen sufficiently large to calculate norm factor (17), phase 
shift (18) and the coefficients of expansions (5), (11) and (32) with 
the nine-significant digits accuracy. Following ref. 1141 we pave 

used the $5. 3-spline interpolation144/ to obtain the pp-function sa
tisfying eq.~58) with the accuracy 

\cC 1CK,t') H UCK,I"') I< 1.o•iO 

for any K and ,-.q .. ,\ • The practical upper limit r-,.. of integrals (1) 

and (56) was 500 fm,.which ensured the calculation of these integ
rals with a relative accuracy 10-9• For a high-accuracy calculation 
of the coefficients of eq&1. (5) and (11) we have integrated eqe._(23) 
and (56) with V=V5 and V= V5 + Vp , respectively. Further, to find 
the applicability range of expansions (5), (11) and (57), we have 
compared their parts linear in energy with the corresponding func-

2. 2, -
ti one /\ , Ap and C calculated by integration of eqe. { 1) and { 14). 

By the way described ~bove we got the following results: the 

IIJ 



coefficients of eq.(5) are /1?(o) =6.96072905, A =2.42552113 Mev-1 

and are close to f•.2(0)=6.934 and A = 2.5 Mev-1 calculated in ref/451 

for the same RSC-potential as well as to the corresponding coeffi
cients of eq.(11): J\~(0)=6.96074375, Ap=2.42552961 Mev-1• There
fore the constants of eq.(57) are C<O) =2.1108 • 10-6 , Ap-A = 
=8.48 • 10-6 Mev-1 and are neglegible as compared with known uncer
tainties of A2

CO) and A of eqs.(5) and (6). Further, using the 
coefficients given above we have found that the functions J\2 , /\

2P and 
C are linear in energy within 1.6%-accuracy if E ~ 20 keV and 

within 0.5%-accuracy if E~10 keV. 
For the used cl and rp of eq, ( 4) we have established that: 

the inequality rc~r5 assumed in Subsection 4.2 and ineq.(44) are 
simultaneously valid if E ~ 360 keV, the constant 6"" of (79) is 
equal to 7.23 • 107 and for the used nuclear potential c(K)of (79) 
is smaller than 10-6 for E ~ 1 MeV. These results testify to the 
fact that for a low astrophysical energy perturbation theories of 
subsection 4.2 and Sec. 5 are correct and the Born approximation 
over total potential (4) is undoubtedly good. 

For completeness we have established that contribution (10) is 
positive for any energy, has a broad maxim'..llll (m111.((E)~i.6C<O)), 

6 E achieves its upper bound ( z3 • 10- ) at E :::: 400 keV and slowly 
vanishes as E -c,c>. 

7. SUIDL1ary and conclusion 

So, we have proved the low-energy representations (11) and (12), 
~e have found rough conditions (78-80) that provide the applicabili
ty of the Born approximation for a sufficiently low energy and by 
high-accuracy calculations we have confirmed the conclusion common 
for all previous works/6- 11 •141 that the correction of the proton 
polarizability effect to the factor SH is small as compared with 
other known corrections. 

In conclusion, we stress that the method of Sects, 3 and 5 is 
quite suitable for analytical and numerical investigations of low
energy representations of the scattering functions for any two par
ticles interacting via the sum of repulsive Coulomb potential, short
range potential and a long-range potential vanishing as r-- oo ra
pidly than a polarization one. Knowledge of these expansions is ne
cessary for analysis of the threshold behaviour of the S-factors for 

' ' 

any inelastic reactions when two complex and charged opposite in sign, 
particles of the input channel are considered as point-like and the 
effective two-body interaction is asymptotically represented as a 

20 

pure Coulomb interaction plus a leading multipole correction to it. 
Hence the results of Sects. 3 and 5 may be successfully used for the 
analysis of more general problems than those solved in the present 
work. 
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