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Proton-Proton Reactlon Theory with Proton Polarizability

The effect of proton polarizabllity In pp-scattering and In pp-reaction
Is consldered with including a polarizatlion potential Into pp-Interaction.
Convenlent low-energy representations of the pp-scattering functlon are
derived within the variable phase approach and are used for a detailed ana-
lytlcal and numerical analysls of the pp-reactlon matrix element consldered
In the standard Impulse approximatlon. It Is proved that for low astrophysi-.
cal energles thls squared matrix element and the contribution from the pola-
rizatlon potentlal to the factor S)) may be approximated by linear functlons
of energy E, while the part of this contributlon assoclated,with the reglon
of distances quasiclassically avolded for the pp-scattering has the g8/
threshold (E +0) behavlour. ’

The Investigation has been performed at the Laboratory of Theoretical
Physies, JINR. . : ‘

Preprint of the Joint Institute for Nuclear Research. Dubna 1989




1. Introduction

As is known/1/, a significant discrepancy between the predicted
(7.9 % 2.6 SNU) and measured (2.0 ¥ 0.3 SNU) capture rate of the solar
neutrinos in the 37Cl -detector exists. The predicted captufe rate is
more sensitive (~ § 2 ) to the cross section factor S “ of the
initial reaction pp--dev  of the solar pp-chain /3/. Therefore the
investigations of any corrections to the above factor are important.
One of these corrections is due to the electric polarizability/4/ of
a proton.

After the work/s/. where an unsuccessful attempt to take into
account of the deuteron polarizability‘effect on thekpd-radiative
capture wasg made, the question about the role of nuclear polarizabi-
1lity on the solar nucleosynthesis reactions has been place in focus
of attention. In a serles of papers /6'11/,st1mulated by works/ 012, 13/
it was shown that contrary to the claims of these works the nuclear
polarizability has a small effect on the cross sections of nucleosyn-
thesis reactions, However, the polarizability effects on these inelas-
tic process were studied in the framework of various low~-energy appro-
ximations, nsmely: the WKB/6’7/. simple ogtical model 8 and the Born
/9-11/ ones, Moreover, in all the works a series of intermediate
approximations were used without a-detailed inspection of their appli-
cability range. Numerical results of the recent work/14 , Where it has
been shown that the contribution from the proton polarizability to the
factor S m is smaller than 2+10 ", have confirmed the results obtai-
ned previously/6 -1/ , however, they do not contribute anything new to
the issue, Also, it is necessary to stress that the authors of works
/6-11/ concentrated thelr attention on estimations of upper bounds of
nuclear polarizability effects on total cross sections to nucleosyn-
thesis reactions. The question about this effect on the low-energy be-
haviour of the S-factors is still open.

In view of all the above reasons it is necessary to analyse the
low-energy expansions of the Séfactqrs, with taking into account of the
nuclear polarizability effect and using as few assumption and approxi-
mations as possible., In the present work we realise this. program for
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the factor S“ as follows. In Sec. 2 we describe the model used for

pp-reaction and, in Sec. 3 we formulate the problems under considera-
tion. In Sec. 4 we derive and analyese the low-energy representations

of the pp-scattering function, pp-reactior matrix element and of the

contribution from the proton polarizability effect to the factor S“ .
In Sec. 5 we construct a perturbation theory for this effect. In Sec.
6 we report same results of numerical investigation of the factor S“

and in Sec. 7 we summarize our main results.

2, The model for p‘p-reaction’ : o

We use the standard model/15 16/ ‘in which the factor S is pro-
portional to the- square of a dimensionless radial matrix element usual-
ly 9er617ted by /\ . In the impulse approximation the definition of A
is .

/\ (33/8JLK Cztg)) Su(x,r)v'(r)dr ) (1’

0

Here X =O.2316 fm—1/17/ is the inverse deuteron radius, K 1is the

two-proton relative momentum corresponding to thq CeM.8. €nergy E=|(Z y
C:’ ia the Coulomb barrier factor and n= 1/2kR , where R =28.81"

fm 17/ is ‘the Bohr radius for one proton. In the asymptotic region

( r— oo ) the 354 deuteron radial function ¥ behaves like

exp(-yr) and the 430 pp-scattering radial function U is defi-
ned to have the form:

(2)

where [;  and Go are the S-wave regular and irregular Coulomb func-
tions ? / and O is the phase shift relative to the pure Coulomb
phase shift and caused by interaction V .

Physically, V 1is a sum of a short-range nuclear potential V
and a polarization potential V , Which is due to the proton polari-—
zability effect and decays like r -4 a8 r— oo , For the nuclear poten-
tial we use‘'only the fact that it satisfies the conditions /17/:

lim r™exp(4Vr/R )V(H =

Wk, = 058k F (k1) + sin8ex> Gyex,r -

L n=04,... (3

r—»co

and therefore/19/ may be put equal to identically zero in the region ' t

rs>r 'y where tg is any finite radius called the action radius i
/17, 20 21/

of this potential. For rsr:s the explicit form of the polar-

rization potential is unknown, therefore we are compelled to 1limit
ourselves to the usually used 5-14 representation

Vo = (- /RF4) B (F-1p) ) " |

'

where « 1s the electric polarizability for opne proton/4/, P is the

step function/18/ and r’P is an arbitrsry but fixed radius, of course,

such that rP>”:‘> .-

3. The problems under consideration

We denote matrix element (1) by AP or by A when potentlal (4)
is present (V=V;+Vp) or absent (V=Vq) .

For the temperature 1.5°10'K corresponding to the golar interior
the most effective energy of pp-reaction in c.m.s. is = ~ 6 keV and
for E < 20 keV it is found 73/ that

NEY = N0 (1+ AE(MeV)) + 0(E?) . (5)
and |

NXEY = (208+0.48)(1+2.2E(MeV)) + 0(E®) . (6)

The constants Azll)) and A are known/zz/ with uncertainties /?3[
due to: 2.5% ~ uncertainty from the nucleaeroten‘tial Vs s 2% - uncer-
tainty from the exchange mesonic currents and: some other effects ex~
cept the proton polarizability effect that generates the additional
interaction VP .

As is known /24/ all the special effects caused by long-range
asymptotics -(4) of the potential \/ V V are agsoclated with the
region r»>r. , where =4/k2R 18 the Coulomb classical turning point -
/25/. When k-0 , the dominant part (Y' ( .t 1ig an abbreviation of
"tail") of the phase shift & is due to ‘the tail (r> %Iy ) of the
potential VP « In the Born approxizma‘t:ion/25 S’is glven by-the
formula/24

tang z -kt S V ) F(K r')dr (7

which provides the first term of the low-energy expansion of iang
qxactly:

tanSek) = tand, a0 + Ok () = - 164k7/15R% + 0(k5) e
When V= V and V satisfies egqs. (3), the threshold (k=0 ) |
behaviour of tand is described by the law /25,26

-1
tqn&K)=-KC0(g)(a’1+(K 12Y(2R13-r, )+ 0 (k")) . @

Since laws (8) and (9) are quite different, two questions arise im-
mediately: what is the threshold behaviour of /\P and what 1is the
threshold behaviour of the part Ct of the contribution



C(EY = ( /\,,(E)//\(E))2 -1 (10)

from the potential VP to the factor Sii caused by the tail (rxr; )
of this potential? We attempt to give a mathematically rigorous proof
of the facts that as K —{

A2 (EY = N5 (0) (1+ A,E(MeV)) » 0(E?) . an

where AP is independent of the energy, and

C,(EY= (Apt@V/3A@))2 (/2% °R%) Mazy («RYP(1+ 0y | (12)

where [T 1is the Gemma-function/18/, and & and R are the parameters
of potential (4).

Along with proof of egs. (11) and” (12) we recover some known re-
sults within the variable phase approach/zo’?1/ which is more adapted
for solution of all our problems. One of them is to find a roughusuf-
ficient condition unsuring the applicability of. the Born approximation
over potential.(4) for the evaluation of the functions A and C .
This condition being established analytically makes the constructions
of the works/9 =11/ mathematically correct. To explain this critical
statement we remind two facts. First, the Born spproximation may be
incorrect/27/ even it provide a small correcticn to any studied func-
tion., Second, all results of works/9—11/ were actually established
within the Born approximation. As shown numerically/28'29/, this app-
roximation is good for the calculation of the phase shift caused by
the polarization potential. However, this result has been used in
works /9~ n/ to assume that the Born approximation is quite suitable
for the construction of the scattering wave functions. Therefors it 1s
necessary to prove analytically that this assumption was valid. The
assumptions of all works 6'11/seem to be correct in the low-energy
limit. However upper bounds of the energy region, where the approxi-
mations used in these works are guitable, have not been found. There-
fore, using the results of refs. 6-11/ one can estimate contribution
(10) if and only if the energy of pp-collision is sufficiently emall.
However, according to refs. , contribution (10) is a growing
function of energy. Hence, for completeness it is necessary to give a
Justifical answer to the question: what is the upper bound of contri-
bution (10)? We estimate this bound by high-accuracy calculations of

A and /\P ‘

4, The theory

To obtain eqs. (11) and (12) we derive the suitable low-energy
representations for the pp-function in the presence of polarization
potential (4),

4.1. Low-energy expansion of the pp-function for r<r, .
At first we prove that in-the region r<r, the pp~function has a fol-
lowing low-~energy expansion'

wek,ry = k Gy (2 oxz"u ) + AUK,F)) , (13)
where the regidual tenmauf vanishes 1like k¥ ag k=0 .
To derive eq. (13) and to give a simple method for evaluation
of the functions W, and (,, we use one of the methods of the vari-
atle phase approaczzo 21/. In this method the phase funotions § and
C are defined as solutions of two coupled equations 21 :

3. stk = -kt Very Uk, my F ke (1)
- K-l
3, C(KF) Verm Ui, rs Go(x ry
with the bilinear form
U(x,r)=c¢x,r)F‘;(x,r) + sk, P G (6P (15)
and boundary conditions:
(16)

Sk,=0 , Cck,0)=1
Using the relations _
S(K r')-KC (D)Sn(K r') , CKr)= CSIKFrY
where sn and ¢$ are the phase functions of ref, , we get that the
form U of (15) multiplied by the norm factor

Neky = cosSikr/c ek, o0y , a7
where ‘the phase shift ) ;s defined by
tan8tkyr= ek 003/ (K, =) (18)

provides the pp-function U satisfying eq. (2).
Ag it will be clear below, the knowledge of the first three

“terms of low-energy expansions of the function § for r<r, and the

function ¢ for any r is quite sufficient to obtain eq. (13). To
f£ind these terms, we use the method that is more similar to the me-
thod of ref./ 9/, and based on the Bessel-Clifford expansions /18/
for the Coulomb functions. The above expansions may be written as

2
R = kG ( 2 k¥ fa 1+ afem) . 19)
n=



4 2
Gyory = Cop( 2o k2 gery + Agex,r) .09
n=

The residual terms Af and ag of (19) of the order k& 1if of course
r<r. o The Bessel-Clifford functions fn_ and 3n with n=0,1,2 may
be easlily found explicitly (for instance, by using the results of
ref./3") and resd as

fum=RcREPHT (8 5n1/3)+(2Iq/5x+I5/18)5n2}’
(20)

g = (IR GRI2HK ( 13)-(2K, 15x-K_118)8, 1,

n+4 nD n1

where I and K with n=1,2.are the regular and irregular modified
Besnsel functlons of X=2 \,P'/R « Let us look for the solutions of
problem (14-16) as : ' '

2
2
SUK,PY = KCDQ))( N K"’”snu-) + ASKP) (21)
C(K,P) = Z K" c m + ackr) . (22)
‘ n=_

Inserting forms (19), (21) and (22) into (14) and (15) we obtain
three sets ( n=0,1,2) of equations:

arsn“')' Vimr 2 U(r-)fu‘) s (23)

8+m=n

d.cpm= Vary X U(r)g (r)

with the fumctions l+m=n

U, =BZ='S M f (M + Spamr g ) (24)

+
and boundary conditions

S.¢00=0 , c =1 (25)

generated by eqs. (16) and ansatz (21) and (22),

One detail is to be stressed: when we introduced representations
(21) and (22) and derived eqs. (23-25), we assumed that the residual
terms AS and AC are of the order k6. The fact that this agsump=-
tion is correct for F<re follows immediately from thesequations
for As and AC which can be got along with egs. (23). Since the sys=-
tem of equations for AS and AC is more long and - 1s not used below,
we do not write it.

Clearly, expansions (19), (21) and (22) generate the expansion
for the unnormalized pp-fungtion (15) in the form

Ukmr =k Cop ( 22 k2" Uy + alek,m) - (26)
0 n=0 n
. where the functions Up with m=0,1,2 are defined by eqs. (24).

6

* As is known/18/, in the region r<r. the expansions (19) ra-
pidly converge with K~¢@ , therefore expansions (21), (22) and (26)
are quite suitable for r< r. and when r<r, * their residual terms are
of the order k® by construction. Wow we must derive the low-energy
expansion of noi’m factor (17). To meke this, we study expansions (21)
and (22) for r»ry where Fo is agsumed to be a finite and arbitra-
ry radius satisfying the .condition z\l /R »4 . Also we assume
that the energy is sufficiently small, namely, such that "'c""s .
Due to both the assumptions, we can use for rr, the asymptotics
forms /18/ for functions (20) and asymptotic form (4) for the poten-
tial V. Substituting these forms into (23) and (24) and changing the
variable r by x=2m, we found the solutions of eqs.(23) for

F>r, =as series of elementary functions. In particular‘we estab-
lished that due to the long-range behaviour of polarization poten-

tial (4) the functions S, with n=0,1,2 diverge like

sn(r)=co(oo)(adlﬂTRz)(RIZ)zn x 3 exp (2x) (2

as r—~ o= , while the functions €, with n=0,1,2 are finite at
rF= oo and satisfy the relations:

C(F/C (=) - 4 = 324 /5R3x® + 0(x719 , (28)
where Pyry . As follows from egs. (27) and (28) representation (21)
loses its meaning when r -~ o= , while representation (22) is well-
defined for any r and therefore AC(K,F) = 0(KY) also for any r .
We proved the. last statement ectually by the way more similar to the
one used in ref, 132/ devoted to investigation of the low-energy be-
haviour of the phase shift caused by long-range potentials in the
absence of the Coulomb one.

Now, using eqs. (27) and (28) we get that the function

acr) = -5 (1) /e,y ~ - (a R [85r3) exp(4 VR, TR 3 © o (29)
diverge as ra -+ oo , while the function

rry= 2R/3 + 2 (¢ (r)+s(r'0)/a(r))/s (F)) (30)
has a finite limit 2R/3 at ry = .

Result (29) is well-known, After report /33/ it has been discus~
sed by many authors/6’28'30'34'36/. To explain these statements, let
us put - the potentiasl V to be identically zero for v >y, , where o
is a finite radius, For this potential, owing to eqs. (14) and (21-
~23) the functions §,C as well as the functions Sp»Cp With n=
0,1,2 and AS, AC are equal to their corresponding values,at r=r, .

Hence, we may replace S(K,oo) 8and C(K,o=) in eq. (18) by their



expansions (21) and (22) written at r=ry .« Thus, we get the expan-
sion of tand for the potential V(r) 8¢ Fp-¥) which satisfies egs. (3).
Hence,we may compare this expansion with eq.(9).As a result,we get
that: @ (r,) of (29) is the scattering length (denoted byd(0,r,) in
rer./3* and plotted in Fig.5 of ref./3%/), 1) o (30) is the
effective radius for our truncated potential. Due to eq. (29) a(ry)
diverges as r.— oo . Hence, the definition of the scattering length
as the low-energy limit of the left-hand side of eq.(9) divided by

-KC; loses its meaning for the potential V with asymptotic (4).
This fact is known’24/ and we only reproved it within eqs. (14) by
the way still more. similar to the one used in refs. 30,34 + Surpri-
singly, re (=) of (30) is finite ahd'therefore the low-energy ex-
pansion of tand ‘contains the term behaving like k3 CZ’ as K=~ ,
1.e. the effective radius defined as a limit of 0q.(30) as Py~ oo
has the meaning, This definition is quite different from that one
used in work/35/. In this work tand of the left-hand side of eq.
(9) was replaced by the integral of ©q.(7) and the effective radius
was actually considered as g low-energy 1limit of the second term of
the asymptotic (k=0 ) of this integral divided by the factor

K3 CZ « Since the asymptotic expansioh of fhe integral of eq.(9)

-does not contain 24 the terms with k" Co threshold behaviour,
the authors of work /35/ have found that the standard definition of
the effective radius loses its megning for the potentials V with
asymptotic (4).

For the first time, the receipt of construction cf the finite
scattering length and effective radius for the potential with tail
(4) in tha presence of the Coulomb field' was given in ref./24 . Re-
cently, another definition of. the scattering length having a physical
Deaning for the above potential has been introduced in ref,/30

To prove eq.(13), we do not need redefinition of any function.
Really, according to eqs. (7) and (18) the ratio S(K,F)/C(K,FY has
8 finite limit &t r= oo , therefore COSO(KY of (17) is & well
defined factor. Moreover, we have shown that the denominator of frac-
tion (17) has a well-defined %xpansion

ctkeoy = X k3 (o0)+ 0(KY) (31)
n=0
~and due to eqs. (28) written at r= re » the contributions to the
constants ¢ () (n=0,1,2) from the tail (F>r,. ) of potential (4)
behave like K% ag K-+ . By using eq, (31) and the fact that
cosd =1+ 0(xi9), following from eq. (8), we obtain for norm factor
(17) the low-energy expansion:

Nex) = cilee=) -2 ¢y (o21/c2 o0y + O (KY) . (32)

Further, multiplying Nwdof (32) by U of (26) we have the required
result (13) with A
ugn = Uy /e ooy (33)
w, = (Ugr -cce=ru m)/cyce=y | -
where UD and Ui are defined by eqs. (24) and may be easily evaluated
after solving problem (23-25), which has no special numerical diffi-
culties, To complete the analysis of expansion (13), we stress that

its residual term is of the order k¥ , by conatruction, and also we
represent the asymptotics (x=2VF/R »1) form of functions.(33):

r= (RP 137 144 230)) VX B5c - (38)
RTI
exp(x) (1+ 0(x™hH) » n=0,1

obtained with the help of eqs. (26-28).

4.2, Low-energy representation of the pp-function for rrg

As a second step, we derive the low-energy representation of the

function &« for rsr >, . To do this we rewrite problem (14-16) in

the equivalent integral form:

&
s = s@ - k! (Ve Ut F v brdt , (35)
bl r r 4

cory =c @+t { ViUt Gk, dt ,

where the values of phasercfunctions $ and C at F=r, are denoted
by s® ana ¢9 ang may be evgluated by using expansions (21) and (22).
To analyse the solutions of egs. (35), which are the VoltezB‘ra—type
integral equations 7 , we use the usual iteration method e We put
5%%ana C‘o) to be zero approximations and to obtain the results
s(m+D .and  C (m+ 1) of (m+i)th.-itemtion. we shall substitute
the results $™™and ™ of mtP-iteration into the right-hand si-
de of eqs. (35). The series of these iterations converge uniformly
to the exact solution of system (35), if all its integral operators
37,38 « In the usual way 38 , 1.0, using

are contracting mappings’ -
the midpoint theorem, one can show that this condition is fulfilled,

” B .0 (36)

= max ( ,0 < 1j2 >
E(KY Ny ‘P’T: n
where

‘ r
B, (xr,m= k7t VO (R Gk, )8, -
re



2
Fo,b9,, + G[z,(K,t) §,,)dt (37

and the metrix on the

parametrically, is

i

Using the bound

|F'(x

n=1,2 that

¥

1

C[r co]/ -class of functions, depending on K

defined as
A,B) = max [Ac,m-Bem!l (38)

rayr,
Let us show that ireq. (36) is valid for sufficiently small K .
M (F 0+ i G | s xV25irt, (39)
which is valid for any K r and t we obtain from eqs. (37) with
P Bn,O) ¢ VTL/Z (/R ¥2) ) (40)
t

the Coulomb functions are not greater in order

In the region rr
of magnitude than their values at r=re

/18/, therefore

Pr( 0)=0(DUG Pr(Go’O) 0(9”5), (41)

By applying the second eq. (41) to eq. (37) with n =3 we find that

or

B,.0)=0ey!"3) («13kRF2) | (42)

Thus, due to bounds (40) and (42) we may replace condition (36). by
more rough condition

£(K>
which is valid, if

N5 /2 (o(/Rr,_?)< 1/2, 43)
K satisfies the inequality
-4/4
k< (Vast s R) ' 43)

that we assume for all the subsequent constructions. The first of
them is a result of the first iteration of eqs. (35), which read as

Suu-') "S(K) (1- B (K, C,"))* C(x) B (x r;;,r-)

C(x r) = C(x)

s (45)

(1+8, 1 <K, r,F) ) F s 8 (K, re,r) (46)

Continuing the iteration procedure we find by induction that

m)

max{yra(s,sm”), Pr (c,c"’”)} < d{x) , (47)

where

d @ = (em/(i- E))max{P (s s, p, (ch, ¢} . e
I3 . .

To estimate d(x)

» We come back to eqs. (14-16) and introduce a fi~

nite matching radius r, assumed to be sufficiently large (l'o 2T

2V /R » 1

) to use, for r>r, , forms (27) and (28)., Then,

10

:

due to eqs. (22) and (28) we have

CK, Py = Z: k™M o=y (4+0cr” 5"")) + Jcx) (49)

2
n=0

where, of course r'»ra « Inserting form (49) into the first equation

of set (14) we get an equation orly for S$(k,r). Solving this equation
for rrr, we find
. i

$& = sk - Z Kan (o) exp( B, LK,y ) (50)

re =0 :

a8, o ro, ) exp( B, x,r, 13) (4+ Dct™¥%y+ Qexn) dt

where B'L (n=1,2) are defined by eqs. (37). Due to egs. (4) and (19)

integrals * BA1 of (50) have a finite nonzero limits as x—~0 and

therefore to find the threshold behaviour of S(x) we may replace

in eq. (50) the exponential functions by the constants. After this

subatitution we get in the right-hend side of eq. (50) the integral
B {K,ro""c) which behaves/24/ like KC a8 K-+ . Next,

owing to eq. (21) we have S(K, re) = 0(KC ) . Hence, from egs. (22)

and (50) it follows that
W)

5@ = ¢do O(KC;(D)) (1+ 0c®) (51)
Now, by using - ineq. (36) and eq. (51) we get from egs. (45) and (46)
that both metrics of (48) are of the order |ct@ (eco + QxC? (9)))1
hence

do = lc‘”’e"‘(uOij))/(i-E)\ . (52)
Thus, due to eq.(47) the functions $™° and ¢ ‘™ reproduce the
exact solutions § and ¢ of qu.(35) within d‘mlﬁccuracy and

d(x) vanish by law (52) as k-0 . Using these results and egs.

(15) and (17) we obtain the low-energy representation of the pp-func-
tion, corresponding to m~" -iteration of system (35). This repre- '
sentation reads as

{md .
Uk,Py = UKIPY + A lUCKP) = _ : (53)
m) ( om F' (m) m>
Ny (calm o (KF) + STk Go(x,r)) *aur

>

" where rxrg »ry , the momentum K satisfies ineq. (44), the norm

factor N 1g defined by eqs. (17) and (18) in which § and ¢
are replaced by s> and ¢¢), respectively, and the residual term
satigfies the relation

md)
p.(au™, 0) = 0(5”6d<m (54)
[
obtained with the help of eqs. (41) and (47).
i1



Before to go further, we make one useful remark. Of course, if

V= VS » then in the region rxr, >rg the pp-function is repre-
gented by eq. (2) and therefore in this case formulae (53) and (54)
may be not used. However, if V=VS+VP- and Fyr,>r; , one has
to use the approximation U =™ with u%of (53) or another
equivalent approximation, because in this case the low bound v; Vinin (K
of the region ry Fnin(KY s where L is close to its asymptotics
form (2), is an order of magnitude of several re and depends on the
energy. A detailed discussion and a numerical proof of this fact are
given 1n refs./29'30/.

2
4.3. Threshold behaviour of the functions AP ,C and Ct

Owing to egs. (2) and (34), the functions « and i, (n=0,1)
have quite different asymptotics. Hence, in the region rer, the
function W cannot be approximated by a finite sum contained in the
right-hand side of eq.(13). However, representation (13) is quite
suitable for evaluation of the integrand UV of eq.(1), for two
apperant reasons /37/. Pirst, the contribution 2(k) from region
rxr, to AP of (1) is negligible as k-0 . Really, using for
Frre >rg the formulae Y(riy~ expi-yry ,. representation (53)
at m=4 , eqs.(45), (46) and rough bounds (41), we find that

ae(K).=>0(9“‘x" C;i(g)exp(—gv‘c)) = Ok(-‘i;“a”exp((ﬁ/Z-X/K)/KR)),G‘i)

Second, owing to eqs. (34), the products W, U(r) with n=0,1
decay exponentially as r—» oo . Hence they are functions integrated
on the interval (0, o= ). ‘

For the above reasons we may insert & - of (13) into (1). Thus
we prove the first required result (11) and find the constants:

/\P(O)=(g3/8ﬁ) Su (r)vu-)dr v R

-1 1/2
AP= /\P(O)(53/2ﬁ.) S u, i Yedr .
0
Next, combining eq. (5) with eq.(11) we esgtablish the low-energy
asymptotics of contribution (10) in the form

CCEY= (Ap(/A@)*(1+ (Ap-RIE+ OCED) -1 .  (s1)

Let us study C(E). Let Yy be an arbitrary radius, such that ro»rP

and Xx,= 2VI‘OIR »{. Then, owing to eqs.(28) the contributions from

the part ( rxr, ) of potential (4) to the constants (< ) and
Cy(e=) are of the order x'o5 . Hence, in eq.(33) these constants
may be replaced by C,(X,) end . C,(X,) within  x;¥ accuracy.

(56)
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Further, the contributions from the region rz¥r, to integrals (56)
are exponentially small {~ exp (x,-yF, )) *. Clearly, for the above
reasons contribution’ (57) from potential (4) to the factor S is
mainly caused by a -short-range (Fr, <t < ) +R) part of this poten—
tial. This conclusion agrees with one of the main results of refs.
-1/, Now, let us assume potential (4) to be absent. Then one can
step by step repeat all the constructions of subsection 4.1 and deri-
ve eq.(13) with U, and U,; which may be evaluated after solving
problem (23-25) with V= V . Thus, one can get eq.(5) with A(0) and

A repregented by corresponding integrals (56). Note, that in both
the cases ( V= Vs"'Vp or V= V ) the function W, , owing to eq.(13),
is a limit of U.IKC ag K=0 and is a solution of the Schrodinger
equation (h=c=m= 1 )z

Huww,ry = (3 +k2+ 4/rR - Ver) wix,m =0 (58)

at K= . The polarization potential is attractive, hence V +V V
for any ¢ . Using this 1nequality and applying the well—known theo—
rem (see Sec. 6 of handbook ) to eqs. (23) with n=0 and to eq.
(58) with k=0 we find that for any ¥  the function U, corres-
ponding to V= V +V is greater than the function u, correspond-—
ing to V= V . Therefore, from egs. (56) we get /\P(0)>A(0) and .
hence, owing to eq.(57), C(o)>0 . Thus, in the low-energy limit cont-
ribution (10) behaves 1like the linear function (57) of energy and has
a non-zero limit at E=0 . These results agree with the WKB-predic-
tion represented in Fig. 6 of ref. and disagree with the result
(14) of ref./8 according to which contribution (10) has to vanish
like EF ag E—'O . Ag. is noted 9/, the work 8 contains an error lea-
ding to the ES threshold behaviour of C . When this error .is taken.
into sccount, one find again that Cwy>p . of course, for li:he rea-
son that r, =~ o= as K-—~0  the part Ct of { wsssociated with the
tail (rF>ry) . of potential (4) must vanish as k-0 .

Let us derive the formula for C by subsequeontly representing

every functions F=8cNu, /\ ,Casg a sum F=F' such that
F=F@ if potential (4) 18 truncated at r=r. . Along this way
we represent phase-shift (18) as
« 0), (0
§-8“+ 5, = atan (s%/c )+5; ) . (59)
Then norm factor. (17) becomes ,
) 0)
N=NN, - (= 0s8C7CP + (cos§/(cPrcp - y- N9, (60)

where C(x)-C(K o) - ¢ . Decomposition (60) and the identity
a NU with U of (15) generate the representation
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w=uvu, =
-4 -1
NON " wber-r +(N{N wOre-rm+ wbr-ry)

where the third term may be approximated by w of (53). Insert-
ing & of (61) into (1) we have

-4
M= Ap+Apy = NONF A+ (NN A+ 22)  , (62)
where -2 - 1is given by eq.(55). By substituting AP of (62) into
(10) we find the decomposition C= C( +C , where
C7= (A INV-1 = (1+N,L/N“f’)'2(AP/A)2-1 (63)

is the contribution from the part (r<re) of potential (4) to the
factor .Su and )

(61)

>

-2 ’
= (1= (4+ N/NOY2) (AL IN? + Ocee (64)
is a part of total contribution (10) associated with the tail
( ror, ) of this potential. :

Now we describe the threshold behaviour of all the terms of
eqs., (59-64). According to eq.(51) 8(&) “of (59) behaves like KCO
Using egqs. (8), (28) and (31) we find that N of (go) behaves
like a linear function of energy and N‘(oo))#o « As follows from eqs.
(46) and (47) withm =1, the part C, of '€ satisfies the condition

le ol < <d®  with B or (52), therefore Nt of (60) 1is of
the order of d,‘D. Applying the results obtained for Nw) and N

) (0]
to eqs. (62-64) we find that /\P' C behave like 1inear
functions of energy and have nonzero limits at k=0 , while A gand
Ct are of the order of du)-l-& and hence vanish as K—(

not slowly than ((x9) which follows from eqs. (43) and (52).
The leading terms of the asymptotics of the functions 8 ’ Ct .
N’L ’ APt and C cannot be found without inspection of the’ second ite-
ration of eqgs. (35) After dropping the terms agsociated with $¢@
of (51) and therefore behaving like KC thig iteration yields:

s ,o2) = ¢ (B (k,r reso2) + sz(K, r,e=)- Bﬂ(l(, e S° )

C((%(),"") = C(K) (i‘* B (K, c, )+2_1 B (K‘c,w) + 825“(’ c,o"))

> (65)
where we have introduced the f_integrals

By (K10 = SB k3, B, tydt (66)

with nm=12,21,23 . Using defcinitions (37) and bounds (40-42) we
immediately find that the last two terms of both eqs. (65) and integ-
rals (66) vanish not slowly than B2 2(Ks1py02) as K—+0 .
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Continuing the analysis along this way, we prove the important sta-
temant: for any m»41 the contributions from ( m+{ )-th intera-
tion t0 S(k,00)  and C(K,oo) vanish like or rapidly than the
sguared contributions from m{h-iteration as k-0 « According to
this fact and ‘eqs. (45), (46), and (51) we may write egs. (65) in the
form )

S(K,w)=S(K)+0(KCZ)=c‘&)) (B 5 (K, 1o, o) +O(B§)) ,  (67)

Ck oa)-Cuo(itB (K,c,w)i-O(Bz)) (68)

(3

where )
‘St(K)= S(K,>=) - Sky .

Since €3 = Cc0,0=) + 0 and by definition (37) integ*‘ala B’itand
Bz of (67-68) vanish at K=0 , therefore the leading terms of low-
energy asymptotics of the functions S (KY and C,(K) are proportio-
nal to the leading terms of- asymptotics of the integrals Bz and Bi’
respectively. The asymptotics of all 1ntegrals (37) a8 K~ may  be
found by the method described’ in detail in ref./24/. as well ag by
application to these integrals of the standard statiorary phase me-
thod 41/. For these reasons we give only the final results:

By, ==y = (/972" R?) a3y (kRY*3 (14 O¢ p) 9
Bk, ree=) = O (164k5/15R?) (1+ 0(5“3)) . (0)

where, of course, x~0 , [ 1s the Gamma-function and n =2 +3. Ac-
cording to eqs. (69) and (70) all the integrals of eqs. (65-68) va-
nigh more slowly than O(KC ) as K= 0 , namely, for this reason
we cancelled all the terms of an order of Kco when we have derived
eqs. (65) and (67);(68).

Now, ingerting froms (67) and (68) into (18) and using eq. (70)
with n=2 we recover results (7) and (8) proved in ref. Next
C. = c“”B » owing to eq.(68), therefore when k=~( N of (60)

reads as 2
N, = -4c@)(B, +57+ 0(B2)) . 1)
By comparison of eq. (8) with eq.(69) we fing that Bi vanighes

more rapidly than 8, but more slowly than 8:'. Hence. the func-
tions Nt of (71) and A tof (62) behave 1like -~ (kR)16/3 4g K- 0

and inserting Nt of (71) into (64) we obtain the representation

C,=2 (A, /N (B, + 0(BZ)) . (72)
Using eqs.(5), (11) and (69) we get from eq.(72) the leading term
(12) of asymptotic of Ct . Thus, the second required result ig proved.
For comparison, let us replace the polarization potential by any
short-range potential AV ~ expl-pur) satisfying eqs.(3), for ing-

t
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tance, by the vacuum polarization potentia1/42/ or by the electron-

screening one . Then, repeating step by step all the construc-

tions, described above, we find that the contribution from the tail
(rzrg) of A\@ to the factor S“ falls npt alowly than O(kqeprﬂQ»

as x—0 , i.e. more rapidly than Ct of* (12). Hence, eq.(12) descri-
bes one special effect caused by the v long-range behaviour of po-

tential (4). However, in contrast to the pp-scattering this effect is

not dominant in the pp-reaction.

5. Perturbation theory for the polarization potential

In subsection 4.2 we have actually constructed a perturbation
theory over the tail (r>rg>rp) of potential (4). by construc-
tion, m}h-order of this theory is generated by nﬁh-iteration of
eqs.(35). Now we generalize our perturbation theory when total poten-
tial (4) is a correction to the Coulomb potential. This generaliza-
tion on the basis of iterations of eqs.(35) seems to be clear and
therefore we describe only the most esserntial details.
For the reasons to be clear below we formally replace raby|?in
all the formulae of subsection 4.2. Then 5@ and ¢ gtand for s
and ¢ at r=rp, and in the framework of m'M-iteration of egs.(35)
the pp-function is represenied by eq.(53) for any Furp e 0f course,
this representation is mathematically correct if and only if momentum
x and the parameters of potential (4) satisfy a possible condition
that provides uniform convergence of iterations to eqs.(35) in region
ryr, . When ryp>r; one can use conditions (43) or (44). For suf-
ficiently small x , of course, pp<r, and condition (43) with r,
replaced by rp loses the meaning, because when we derive it, we have
used relations (41) which after replacement of r, by rp become
incorrect if r;>rk . So, for the more general case, rP‘!E , one
has to study the convergence problem for iterations of eqs.(35) more
thoroughly/37{ namely to take into acccunt the fact that the func-
tions s and ¢ belong to quite different classes {s} and {1 .
The {s} -class, owing to eqs.(21) and (51), is formed by the func-
tions with the KCD dependence for r<ry while owing to egs.(22)
and (31) the {c] -clasa is formed by the functions having a nonzero
limit as k=0 for any ¢ . In the interval rps¢r¢ce the integ-
ral operators of egs.(35) form 'a contracting mapping, if any func-
tions &% E{S}F and 0c € {c}  obey the inequality 38/,

max {Prp( SPP( 3 BZ(x,rp,t)Sc«,t)—atBifk,PP,t)SS“,t))dt ,0),

-
(S (3,8, x,r
P, A 1“,p,“80‘*,h +atB3(K,Y’p.t)SS(K,t))d_t,0)}((73)
. mgx{yr (85¢x,m,0) , p. (Scek,r), 00}
where the functions Bh(KJﬁ,r) ‘wth r1g1,2,3 and the metrics are
defined by eqs.(37) and (38) in which r. is replaced by rp .

If Kk 1is suffigigntly small, then 16ci>18si for any r ,
becauce SS(K,r')= O(KCD)when r<r, and 55(K,r~)~ k5 when reyre and
when k- ( due to eqs.(19), the integrals Bh(K,rp,r) with n=1,2
converge, while the integral BS(“’rP’r) behaves like(Kcs)—ﬂ Using
these facts and applying the midpoint theorem/3e/ to integrals of
(73) we may replace condition (73) by the set of more rough condi-~

tions:
pré(Bn,O)‘ 142, n=4,2, (74)

v .
) y,?(épatB3(K,rp,t)55<x,t)dt,0) < (1/2)})'.’,’(5C(K,r'),0) ) (75)
hen k-0 ' and r 1is fixed, then: &8¢ of (75 ) tends to a nonzero
constant, the integral of (75), owing to eqs.(19), (37) and defini-
tion of {S} ~class also tends to a nonzero constant if tp < Fe and,
owing to eqs.(41), (68) and (70) venishes like or rapidly than (kRY®?
until p>r . Hence, if r'P>,r& and Kk 1is such thatP,.é(Bs(K,ré,r'),O)<1/2
then ineq.(75) is valid and, therefore when rp»re conditions (74)
and (75) are reduced to those early used ineqs.(36) or (44). For
the case < under consideration let us assume that inegs.(74)
are valid. Then, according to required ineq.(75), the convergence
problem is reduced/38/ to proving the fact that contributions from
the iteration terms associated with 33 to Snﬂ*i)and ¢+t are
smaller than the corresponding contributions from similar terms to
$™ and ¢, These contributions to the first iteration results
(45) and (46) are obviously bounded by E

©
Wy = | tan&m_Pr_(Ba(K,rr,r), 0) | “n

: © ; 7 4
where @ is defined by eq.(59) and is the phase shift caused by
nuclear potential \Q , because now 5 and ¢’ are 5 and C at

r=rp and by assumption q,;rg « Further, by .induction one can show
that the above contributions to §¢™*%) and ¢™*1) gecrease with
growing m if bound (77) is smaller than one-half and ineqs.(74)
are valid. Thus, instead of condition (36), we have established one
of the rough conditions : K

Exy= ma.x{yr,P(B‘,D),P‘?’(52,0),w‘} <1/2 (78)
that provides convergence of the iterations of eqs.(35) for any

/397 Farp and any ry>0 . Appling inegs.(39) and 1neqv.mli1:y|(}o|$C;’1
to integrands of (37) we find that & of (78) satisfies the

' inequality
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E£1K) £ O“vnax{‘!u\'fill Han6 & /kr, CZ(D)H (79)

where 6= oL/3r'2R ig a dimensionless combinatlon of potential (4)
parameters to be used below. Further, when tan.g represented by
eq.(9), ineq.(79) reads

eavre omax{3Vi/Z, lasr, + Ow»)) Y <12 (80)
Obviously, the right-hand side of ineq.(80) is bounded to one-half
if ¥ and 6 are sufficiently small. Hence we have solved the third
problem of Sec. 3. ) ’

Now, assuming that @ ineq.(78) is valid we repeat step by step
all the construction of subsection 4.2. So, for s and €™ we
have again 'ineqs. (47) and (48) with r, replaced by rp - Analogous-
ly, we find that noth metrics in eq. (48) are bounded by the function
|Cm)(€(x)*-0(xc ))\ and therefore the function d(K; determined
the accuracy of n1 -iteration of eqs.(35) satisfies eq.(52) with
eayof (78). Hence A3 —~ 0 as m-» oo , However, £(#0 (contrary
to € of (36)), hence dﬁ$?4=0 for any finite m . This important
fact is caused by the following apparent reason: the integrals

B (K,Py, P, n=41,3 do not vanish as K--0 and’ therefore the contribu-
tions from any iteration of egs.(35) to the functions S and ¢ are
in general nonzero for any K and r ., ' )

et by definition F ' F(s™™ ¢ )be a functional F(s,c) of the
nnt—order of the developed perturbation theory. Then, for r< rp
the pp-function in mM order of this theory is u™=N"U with U
defined bty eq.(15), where S and € are solutions of problem (14-16)
in the region r<&r, , where VEVS . For r>r, the function @™
is represented by the first term of eq.(53).

As a next step we replace U by w‘® in eq.(1) and we insert
the obtalned integral /VM)into (10) instead of /\P . Thus we get A
and C("n i.e. AP and L 1in the n}horder of perturbation theory.
Usually, the first order of any perturbation theory is called the
Born approximation. Using eqs.(17), (18), (45),(46)(53) one can easi-
ly get the pp—function in the Born approximation, i.e. the function

ut Comparing u? with the pp-function ottained in the Born app-
roximation/9'11/ for the Volterra-type equation (see eqs. (5.27-5.31)
of ref. 10/) one may verify that our representation.of ut ig equi-
valent to the one used in these works. Therefore, if K and 6° sa-
fisfy ineq.(80), the assumption of refs./9'11/ is correct, i.e. the
Born approximation may be used for evaluation of A, (1) and C (10).
However, using this.approximation one has to keep in mind that it
cannot provide exactly the leading term of asymptotics as k—=(0 of C.
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Due-to this fect (as was explained above caused by the structure of
integrals Bn(Krrb’") with wn=1,3) the £inal and complete answer
to the last question of Sec. 3 cannot be given within any nfﬁorder
of the constructed berturbation theory. For this reason it is neces-
sary to perform hiéh-accurecy,numerical investigations of AP and A
working beyond the scope of any perthrbation theory, for instance,

by the way described in Subsections 4.1 and 4.3.

6. Numerical results .

Due to the facts that the polarization potential VP of (4) is
neglegible and long-range correction to the Coulomb potential numeri-
cal investigations of effects caused by V, ere no so simple as it
may seem at first sight. Therefore it is useful to reconsider the
most essential details of the way that hac been used for numerical
results reported below. ) B )

As input data we have used: the 351 ~deuteron function ¥ cor-
responding to the RSC-potential/ 3/' the same S -potential as V
and potential (4) with o«=10"3 n>*% ang " equal to ite minimal
possible value 4 fm that corresponds to the usually used/17/ value
for the interac;ign1rad:7s of \g . For these ol - and e accordg.
ing to refs.’ ™ ? contribution (10) is of an order of 10 7,
Hence the numerical investigation of expansions (5) and (11) has to
be performed with a high-accuracy. For “this reason eqs.(14) and (23)
were numerically integrated in the intervals Osj-s' 30y, end
0¢r< 100 R, respectively. . The upper bounds of these intervals were
choosen sufficiently large to calculate norm factor (17), phase
shift (18) and the coefficients of expansions (5), (11) and (32) with
the nine-significant digits accuracy. Following ref. 14 we have

used the E% -spline interpolation/44/ to obtain the pp-function sa-.
tisfying eq.(58) with the accuracy

Ytk Huek, <107t

for any k and r<rk + The practical upper. limit ry of integrals (1)

and (56) was 500 fm, which ensured the calculation of these integ-
rals with a relative accuracy 10" 9. For a high-accuracy calculation
of the coefficients of eqs. (5) and (11) we have integrated eqs,(23)
and (56) with V=V and V=V +V -y -respectively. PFurther, to find
the applicability range:of expansions (5), (i11) and (57), we have
compared their parts linear in energy with the corresponding func-
tions A A and C calculated by integration of -eqs.(1) and (14).
By the way described above.we got the following results. the

19



coefficients of eq.(5) are A?(0)=6.96072905, A =2.42552113 Mev™!

and are close to AF“D=6.934 and A = 2.5 MeV™' calculated in ref./45

for the same RSC-potential ag well as to the corresponding coeffi-

cients of eq.(11):  A%(0) =6.96074375, A, =2. 42552961 MoV =1, There-

fore the constants of eq.(57) are C((0) -2 1108 + 107° A -A =

=8.48 ¢ 10'6 MeV'1 and are neglegible as compared with known uncer-

tainties of A(O)and A of eqs.(5) and (6)., Further, ueing the
coefficients given above we have found that the functions Az A?
C are linear in energy within 1.6%-accuracy if E < 20 keV and

within 0.5%-accuracy if E <10 keV.
For the used & and rp of eq.(4) we have established that:

the inequality re > rg assumed in Subsection 4.2 and ineq.(44) are

simulteneously valid if E < 360 keV, the constant 6 of (79) is

equal to 7.23 * 10! and for the used nuclear potential E£(x)of (79)

is smaller than 10"6 for E<1 MeV. These results testify to the
fact that for a low astrophysical energy perturbation theories of
subsection 4.2 and Sec. 5 are correct and the Born approximation
over total potential (4) is undoubtedly zood.

For completeness we have established that contribution (10) is

positive for any energy, has a broad maximum (mEuK Cery=46Cwn),
achieves its upper bound ( =3 ) at E = 400 keV and slowly

vanishes as E +oo,

7. Sumunary and conclusion

S0, we have proved the low-energy representations (11) and (12),
#e have found rough conditions (78-80) that provide the applicabili-

ty of the Born approximation for a sufficiently low energy and by
high~accuracy celculations we have confirmed the conclusion common
for all previous worke/6'11’14/ that the correction of the proton
polarizability effect to the factor Sil is small as ccmpared with
other known corrections.

In conclusion, we stress that the method of Sects. 3 and 5 is
quite suitable for ahalytical and numericael investigations of low-

energy representations of the scattering functions for any two par-
ticles interacting via the sum of repulsive Coulomb potential, short-

range potential and a long-range potentisl vanishing as r—+o~ ra-

pldly than a polarization one. Knowledge of these expansions is ne-
cessary for analysis of the threshold behaviour of the S-factors for
any inelastic reactions when two complex and charged opposite in eign,
particles of the input channel are considered as point-like and the

effective two-body interaction ig asymptotically represented as a
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and

»

pure Coulomb interaction plus a leading multipole correction to it.
Hence the results of Sects. 3 and 5 may be successfully used for the
analysis of more general problems than those solved in the present

work. P
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