

ОбъединенНый
 институт
 ядерных исследований

 дубна

 дубна}
$\overline{p 97}$
E4-89-432
V.V.Pupyshev, O.P.Solovtsova*

PROTON-PROTON REACTION THEORY
WITH PROTON POLARIZABILITY

Submitted to journal "Few-Body Systems"

[^0]Пупышев В. В., Соловцова О.П.
Теория протон-протонной реакции с зффектом поляризуемости протона
Эффект поляризуемости протона в рр-рассеянии и в рр-реакции рассматривается посредством включения в рр-взаимодействие поляризационного потенциала. В рамках метода фазовых функций получены удобные низкознергетические , представления функцин рр-рассеяния. Эти представления используотся для детального аналитического и численного анализа матричного элемента рр-реакции, записанного в стандартном импульсном приближении. Доказано, что для астрофизически низких энергий квадрат этого матричного элемента и вклад поляризационного потенциала в фактор $S_{1 i}$ могут быть аппроксимированы линейными функциями энергии Е, а часть этого вклада,связанная с областью расстояний квазиклассически допустимых для рр-рассеяния, имеет $\mathrm{E}^{8 / 3-п о р о г о в о е ~(~} \mathrm{E} \rightarrow 0$) поведение.'

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного институтв ядерных исследовании. Дубна 1989

Pupyshev V.V., Solovtsova O.P.

The effect of proton polarizabllity in pp-scatterlng and in pp-reaction is considered with including a polarization potentlal Into pp-Interaction. Convenlent low-energy representations of the pp-scattering function are derlved within the varlable phase approach and are used for a detalled analytical and numerlcal analysis of the pp-reactlon matrlx element consldered In the standard Impulse approximation. It Is proved that for low astrophysical energies this squared matrix element and the contribution from the polarization potentlal to the factor S_{11} may be approximated by linear functions of energy E, whlle the part of this contribution assoclated. with the reglon of distances quasiclassically avolded for the pp-scattering has the $E^{8 / 3}$ threshold $(E \rightarrow 0)$ behavlour.

The Investigation has been performed at the Laboratory of Theoretical Physics, JINR.

1. Introduction

As is known ${ }^{/ 1 /}$, a aignificant discrepancy between the predicted ($7.9 \pm 2.6 \mathrm{SNU}$) and measured ($2.0 \pm 0.3 \mathrm{SNU}$) capture rate of the solar neutrinos in the ${ }^{37} \mathrm{C} 1$-detector exists. The predicted capture rate is more sensitive ($\sim \mathrm{S}^{-5 / 2 / 2 /}$) to the cross section factor S_{11} of the initial reaction $P P \rightarrow$ der of the solar pp-chain $/ 3 /$. Therefore the investigations of any corrections to the above factor are important. One of these corrections is due to the electric polarizability/4/ of a proton.

After the work $/ 5 /$, where an unsuccessful attempt to take into account of the deuteron polarizability effect on the pd-radiative capture was made, the question about the role of nuclear polarizability on the solar nucleosynthesis reactions has been place in focus of attention. In a series of papers $/ 6-11 /$, stimulated by works $/ 5,12,13 /$ it was shown that contrary to the claims of these works the nuclear polarizability has a small effect on the crose sections of nucleosynthesis reactions. However, the polarizability effects on these inelastic procese were studied in the framework of various low-energy appro-
 19-11/ ones. Moreover, in all the works $/ 6-11 /$ a series of intermediate approximations were used without a detailed inspection of their applicability range. Numerical results of the recent work $/ 14 /$, where it hes been shown that the contribution from the proton polarizability to the factor S_{11} is amaller than $2 \cdot 10^{-6}$, have confirmed the resulte obtained previously $/ 6-11 /$, however, they do not contribute anything new to the issue. Also, it is necessary to stress that the authors of works /6-11/ concentrated their attention on estimations of upper bounds of nuclear polarizability effects on total cross sections to nucleosynthesis reactions. The question about this effect on the low-energy behaviour of the S-factors is still open.

In view of all the above reasons it is necessary to analyse the low-energy expansions of the S-factors, with taking into account of the nuclear polarizability effect and using as few assumption and approximations as poseible. In the present work we realise this, progrem for

the factor S_{11} as follows. In Sec. 2 we describe the model used for pp-reaction and, in Sec. 3 we formulate the problems under consideration. In Sec. 4 we derive and analyse the low-energy representations of the pp-scattering function, pp-reaction matrix element and of the contribution from the proton polarizability effect to the factor S_{11}. In Sec. 5 we construct a perturbation theory for this effect. In Sec. 6 we report same resulta of numerical investigation of the factor S_{11} and in Sec. 7 we sumarize our main results.

2. The model for pp-reaction

We use the standard model $/ 15,16 /$ in which the factor S_{11} is proportional to the square of a dimensionless radial matrix element usually denoted by Λ. In the impulse approximation the definition of Λ is /16/

$$
\begin{equation*}
\Lambda=\left(\gamma^{3} / 8 \pi k C_{0}^{2}(\eta)\right)^{1 / 2} \int_{0}^{\infty} u(k, r) v(r) d r \tag{1}
\end{equation*}
$$

Here $\gamma=0.2316 \mathrm{fm}^{-1 / 17 /}$ is the inverse deuteron radius, K is the two-proton relative momentum corresponding to the c.m.s. energy $E=K^{2}$, C_{0}^{2} is the Coulomb barrier factor and $\eta=1 / 2 k R$, where $R=28.81$ fm $/ 17 /$ is the Bohr radius for one proton. In the asymptotic region $(r \rightarrow \infty)$ the ${ }^{3} S_{1}$ deuteron radial function v behaves like
$\exp (-\gamma r)$ and the ${ }^{1} S_{0}$ pp-scattering radial function u is defined to have the form:

$$
\begin{equation*}
u(k, r)=\cos \delta(k) F_{0}(k, r)+\sin \delta(k) G_{0}(k, r) \tag{2}
\end{equation*}
$$

where F_{g} and G_{0} are the S-wave regular and irregular coulomb func-
tions δ and δ is the phase shift relative to the pure coulomb phase shift and caused by interaction V.

Physically, V is a sum of a short-range nuclear potential V_{S} and a polarization potential V_{p}, which is due to the proton polarizability effect and decays like r^{-4} as $r \rightarrow \infty$. For the nuclear potential we use only the fact that it satisfies the conditions /17/:

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{n} \exp (4 \sqrt{r / R}) V_{s}(r)=0, n=0,1, \ldots \tag{3}
\end{equation*}
$$

and therefore/19/ may be put equal to identically zero in the region $r^{\prime}>r_{s}$
$17,20,21 /$ where r_{s} is any finite radius called the action radius $/ 17,20,21 /$ of this potential. For $r \leq r_{s}$ the explicit form of the polarrization potential is unknown, therefore we are compelled to limit ourselves to the usually used $/ 5-14 /$ representation

$$
\begin{equation*}
V_{p}(r)=\left(-\alpha / R r^{4}\right) \theta\left(r-r_{p}\right) \tag{4}
\end{equation*}
$$

where α is the electric polarizability for one proton $/ 4 /, \theta$ is the step function $/ 18 /$ and r_{p} is an arbitrary but fixed radius, of course, such that $r_{p} \geqslant r_{s}$.

3. The problems under consideration

We denote matrix element (1) by Λ_{p} or by Λ when potential (4) is present ($V=V_{S}+V_{p}$) or absent $\left(V=V_{S}\right)$.

For the temperature $1.5 \cdot 10^{7} \mathrm{~K}$ corresponding to the solar interior the most effective energy of pp-reaction in c.m.s. is. $\sim 6 \mathrm{keV}$ and for $E \leqslant 20 \mathrm{keV}$ it is found $/ 3 /$ that

$$
\begin{equation*}
\Lambda^{2}(E)=\Lambda^{2}(0)(1 \pm A E(M e V))+O\left(E^{2}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda^{2}(E)=(7.08 \pm 0.18)(1+2.2 E(M e V))+O\left(E^{2}\right) \tag{6}
\end{equation*}
$$

The constants $\Lambda^{2}(0)$ and A are known/22/ with uncertainties /23/ due to: 2.5% - uncertainty from the nuclear potential V_{s}, 2% - uncertainty from the exchange mesonic currents and some other effects except the proton polarizability effect that generates the additional interaction V_{p}.

As is known $/ 24 /$, all the special effects caused by long-range asymptotics (4) of the potential $V=V_{s}+V_{p}$ are associated with the region $r \geqslant r_{c}$, where $r_{c}=1 / K^{2} R$ is the coulomb classical turning point /25/. When $k \rightarrow 0$, the dominant part $\delta_{t} \quad(t$ is an abbreviation of "tail") of the phase shift δ is due to the tail ($r \geqslant r_{c}$) of the potential V_{p}. In the Born approximation $/ 25 / \delta_{t}$ is given by the formula ${ }^{\text {/24/ }}$

$$
\begin{equation*}
\tan \delta_{t}=-\kappa^{-1} \int_{r_{c}}^{\infty} V_{p}(r) F_{0}^{2}(\kappa, r) d r, \tag{7}
\end{equation*}
$$

which provides the first term of the low-energy expansion of tan δ exactly:

$$
\begin{equation*}
\tan \delta(k)=\tan \delta_{t}(k)+O\left(k C_{0}^{2}\right)=-16 \alpha k^{5} / 15 R^{2}+O\left(k^{5}\right) \tag{8}
\end{equation*}
$$

When $V=V_{S}$ and V_{S} satiafies eqs. (3), the threshold ($k \rightarrow 0$) behaviour of $\tan \delta 18$ described by the law $/ 25,26 /$

$$
\begin{equation*}
\tan \delta(k)=-\kappa C_{0}^{2}(\eta)\left(a^{-1}+\left(\kappa^{2} / 2\right)\left(2 R / 3-r_{e}\right)+0\left(k^{4}\right)\right)^{-1} \tag{9}
\end{equation*}
$$

Since law (8) and (9) are quite different, two questions arise immediately: what is the threshold behaviour of Λ_{p}^{2} and what is the threshold behaviour of the part C_{t} of the contribution

$$
\begin{equation*}
C(E)=\left(\Lambda_{p}(E) / \Lambda(E)\right)^{2}-1 \tag{10}
\end{equation*}
$$

from the potential V_{p} to the factor S_{11} caused by the tail ($r \geqslant r_{c}$) of this potential? We attempt to give a mathematically rigorous proof of the facts that as $k \rightarrow 0$

$$
\begin{equation*}
\Lambda_{p}^{2}(E)=\Lambda_{p}^{2}(0)\left(1+A_{p} E(M e V)\right)+O\left(E^{2}\right) \tag{11}
\end{equation*}
$$

where A_{p} is independent of the energy, and

$$
\begin{equation*}
C_{t}(E)=\left(\Lambda_{p}(0) / 3 \Lambda(0)\right)^{2}\left(\alpha / 2^{2 / 3} R^{3}\right) \Gamma(1 / 3)(k R)^{46 / 3}\left(1+O\left(\eta^{1 / 3}\right)\right) \tag{12}
\end{equation*}
$$

where Γ is the Gamma-function $/ 18$, and α and R are the parameters of potential (4).

Along with proof of eqs. (11) and (12) we recover some known resulta within the variable phase approach $/ 20,21 /$ which is more adaptad for solution of all our problems. One of them is to find a rough aufficient condition unsuring the applicability of the Born approximation over potential (4) for the evaluation of the functions u, Λ_{p} and C. This condition being established analytically makes the constructions of the works $/ 9-11$ / mathematically correct. To explain this critical statement we remind two facts. First, the Born approximation may be statement we remind two facts. Pirst, the Born approximation may be
incorrect $/ 27 /$ even it provide a small correction to any studied function. Second, all results of works $/ 9-11 /$ were actually establiahed within the Born approximation. As shown numerically/28,29/, this approximation is good for the calculation of the phase ahift caused by the polarization potential. However, this result has been used in works $/ 9-11 /$ to assume that the Born approximation is quite suitable for the construction of the scattering wave functions. Therefore it is necessary to prove analytically that thia assumption was valid. The assumptions of all works $/ 6-11 /$ seem to be correct in the low-energy ilmit. However upper bounds of the energy region, where the approximations used in these works are suitable, have not been found. Therefore, using the reaults of refa. ${ }^{/ 6-11 /}$ one can estimate contribution (10) if and only if the energy of pp-collision is sufficiently small. However, according to refa. $6,14 /$, contribution (10) is a growing function of energy. Hence, for completeness it is necessary to give a justifical answer to the question: what is the upper bound of contribution (10)? We estimate this bound by high-accuracy calculations of Λ and Λ_{p}.

4. The theory

To obtain eqs. (11) and (12) we derive the suitable low-energy representations for the pp-function in the presence of polarization potential (4).
4.1. Low-energy expanaion of the pp-function for $r<r_{c}$.

At first we prove that in the region $r<r_{c}$ the pp-function has a following low energy expansion:

$$
\begin{equation*}
u(k, r)=k C_{0}(\eta)\left(\sum_{n=0}^{1} k^{2 n} u_{n}(r)+\Delta u(k, r)\right) \tag{13}
\end{equation*}
$$

where the residual terman Δu^{n} vanishes like k^{4} as $k \rightarrow 0$.
To derive eq. (13) and to give a aimple method for evaluation of the functions u_{q} and u_{1}, we use one of the methods of the variable phase approach $20,21 /$. In this method the phase funotions S and
C are defined as solutions of two coupled equations ${ }^{\prime 21 /}$:

$$
\begin{align*}
& \partial_{r} S(k, r)=-k^{-1} V(r) U(k, r) F_{0}(k, r) \tag{14}\\
& \partial_{r} C(k, r)=k^{-1} V(r) U(k, r) G_{0}(k, r)
\end{align*}
$$

with the bilinear form

$$
\begin{equation*}
U(\kappa, r)=c(\kappa, r) F_{0}(\kappa, r)+s(\kappa, r) G_{0}(\kappa, r) \tag{15}
\end{equation*}
$$

and boundary conditions:

$$
\begin{equation*}
s(k, 0)=0, c(k, 0)=1 \tag{16}
\end{equation*}
$$

Using the relations

$$
\begin{aligned}
& \text { elations } \\
& \text { s(k,r) }=k C_{0}^{2}(\eta) S n(k, r), c(k, r) \equiv c s(k, r), ~, ~
\end{aligned}
$$

where $S n$ and $C s$ are the phase functions of ref.130/, we get that the form U of (15) multiplied by the norm factor

$$
\begin{equation*}
N(k)=\cos \delta(k) / c(k, \infty) \tag{17}
\end{equation*}
$$

where the phase shift δ is defined by

$$
\begin{equation*}
\tan \delta(k)=s(k, \infty) / c(k, \infty) \tag{18}
\end{equation*}
$$

provides the pp-function u satisfying eq. (2).
As it will be clear below, the knowledge of the first three terms of low-energy expansions of the function S for $r<r_{c}$ and the function c for any r is quite sufficient to obtain eq. (13). To find these terms, we use the method that is more similar to the method of ref.! ${ }^{19 / \text {, and based on the Beasel-Clifford expansions } / 18 / ~}$ for the Coulomb functions. The above expansions may be written as

$$
\begin{equation*}
F_{0}(k, r)=k C_{0}(\eta)\left(\sum_{n=0}^{2} k^{2 n} f_{n}(r)+\Delta f(k, r)\right) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
G_{0}(\kappa, r)=C_{0}^{-1}(\eta)\left(\sum_{n=0}^{2} k^{2 n} g_{n}(r)+\Delta g(k, r)\right) \tag{19}
\end{equation*}
$$

The residual terme Δf and Δg of (19) of the order k^{6} if of course $r<r_{c}$. The Bessel-Clifford functions f_{n} and g_{n} with $n=0,1,2$ may be easily found explicitly (for instance, by uaing the results of ref. $/ 31 /$, and read as

$$
\begin{aligned}
& f_{n}(r)=R^{-n}(x R / 2)^{3 n+1}\left\{I_{n+1}\left(\delta_{n 0}-\delta_{n 1} / 3\right)+\left(2 I_{4} / 5 x+I_{5} / 18\right) \delta_{n 2}\right\}, \\
& g_{n}(r)=\left(2 / R^{n+1}\right)(x R / 2)^{3 n+1}\left\{K_{n+1}\left(\delta_{n 0}+\delta_{n 1} / 3\right)-\left(2 K_{4} / 5 x-K_{5} / 18\right) \delta_{n 2}\right\},
\end{aligned}
$$

where I_{n} and K_{n} with $n=1,2$, are the regular and irregular modified Bessel functions of $x=2 \sqrt{r} / \mathrm{R}$. Let us look for the solutions of problem (14-16) as

$$
\begin{align*}
& \text { S(16) as } \tag{21}\\
& s(k, r)=k C_{0}^{2}(\eta)\left(\sum_{n=0}^{2} k^{2 n} S_{n}(r)+\Delta S(k, r)\right) \\
& c(k, r)=\quad \sum_{n=0}^{2} k^{2 n} c_{n}(r)+\Delta C(k, r)
\end{align*}
$$

Inserting forms (19), (21) and (22) into (14) and (15) we obtain three sets ($n=0,1,2$) of equations:

$$
\begin{equation*}
\partial_{r} s_{n}(r)=-V(r) \sum_{l+m=n} U_{l}(r) f_{m}(r) \tag{23}
\end{equation*}
$$

with the functions

$$
\partial_{r} c_{n}(r)=V(r) \sum_{l+m=n} U_{l}(r) g_{m}(r)
$$

$$
\begin{equation*}
U_{n}(r)=\sum_{l+m=n}\left(c_{l}(r) f_{m}(r)+s_{l}(r) g_{m}(r)\right) \tag{24}
\end{equation*}
$$

and boundary conditions

$$
\begin{equation*}
S_{n}(0)=0 ; \quad c_{n}(0)=1 \tag{25}
\end{equation*}
$$

generated by eqs. (16) and ansatz (21) and (22).
One detail is to be stressed: when we introduced representations (21) and (22) and derived eqs. (23-25), we assumed that the residual terms ΔS and ΔC are of the order κ^{6}. The fact that this assumption is correct for $r<r_{c}$ follows immediately from the equations for ΔS and ΔC which can be got along with eqs. (23). Since the syatem of equations for ΔS and ΔC is more long and is not used below, we do not write it.

Clearly, expansions (19), (21) and (22) generate the exparision for the unnormalized pp-function (15) in the form

$$
\begin{equation*}
U(k, r)=k C_{0}(\eta)\left(\sum_{n=0}^{2} \kappa^{2 n} U_{n}(r)+\Delta U(k, r)\right) \tag{26}
\end{equation*}
$$

where the functions U_{n} with $n=0,1,2$ are defined by eqs. (24).
: As is knom $/ 18 /$, in the region $r<r_{c}$ the expansions (19) rapidly converge with $k \rightarrow 0$, therefore expanaions (21), (22) and (26) are quite suitable for $r<r_{c}$ and when $r<r_{c}$ their reaidual terms are of the order k^{6} by construction. How we must derive the low-energy expansion of norm factor (17). To make this, we study expansions (21) and (22) for $r \geqslant r_{0}$, where r_{0} is assumed to be a finite and arbitrary radius satisfying the condition $2 \sqrt{r_{0} / R} \gg 1$. Also we assume that the energy is sufficiently small, namely, such that $r_{c}>r_{S}$. Due to both the assumptions, we can use for $r \geqslant r_{0}$ the asymptotics forms $/ 18 /$ for functions (20) and asymptotic form (4) for the potential V. Substituting these forme into (23) and (24) and changing the variable r by $x=2 \sqrt{r / R}$, we found the solutions of eqs. (23) for
$r \geqslant r_{0}$ as series of elementary functions. In particular we established that due to the long-range behaviour of polarization potential (4) the functions S_{n} with $n=0,1,2$ diverge like

$$
\begin{equation*}
S_{n}(r)=c_{0}(\infty)\left(8 \alpha / \pi R^{2}\right)(R / 2)^{2 n} x^{3 n-6} \exp (2 x) \tag{27}
\end{equation*}
$$

as $r \rightarrow \infty$, while the functions c_{n} with $n=0,1,2$ are finite at
$r=\infty$ and satisfy the relations:

$$
\begin{equation*}
c_{n}(r) / c_{n}(\infty)-1=32 \alpha / 5 R^{3} x^{5}+O\left(x^{-10}\right) \tag{28}
\end{equation*}
$$

where $r \geqslant r_{0}$. As follows from eqs. (27) and (28) representation (21) loses its meaning when $r \rightarrow \infty$, while representation (22) is welldefined for any r and therefore $\Delta C(k, r)=O\left(K^{4}\right)$ also for any r. We proved the last statement ectually by the way more similar to the one used in ref. ${ }^{32 /}$ devoted to investigation of the low-energy behaviour of the phase shift caused by long-range potentials in the absence of the Coulomb one.

Now, using eqs. (27) and (28) we get that the function

$$
\begin{equation*}
a\left(r_{0}\right) \equiv-s_{0}\left(r_{0}\right) / c_{0}\left(r_{0}\right) \sim-\left(\alpha R / 8 \pi r_{0}^{3}\right) \exp \left(4 \sqrt{r_{0} / R}\right) \tag{29}
\end{equation*}
$$

diverge as $r_{0} \rightarrow \infty$, while the function
$r_{e}\left(r_{0}\right) \equiv 2 R / 3+2\left(C_{1}\left(r_{0}\right)+s_{1}\left(r_{0}\right) / \alpha\left(r_{0}\right)\right) / s_{0}\left(r_{0}\right)$
has a finite limit $2 R / 3$ at $r_{0}=\infty$.
Result (29) is well-known. After report $/ 33 /$ it has been discussed by many authors $/ 6,28-30,34-36 /$. To explain these statemente, lat us put the potential V to be identically zero for $r>r_{0}$, where r_{0} is a finite radius. For this potential, owing to eqs. (14) and (21--23) the functions S, C es well as the functions S_{n}, C_{n} with $n=$ $0,1,2$ and $\Delta S, \Delta C$ are equal to their corresponding values, at $r=r_{0}$ Hence, we may replace $S(k, \infty)$ and $c(k, \infty)$. in eq. (18) by their
expansions (21) and (22) written at $r=r_{0}$. Thus, we get the expension of $\tan \delta$ for the potential $V(r) \theta\left(r_{0}-r\right)$ which satisfies eqs. (3). Hence, we may compare this expansion with eq. (9).As a result, we get that: $a\left(r_{0}\right)$ of (29) is the scattering length (denoted by $\alpha\left(0, r_{0}\right)$ in
 effective radius for our truncated potential. Due to eq. (29) $\alpha\left(r_{o}\right)$ diverges as $r_{0} \rightarrow \infty$. Hence, the definition of the ecattering length as the low-energy limit of the left-hand side of eq.(9) divided by $-k C_{0}^{2}$ loses its meaning for the potential V with asymptotic (4). This fact is known $/ 24$ / and we only reproved it within eqs; (14) by the way still more. similar to the one used in refs. $130,34 \%$. Surprisingly, $r_{e}(\infty)$ of (30) is finite and therefore the low -energy expanaion of tan δ contains the term behaving like $\kappa^{3} C_{0}^{2}$ as $k \rightarrow 0$, i.e. the effective radius defined as a limit of eq. (30) as $r_{0} \rightarrow \infty$ has the meaning; Ttis definition is quite different from that one used in work $/ 35$; . In this work tan δ of the left-hand side of eq. (9) was replaced by the integral of eq. (7) and the effective radius was actually considered as a low-energy limit of the second term of the asymptotic ($k \rightarrow 0$) of this integral divided by the factor
$k^{3} C_{0}^{2}$. Since the esymptotic expaneion of the integral of eq.(9) does not contain $/ 24 /$ the terms with $k^{n} C_{0}^{2}$ threshold behaviour, the authors of work /35/ have found that the atandard definition of the effective radius loses its meaning for the potentials V with asymptotic (4).

For the first time, the receipt of construction of the finite scattering length and effective radius for the potential with tail (4) in the presence of the Coulomb field was given in ref. $/ 24 /$. Recently, another definition of the scattering length having a phyaical meaning for the above potential has been introduced in ref. $130 /$.

To prove eq. (13), we do not need redefinition of any function. Really, according to eqs. (7) and (18) the ratio $s(K, r) / C(k, r)$ has a finite limit at $r=\infty$, therefore $\cos \delta(k)$ of (17) is a welldefined factor. Moreover, we have shown that the denominator of fraction (17) has a well-defined expansion

$$
\begin{equation*}
c(k, \infty)=\sum_{n=0}^{2} k^{2 n} c_{n}(\infty)+o\left(k^{4}\right) \tag{31}
\end{equation*}
$$

and due to eqs. (28) written at $r=r_{c}$, the contributions to the constants $c_{n}(\infty)(n=0,1,2)$ from the tail ($r \geqslant r_{c}$) of potential (4) behave like k^{5} as $k \rightarrow 0$. By using eq. (31) and the fact that $\cos \delta=1+0\left(K^{10}\right)$, following from eq. (8), we obtain for norm factor (17) the low-energy expansion:

$$
\begin{equation*}
N(k)=c_{0}^{-1}(\infty)-\kappa^{2} c_{1}(\infty) / c_{0}^{2}(\infty)+O\left(k^{4}\right) \tag{32}
\end{equation*}
$$

Further, multiplying $N(k)$ of (32) by U of (26) we have the required result (13) with

$$
\begin{align*}
& u_{0}(r)=U_{0}(r) / c_{0}(\infty) \tag{33}\\
& u_{1}(r)=\left(U_{1}(r)-c_{1}(\infty) u_{0}(r)\right) / c_{0}(\infty),
\end{align*}
$$

where U_{0} and U_{1} are defined by eqs. (24) and may be eagily evaluated after solving problem (23-25), which has no special numerical difficulties. To complete the analysis of expansion (13), we stress that its residual term is of the order K^{4}, by construction, and also we represent the asymptotics $(x=2 \sqrt{F / R} \gg 1)$ form of functions (33):

$$
\begin{align*}
u_{n}(r)= & \left(R^{2 n+1} x^{3 n} /(1+23 n)\right) \sqrt{x / 8 \pi} \tag{34}\\
& \exp (x)\left(1+O\left(x^{-1}\right)\right) \quad, n=0,1
\end{align*}
$$

obtained with the help of eqs. (26-28).
4.2. Low-energy representation of the pp-function for $r \geqslant r_{c}$

As a second step, we derive the low-energy representation of the function u for $r \geqslant r_{c} \geqslant r_{S}$. To do this we rewrite problem (14-16) in the equivalent integral form:

$$
\begin{align*}
& s(k, r)=s^{(0)}(k)-k^{-1} \int_{r}^{r} V(t) U(k, t) F_{0}(k, t) d t \tag{35}\\
& c(k, r)=c_{(k)}^{(0)}+k^{-1} \int_{r_{r}}^{r} V(t) U(k, t) G_{0}(k, t) d t
\end{align*}
$$

where the values of phase ${ }^{c}$ functions s and C at $r=r_{c}$ are denoted by $s^{(0)}$ and $c^{(0)}$ and may be evaluated by using expansions (21) and (22). To analyse the solutions of eqs. (35), which are the Volterra-type integral equations $/ 37 /$, we use the usual iteration method $/ 38 /$. We put
$s^{(0)}$ and $c^{(0)}$ to be zero approximations and to obtain the results
$s^{(m+1)}$ and $c^{(m+1)}$ of $(m+1)^{\text {th }}$-iteration, we shall substitute the results $s^{(m)}$ and $c^{(m)}$ of $\quad m^{\text {th }}$-iteration into the right-hand side of eqs. (35). The series of these iterations converge uniformly to the exact solution of system (35), if all its integral operators are contracting mappings $/ 37,38 /$. In the usual way $/ 38 /$, 1.e. using the midpoint theorem, one can show that this condition is fulfilled, if

$$
\begin{gather*}
\varepsilon(k) \equiv \max _{n=1,2,3} \rho_{r_{c}}\left(B_{n}, 0\right)<1 / 2 \tag{36}\\
B_{n}\left(k, r_{c}, r\right) \equiv k^{-1} \int_{r_{c}}^{r} V(t)\left(F_{0}(k, t) G_{0}(k, t) \delta_{n 1}\right.
\end{gather*}
$$

where

$$
\begin{equation*}
\left.F_{0}^{2}(k, t) \delta_{n 2}+G_{0}^{2}(k, t) \delta_{n 3}\right) d t \tag{37}
\end{equation*}
$$

and the metrix on the $C_{\left[r_{c}, \infty\right.}^{1}, \infty / 37 /{ }^{-c l a s s}$ of functions, depending on k
parametrically, is defined

$$
\begin{equation*}
\rho_{r_{c}}(A, B) \equiv \max _{r \geqslant r_{c}}|A(k, r)-B(k, r)| \tag{38}
\end{equation*}
$$

Let us show that ineq. (36) is valid for sufficiently small K . Using the bound $/ 39 /$

$$
\begin{equation*}
\left|F_{0}(k, r)\left(F_{0}(k, t)+i G_{0}(k, t)\right)\right| \leqslant k \sqrt{2 \pi r t} \tag{39}
\end{equation*}
$$

which is valid for any k, r and t we obtain from eqs. (37) with $n=1,2$ that

$$
\begin{equation*}
\rho_{r_{c}}\left(B_{n}, 0\right) \leqslant \sqrt{\pi / 2}\left(\alpha / R r_{c}^{2}\right) \tag{40}
\end{equation*}
$$

In the region $r \geqslant r_{c}$ the Coulomb functions are not greater in order of magnitude than their values at $r=r_{c} \quad / 18 /$, therefore

$$
\begin{equation*}
\rho_{r_{c}}\left(F_{0}, 0\right)=O\left(\eta^{1 / 6}\right), \rho_{r_{c}}\left(G_{0}, 0\right)=O\left(\eta^{1 / 6}\right) \tag{41}
\end{equation*}
$$

By applying the second eq. (41) to eq. (37) with $n=3$ we find that

$$
\begin{equation*}
\underset{r_{c}}{\rho_{r_{c}}}\left(B_{3}, 0\right)=O\left(\eta^{1 / 3}\right)\left(\alpha / 3 \kappa R r_{c}^{3}\right) . \tag{42}
\end{equation*}
$$

Thus, due to bounds (40) and (42) we may replace condition (36) by more rough condition

$$
\begin{equation*}
\varepsilon(k) \leqslant \sqrt{\pi / 2}\left(\alpha / R r_{c}^{2}\right)<1 / 2, \tag{43}
\end{equation*}
$$

which is valid, if K satisfies the inequality

$$
\begin{equation*}
k<(\sqrt{2 \pi} \alpha R)^{-1 / 4} \tag{44}
\end{equation*}
$$

that we assume for all the subsequent constructions. The first of them is a result of the first iteration of eqs. (35), which read as

$$
\begin{align*}
& s_{(k, r)}^{(1)}=s_{(k)}^{(0)}\left(1-B_{1}\left(k, r_{c}, r\right)\right)+c_{(k)}^{(0)} B_{2}\left(k, r_{c}, r\right) \tag{45}\\
& c_{(k, r)}^{(1)}=c_{(k)}^{(0)}\left(1+B_{1}\left(k, r_{c}, r\right)\right)+s^{(0)}(k) B_{3}\left(k, r_{c}, r\right) \tag{46}
\end{align*}
$$

Continuing the iteration procedure we find by induction that

$$
\begin{equation*}
\max \left\{\rho_{r_{c}}\left(s, s^{(m)}\right), \rho_{r_{c}}\left(c, c^{(m)}\right)\right\} \leqslant d^{(m)}(k) \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{(k)}^{(m)} \equiv\left(\varepsilon^{m} /(1-\varepsilon)\right) \max \left\{\rho_{r_{c}}\left(s^{(1)}, s^{(0)}\right), \rho_{r_{c}}\left(c^{(1)}, c^{(0)}\right)\right\} \tag{48}
\end{equation*}
$$

To estimate $d_{(k)}^{(m)}$, we come back to eqs. (14-16) and introduce a finite matching radius r_{0} assumed to be sufficiently large ($r_{0} \geqslant r_{s}$, $2 \sqrt{r_{0} / R} \gg 1$) to use, for $r \geqslant r_{0}$, forms (27) and (28). Then;
due to eqg. (22) and (28) we have

$$
\begin{equation*}
c(k, r)=\sum_{n=0}^{1} k^{2 n} c_{n}(\infty)\left(1+O\left(r^{-5 / 2}\right)\right)+O\left(k^{4}\right), \tag{49}
\end{equation*}
$$

where, of course $r \geqslant r_{0}$. Inserting form (49) into the first equation of set (14) we get an equation only for $S(K, r)$. Solving this equation for $r \geqslant r_{0}$ we find

$$
\begin{aligned}
& s_{(k)}^{(0)}=s\left(k, r_{0}\right)-\sum_{n=0}^{1} k^{2 n} c_{n}(\infty) \exp \left(B_{1}\left(k, r_{0}, r_{c}\right)\right) \\
& \quad \int_{r_{0}}^{r_{c}} \partial_{t} B_{2}\left(k, r_{0}, t\right) \exp \left(-B_{1}\left(k, r_{0}, t\right)\right)\left(1+0\left(t^{-5 / 2}\right)+O\left(k^{4}\right)\right) d t,
\end{aligned}
$$

where $B_{n} \quad(n=1,2)$ are defined by eqs. (37). Due to eqs. (4) and (19) integrals $\pm B_{i}$ of (50) have a finite nonzero limits as $k \rightarrow 0$ and therefore to f ind the threshold beheviour of $s_{(k)}^{(0)}$ we may replace in eq. (50) the exponential functions by the constants. After this substitution we get in the right-hand side of eq. (50) the integral
$B_{2}\left(x, r_{0}, r_{c}\right)$ which behaves $/ 24 /$ like $k C_{0}^{2}$ as $k \rightarrow 0$. Next, owing to eq. (21) we have $S\left(k, r_{0}\right)=0\left(k C_{0}^{2}\right)$. Hence, from eqs. (22) and (50) it follows that

$$
\begin{equation*}
s_{(k)}^{(0)}=c_{(k)}^{(0)} O\left(k C_{0}^{2}(\eta)\right)\left(1+O\left(k^{2}\right)\right) \tag{51}
\end{equation*}
$$

Now, by using ineq. (36) and eq. (51) we get from eqs. (45) and (46) that both metrica of (48) are of the order $\left|C_{(k)}^{(k)}\left(\varepsilon(k)+O\left(k C_{o}^{2}(\eta)\right)\right)\right|$, hence

$$
\begin{equation*}
d_{(k)}^{(m)}=\left|c^{(0)} \varepsilon^{m}\left(\varepsilon+O\left(\kappa C_{o}^{2}\right)\right) /(1-\varepsilon)\right| \tag{52}
\end{equation*}
$$

Thus, due to eq. (47) the functions $s^{(m)}$ and $c^{(m)}$, reproduce the exact solutions S and c of eqB. (35) within $d^{(m)}$-accuracy and
$d_{(k)}^{(m)}$ vanish by law (52) as $k \rightarrow 0$. Using these results and eqs. (15) and (17) we obtain the low-energy representation of the pp-function, corresponding to $m^{t h}$-iteration of system (35). This representation reade as

$$
\begin{equation*}
u(k, r)=u_{(k, r)}^{(m)}+\Delta u^{(m)}(k, r)= \tag{53}
\end{equation*}
$$

$$
N_{(k)}^{(m)}\left(c_{(k, r)}^{(m)} F_{0}(k, r)+s_{(k, r)}^{(m)} G_{0}(k, r)\right)+\Delta u^{(m)}(k, r)
$$

where $r \geqslant r_{c} \geqslant r_{s}$, the momentum k satisfies ineq. (44), the norm factor $N^{(m)}$ is defined by eqs. (17) and (18) in which S and C are replaced by $s^{(m)}$ and $c^{(m)}$, respectively, and the residual term satiafies the relation

$$
\begin{equation*}
p_{r_{c}}\left(\Delta u^{(m)}, 0\right)=0\left(\eta^{1 / 6} d^{(m)}(k)\right) \tag{54}
\end{equation*}
$$

obtained with the help of eqs. (41) and (47).

Before to go further, we make one useful remark. Of course, if $V=V_{s}$, then in the region $r \geqslant r_{c}>r_{s} \quad$ the pp-function is represented by eq. (2) and therefore in this case formulae (53) and (54) may be not used. However, if $V=V_{S}+V_{P}$ and $r \geqslant r_{c}>r_{s}$, one has to use the approximation $u \approx u^{(m)}$ with $u^{(m)}$ of (53) or another equivalent approximation, because in this case the low bound $r_{\min }(k)$ of the region $r \geqslant r_{\min }(k)$, where u is close to its asjmptotics form (2), is an order of magnitude of several r_{c} and depends on the energy. A detailed discussion and a numerical proof of this fact are given in refs. $129,30 \%$.

4.3. Threshold behaviour of the functions Λ_{p}^{2}, C and C_{t}

Owing to eqs. (2) and (34), the functions u and $u_{n}(n=0,1)$ have quite different asymptotics. Hence, in the region $r \geqslant r_{c}$ the function u cannot be approximated by a finite aum contained in the right-hand side of eq. (13). However, representation (13) is quite suitable for evaluation of the integrand uv of eq.(1), for two apperant reasons $/ 37 /$. First, the contribution $\mathscr{*}(k)$ from region
$r \geqslant r_{C}$ to Λ_{p} of (1) is negligible as $k \rightarrow 0$. Really, uaing for
$r \geqslant r_{c}>r_{S}$ the formulae $v(r) \approx \exp (-\gamma r)$, representation (53) at $m=1$, eqs. (45), (46) and rough bounds (41), we find that

$$
x(k)=O\left(\eta^{1 / 6} \kappa^{-1} C_{D}^{-1}(\eta) \exp \left(-\gamma r_{c}\right)\right)=O\left(k^{-2 / 3} \exp ((\pi / 2-\gamma / k) / k R)\right)(55)
$$

Second, owing to eqs. (34), the products $u_{n}(r) v(r)$ with $n=0,1$ decay exponentially as $r \rightarrow \infty$. Hence they are functions integrated on the interval ($0, \infty$).

For the above reasons we may insert u of (13) into (1). Thus we prove the first required result (11) and find the constants:

$$
\begin{align*}
& \Lambda_{p}(0)=\left(\gamma^{3} / 8 \pi\right)^{1 / 2} \int_{0}^{\infty} u_{0}(r) v(r) d r \tag{56}\\
& A_{0}=\Lambda_{0}^{-1}(0)\left(\gamma^{3} / 2 \pi\right)^{1 / 2} \cdot \int_{1}^{\infty} u_{1}(r) v(r) d r
\end{align*}
$$

$$
\begin{aligned}
& A_{p}=\Lambda_{p}^{-1}(0)\left(\gamma^{3} / 2 \pi\right)^{1 / 2} \cdot \int_{0}^{0} u_{1}(r) v(r) d r \\
& \text { ining eq. (5) with eq. (11) we establis }
\end{aligned}
$$

Next, combining eq. (5) with eq.(11) we establish the low-energy asymptotics of contribution (10) in the form

$$
\begin{equation*}
C(E)=\left(\Lambda_{P}(0) / \Lambda(0)\right)^{2}\left(1+\left(A_{P}-A\right) E+O\left(E^{2}\right)\right)-1 . \tag{57}
\end{equation*}
$$

Let us atudy $C(E)$. Let r_{0} be an arbitrary radius, such that $r_{0} \geqslant r_{p}$ and $x_{0}=2 \sqrt{r_{0}} / R \gg 1$. Then, owing to eqs. (28) the contributions from the part ($r \geqslant r_{0}$) of potential (4) to the constants $c_{0}(\infty)$ and $c_{1}(\infty)$ are of the order x_{0}^{-5}. Hence, in eq. (33) these constante may be replaced by $c_{0}\left(x_{0}\right)$ and $c_{1}\left(x_{0}\right)$ within x_{0}^{-5} accuracy.

Further, the contributions from the region $r \geqslant r_{0}$ to integrals (56) are exponentially small ($\left.\sim \exp \left(x_{0}-\gamma r_{0}\right)\right) \cdot$. Clearly, for the above reasons contribution (57) from potential (4) to the factor S_{11} is mainly caused by a short-range $\left(r_{p} \leqslant r \leqslant r_{p}+R\right)$ part of this potential. This conclusion agrees with one of the main results of refs. /9-11/. Now, let us assume potential (4) to be absent. Then one can step by step repeat all the constructions of subsection 4.1 and derive eq.(13) with u_{0} and u_{1} which may be evaluated after solving problem (23-25) with $V=V_{S}$. Thus, one can get eq.(5) with $\Lambda(0)$ and

A represented by corresponding integrals (56). Note, that in both the cases ($V=V_{S}+V_{p}$ or $V=V_{S}$) the function u_{0}, owing to eq.(13), is a limit of $u / k C_{o}$ as $k \rightarrow 0$ and is a solution of the Schrödinger equation ($\hbar=c=m=1$):

$$
\begin{equation*}
H u(k, r)=\left(\partial_{r}^{2}+\kappa^{2}+1 / r R-V(r)\right) u(k, r)=0 \tag{58}
\end{equation*}
$$

at $k=0$. The polarization potential is attractive, hence $V_{p}+V_{s} \geqslant V_{s}$ for any r. Using this inequality and applying the well-known theorem (see Sec. 6 of handbook $/ 40 /$) to eqs. (23) with $n=0$ and to eq. (58) with $k=0$ we find that for any r the function u_{0} corresponding to $V=V_{S}+V_{p}$ is greater than the function u_{0} corresponding to $V=V_{S}$. Therefore, from eqs. (56) we get $\Lambda_{p}(0)>\Lambda(0)$ and hence, owing to eq. (57), $C(0)>0$. Thus, in the low-energy limit oontribution (10) behaves like the linear function (57) of energy and has a non-zero limit at $E=0$. These results agree with the WKB-prediction represented in Fig. 6 of ref. $/ 6 /$ and dieagree with the result (14) of ref. ${ }^{/ 8 /}$ according to which contribution (10) has to vanish like E^{5} as $\mathrm{E} \rightarrow 0$. As is noted $/ 9 /$, the work $/ 8 /$ contains an error leading to the E^{5} threshold behaviour of C. When this error is taken into account, one find again that $C(0)>0$. of course, for the reason that $r_{c} \rightarrow \infty$ as $\kappa \rightarrow 0$ the part C_{t} of C associated with the tail $\left(r \geqslant r_{c}\right)$ of potential (4) must vanish as $k \rightarrow 0$.

Let us derive the formula for C_{t} by subsequently representing every functions $F=\delta, c, N, u, \Lambda_{p}, C$ as a sum $F=F^{(0)}+F_{t}$ such that
$F=F^{(0)}$ if potential (4) is truncated at $r=r_{c}$. Along this way we represent phase-shift (18) as

$$
\begin{equation*}
\delta=\delta^{(0)}+\delta_{t}=\operatorname{atan}\left(s^{(0)} / c^{(0)}\right)+\delta_{t} \tag{59}
\end{equation*}
$$

Then norm factor (17) becomes

$$
\begin{equation*}
N=N^{(0)}+N_{t}=\cos \delta^{(0)} / C^{(0)}+\left(\cos \delta /\left(c^{(0)}+c_{t}\right)-N^{(0)}\right) \tag{60}
\end{equation*}
$$

where $c_{t}(k)=c(k, \infty)-c_{(0)}^{(0)} \quad$. Decomposition (60) and the identity $u^{t}=N U$ with U of (15) generate the representation

$$
\begin{align*}
u= & u^{(0)}+u_{t}= \\
& N^{(0)} N^{-1} u \theta\left(r_{c}-r\right)+\left(N_{t} N^{-1} u \theta\left(r_{c}-r\right)+u \theta\left(r-r_{c}\right)\right) \tag{61}
\end{align*}
$$

where the third term may be approximated by $u^{(m)}$ of (53). Inserting u of (61) into (1) we have

$$
\begin{equation*}
\Lambda_{p}=\Lambda_{p}^{(0)}+\Lambda_{p t}=N^{(0)} N^{-1} \Lambda_{p}+\left(N_{t} N^{-1} \Lambda_{p}+\nsim\right) \tag{62}
\end{equation*}
$$

where x is given by eq.(55). By substituting Λ_{p} of (62) into (10) we find the decomposition $C=C^{(0)}+C_{t}$, where

$$
\begin{equation*}
C^{(0)} \equiv\left(\Lambda_{p}^{(0)} / \Lambda\right)^{2}-1=\left(1+N_{t} / N^{(0)}\right)^{-2}\left(\Lambda_{p} / \Lambda\right)^{2}-1 \tag{63}
\end{equation*}
$$

is the contribution from the part $\left(r<r_{C}\right)$ of potential (4) to the factor S_{11} and

$$
\begin{equation*}
C_{t}=\left(1-\left(1+N_{t} / N^{(0)}\right)^{-2}\right)\left(\Lambda_{p} / \Lambda\right)^{2}+O(æ) \tag{64}
\end{equation*}
$$

is a part of total contribution (10) associated with the tail ($r \geqslant r_{c}$) of this potential.

Now we describe the threshold behaviour of all the terms of eqs. (59-64). According to eq. (51) $\delta_{(0)}^{(0)}$) of (59) behaves like k C_{0}^{2}. Using eqs. (8), (28) and (31) we find that $N^{(0)}$ of (60) behaves like a linear function of energy and $N^{(0)}(0) \neq 0$. As follows from eqs. (46) and (47) with $m=1$, the part c_{t} of c satisfies the condition
$\left|c_{t}(k)\right| \leqslant d_{(k)}^{(1)}$ with $d^{(1)}(\mathbb{K})$ of (52), therefore N_{t} of (60) is of the order of $d^{(1)}$. Applying the results obtained for $N^{(0)}$ and N_{t} to eqs. (62-64) we find that $\Lambda_{p}^{(0)}$ and $C^{(0)}$ behave like linear functions of energy and have nonzero limite at $k=0$, while $\Lambda_{p t}$ and C_{t} are of the order of $d^{(1)}+\infty \quad$ and hence vanish as $k \rightarrow 0$ not slowly then $O\left(k^{4}\right)$ which follows from eqs. (43) and (52).

The leading terms of the asymptotics of the functions δ_{t}, c_{t}, $N_{t}, \Lambda_{p t}$ and C_{t} cannot be found without inspection of the second iteration of eqs. (35). After dropping the terme associated with $\mathrm{S}^{(0)}$ of (51) and therefore behaving like $k C_{0}^{2}$ this iteration yields:

$$
\begin{align*}
& s_{(k, \infty)}^{(2)}=c_{(k)}^{(0)}\left(B_{2}\left(k, r_{c}, \infty\right)+B_{21}\left(k, r_{c}, \infty\right)-B_{12}\left(k, r_{c}, \infty\right)\right), \tag{65}\\
& c_{(k), \infty)}^{(2)}=c_{(k)}^{(0)}\left(1+B_{1}\left(k, r_{c}, \infty\right)+2^{-1} B_{1}^{2}\left(k, r_{c}, \infty\right)+B_{23}\left(k, r_{c}, \infty\right)\right),
\end{align*}
$$

have introduced the integrals

$$
\begin{equation*}
B_{n m}\left(k, r_{c}, r\right)=\int_{r}^{r} B_{n}\left(k, r_{c}, t\right) \partial_{t} B_{m}\left(k, r_{c}, t\right) d t \tag{66}
\end{equation*}
$$

with $n m=12,21,23$. Using deffinitions (37) and bounds (40-42) we fmediately find that the last two terms of both eqs. (65) and integrals (66) vanish not slowly than $B_{2}^{2}\left(\kappa, r_{c}, \infty\right) \quad$ as $k \rightarrow 0$.

Continuing the analysis along this way, we prove the important statement: for any $m \geqslant 1$ the contributions from ($m+1$)-th interetion to $S(k, \infty)$ and $c(k, \infty)$ vanish like or rapidly than the squared contributions from $m^{\text {th }}$-iteration as $k \rightarrow 0$. According to this fact and eqs. (45), (46), and (51) we may write eqs. (65) in the form

$$
\begin{align*}
& s(k, \infty)=S_{t}(k)+O\left(k C_{0}^{2}\right)=c_{(k)}^{(0)}\left(B_{2}\left(k, r_{c}, \infty\right)+O\left(B_{2}^{2}\right)\right) \tag{67}\\
& c(k, \infty)=c_{(k)}^{(0)}\left(1+B_{1}\left(k, r_{c}, \infty\right)+O\left(B_{2}^{2}\right)\right) \tag{68}
\end{align*}
$$

where

$$
S_{t}(k)=s(k, \infty)-s(0)
$$

Since $c(0)=C(0, \infty) \neq 0$ and by definition (37) integrals B_{1} and B_{2} of (67-68) vanish at $K_{0}=0$, therefore the leading terms of lowenergy asymptotics of the functions $S_{t}(k)$ and $C_{i}(K)$ are proportional to the leading terms of asymptotics of the integrals B_{2} and B_{1}, respectively. The asymptotica of all integrals (37) as $k \rightarrow 0^{2}$ may be found by the method described In detail in ref. ${ }^{124 / \text {, as well as by }}$ application to these integrala of the standard statiorary phase method 141/. For these reasons we give only the final reaults:

$$
\begin{align*}
& B_{1}\left(k, r_{c}, \infty\right)=\left((\alpha / 9) / 2^{5 / 3} R^{3}\right) \Gamma_{(1 / 3)}(k R)^{16 / 3}\left(1+O\left(\eta^{1 / 3}\right)\right), \tag{69}\\
& B_{n}\left(k, r_{c}, \infty\right)=(-1)^{n+1}\left(16 \alpha k^{5} / 15 R^{2}\right)\left(1+O\left(\eta^{1 / 3}\right)\right) \tag{70}
\end{align*}
$$

where, of course, $k \rightarrow 0$, Γ is the Game-function and $n=2,3$. According to eqs. (69) and (70) all the integrals of eqs. (65-68) vanish more slowly than $O\left(k C_{0}^{2}\right)$ as $k \rightarrow 0$, namely, for this reason we cancelled all the terms of an order of $k C_{0}^{2}$ when we have derived eqs. (65) and (67) (68).

Now, inserting froms (67) and (68) into (18) and using eq. (70) with $n=2$ we recover results (7) and (8) proved in ref. ${ }^{1247}$. Next,

$$
\begin{align*}
& N_{t}=\left(-1 / c^{(0)}\right)\left(B_{1}+\delta_{t}^{2}+O\left(B_{2}^{2}\right)\right) \tag{71}\\
& \text { eq.(8) with eq. (69) we find that }
\end{align*}
$$

By comparison of eq.(8) with eq. (69) we find that B_{1} vanishes more rapidly than δ_{t} but more slowly than δ_{t}^{2}. Hence, the functions N_{t} of (71) and $\Lambda_{p t}$ of (62) behave like $t(k R)^{16 / 3}$ as $k \rightarrow 0$ and inserting N_{t} of (71) into (64) we obtain the representation

$$
\begin{equation*}
C_{t}=2\left(\Lambda_{P} / \Lambda\right)^{2}\left(B_{1}+O\left(B_{2}^{2}\right)\right) \tag{72}
\end{equation*}
$$

Using eqs.(5), (11) and (69) we get from eq.(72) the leading term
(12) of asymptotic of C_{t}. Thus, the second required result is proved.

For comparison, let ua replace the polarization potential by any short-range potential $\Delta V_{S} \sim \exp (-\mu r)$ satigfying eqs.(3), for ins-
tance, by the vacuum polarization potential/42/ or by the electronscreening one $/ 16 /$. Then, repeating step by step all the constructions, deacribed above, we find that the contribution from the tail $\left(r \geqslant r_{c}\right)$ of ΔV_{S} to the factor S_{11} falls not alowly than $0\left(k^{4} \exp \left(-\mu r_{c}\right)\right)$ as $k \rightarrow 0$, i.e. more rapidly than C_{t} of. (12). Hence, eq. (12) describes one special effect caused by the r^{-4} long-range behaviour of potential (4). However, in contrast to the pp-scattering this effect is not dominant in the pp-reaction.
5. Perturbation theory for the polarization potential

In subsection 4.2 we have actually constructed a perturbation theory over the tail ($r \geqslant r_{c}>r_{p}$) of potential (4). by construction, $m^{\text {th }}$-order of this theory is generated by $m^{\text {th }}$-iteration of eqs. (35). Now we generalize our perturbation theory when total potential (4) is a correction to the Coulomb potential. This generalization on the basia of iterations of eqs.(35) seems to be clear and therefore we describe only the most essential details.

For the ressons to be clear below we formally replace r_{c} by r_{p} in all the formulae of subsection 4.2. Then $s^{(0)}$ and $c^{(0)}$ stand for s and c at $r=r_{p}$ and in the framework of $m^{\text {th }}$-iteration of eqs.(35) the pp-function is represented by eq. (53) for any $r \geqslant r_{p}$. Of course, this representation is mathematically correct if and only if momentum
k and the parameters of potential (4) satisfy a possible condition thet provides uniform convergence of iterations to eqs. (35) in region $r \geqslant r_{p}$. When $r_{p} \geqslant r_{c}$ one can use conditions (43) or (44). For sufficiently small k, of course, $r_{\rho}<r_{c}$ and condition (43) with r_{c} replaced by r_{p} loses the meaning, because when we derive it, we have used relations (41) which after replacement of r_{c} by r_{p} become incorrect if $r_{c}>r_{p}$. So, for the more general case, $r_{p}<r_{c}$, one has to study the convergence problem for iterations of eqs.(35) more thoroughly $/ 37$ / namely to take into account the fact that the functions s and c belong to quite different classes $\{s\}$ and $\{c\}$. The $\{s\}-c l a s a$, owing to eqs. (21) and (51), is formed by the functions with the $k C_{0}^{2}$ dependence for $r<r_{C}^{\prime}$, while owing to eqs.(22) and (31) the $\{c\}$-class is formed by the functions having a nonzero limit as $k \rightarrow 0$ for any r. In the interval $r_{p} \leqslant r \leqslant \infty$ the integral operators of eqs. (35) form a contracting mapping, if any functions $\delta s \in\{s\}_{r}$ and $\delta c \in\{c\}$ obey the inequality $/ 38 /$:

$$
\max \left\{\rho_{r_{p}}\left(\int_{r_{p}}^{r}\left(\partial_{t} B_{2}\left(k, r_{p}, t\right) \delta c(k, t)-\partial_{t} B_{1}\left(k, r_{p}, t\right) \delta s(k, t)\right) d t, 0\right),\right.
$$

$$
\left.\rho_{r_{p}}\left(\int_{r_{p}}^{r}\left(\partial_{t} B_{1}\left(k, r_{p}, t\right) \delta c(k, t)+\partial_{t} B_{3}\left(k, r_{p}, t\right) \delta s(k, t)\right) d t, 0\right)\right\}<(73)
$$

$$
\max _{\left\{\rho_{r_{p}}(\delta s(k, r), 0), \rho_{r}(\delta c(k, r), 0)\right\}}
$$ where the functions $B_{n}\left(k, p_{p}, r\right)$ weth $n r_{1,2,3}$ and the metrics are defined by eqs. (37) and (38) in which r_{c} is replaced by r_{p}.

If k is sufficiently small, then $|\delta c|>|\delta s|$ for any r. because $\delta s(k, r)=0\left(k C_{o}^{2}\right)$ when $r<r_{c}$ and $\delta s(k, r) \sim k^{5}$ when $r \geqslant r_{c}$, and when $k \rightarrow 0$ due to eqs.(19), the integrals $B_{n}\left(\kappa, r_{p}, r\right)$ with $n=1,2$ converge, while the integral $B_{3}\left(k, r_{p}, r\right)$ behaves like $\left(k C_{0}^{2}\right)^{-1}$. Using these facts and applying the midpoint theorem ${ }^{38 /}$ to integrals of (73) we may replace condition (73) by the set of more rough conditions:

$$
\begin{array}{r}
\rho_{r_{p}}\left(B_{n}, 0\right)<1 / 2, n=1,2, \\
\rho_{r_{p}}\left(\int_{r_{p}}^{r} \partial_{t} B_{3}\left(k, r_{p}, t\right) \delta s(k, t) d t, 0\right)<(1 / 2) \rho_{r_{p}}(\delta c(k, r), 0) \tag{75}\\
\text { When } k \rightarrow 0 \text { and } r \text { is fixed, then: } \delta c \text { of }(75) \text { tends to a nonzero }
\end{array}
$$ constant, the integral of (75), owing to eqs.(19), (37) and definition of $\{s\}$-class also tends to a nonzero constant if $r_{p}<r_{c}$. and owing to eqs. (41), (68) and (70) vanishes like or rapidly than ($k R)^{16 / 3}$ until $r_{p} \geqslant r_{c}$. Hence, if $r_{p} \geqslant r_{c}$ and k is such that $\rho_{r_{c}}\left(B_{3}\left(k, r_{c}, r\right), 0\right)<1 / 2$ then ineq.(75) is valid and, therefore when $r_{p} \geqslant r_{c}$ conditions (74) and (75) are reduced to those early used ineqs. (36) or (44). For the case $r_{p}<r_{c}$ under consideration let us assume that ineqs. (74) are valid. Then, according to required ineq. (75), the convergence problem is reduced ${ }^{\prime 38 /}$ to proving the fact that contributions from the iteration terms associated with B_{3} to $s^{(m+1)}$ and $c^{(m+1)}$ are smaller than the corresponding contributions from similar terms to

$s^{(m)}$ and $c^{(m)}$. These contributions to the first iteration results (45) and (46) are obviously bounded by

$$
\begin{equation*}
w(k) \equiv\left|\tan \delta_{(k)}^{(0)} \rho_{r_{p}}\left(B_{3}\left(k, r_{p}, r\right), 0\right)\right| \tag{77}
\end{equation*}
$$

where $\delta^{(0)}$ is defined by eq. (59) and is the phase shift caused by nuclear potential V_{S}, because now $s^{(0)}$ and $c^{(0)}$ are S and c at $r=r_{p}$ and by assumption $r_{p} \geqslant r_{s}$. . Further, by induction one can show that the above contributions to $s^{(m+1)}$ and $c^{(m+1)}$ decrease with growing m if bound (77) is smaller than one-half and ineqs. (74) are valid. Thus, instead of condition (36), we have established one of the rough conditions

$$
\begin{equation*}
\varepsilon(K) \equiv \max \left\{\rho_{r_{p}}\left(B_{1}, 0\right), \rho_{r_{p}}\left(B_{2}, 0\right), w\right\}<1 / 2 \tag{78}
\end{equation*}
$$

that provides convergence of the iterations of eqs.(35) for any $r \geqslant r_{p}$ and any $r_{p}>0$. Appling ineqs. (39) and inequality $\left|G_{0}\right| \leqslant C_{0}^{-1}$ 139 to Integrands of (37) we find that ε of (78) satisfies the inequality

$\varepsilon(k) \leqslant \sigma \max \left\{3 \sqrt{\pi / 2},\left|\tan \delta_{(k) / k r_{p}}^{(0)} C_{o}^{2}(\eta)\right|\right\}$

where $\sigma=\alpha / 3 r_{p}^{2} R$ is a dimensionless combination of potential (4) parameters to be used below. Further, when $\tan \delta^{(0)}$ represented by eq. (9), ineq. (79) reads

$$
\begin{equation*}
\varepsilon(k) \leqslant \sigma_{\max }\left\{3 \sqrt{\pi / 2},\left|\alpha / r_{p}+O\left(k^{2}\right)\right|\right\}<1 / 2 . \tag{80}
\end{equation*}
$$

Obviously, the right-hand side of ineq. (80) is bounded to one-half if k and σ are sufficiently amall. Hence we have solved the third problem of Sec. 3.

Now, assuming that : ineq. (78) is valid we repeat step by step all the construction of subsection 4.2. So, for $s^{(m)}$ and $c^{(m)}$ we have again ineqs. (47) and (48) with r_{c} replaced by r_{p}. Analogously, we find that both metrice in eq. (48) are bounded by the function $\left|c_{(k)}^{(0)}\left(\varepsilon(k)+O\left(k C_{0}^{2}\right)\right)\right|$ and therefore the function $d_{(k)}^{(m)}$ determined the accuracy of $m^{\text {th }}$-iteration of eqs.(35) satisfies eq.(52) with $\varepsilon(k)$ of (78). Hence $d^{(m)}(k) \rightarrow 0$ as $m \rightarrow \infty$. However, $\varepsilon(0) \neq 0$ (contrary to ε of (36)), hence $d^{(m)}(0) \neq 0$ for any finite m. This important fact is caused by the following apparent reason: the integrals
$B_{n}\left(k, r_{p}, r\right), n=1,3$ do not vanish as $K \rightarrow 0$ and therefore the contributions from any iteration of eqs.(35) to the functions S and C are in general nonzero for any k and r.

Let by definition $F_{\equiv}^{(m)} F\left(s^{(m)}, c^{(m)}\right.$ be a functional $F(s, c)$ of the
$m^{\text {th }}$-order of the developed perturbation theory. Then, for $r<r_{p}$ the pp-function in $m^{t h}$-order of this theory is $u^{(m)}=N^{(m)} U$ with U defined by eq.(15), where 5 and c are solutions of problem (14-16) in the region $r \leqslant r_{p}$, where $V \leqslant V_{s}$. For $r \geqslant r_{p}$ the function $u^{(m)}$ is represented by the first term of eq.(53).

As a next step we replace u by $u^{(m)}$ in eq.(1) and we insert the obtained integral $\Lambda_{p}^{(m)}$ into (10) instead of Λ_{p}. Thus we get $\Lambda_{p}^{(m)}$ and $C^{(m)}$ i.e. Λ_{p} and C^{p} in the $m^{\text {th }}$-order of perturbation theory. Usually, the first order of any perturbation theory is called the Born approximation. Using eqs. (17), (18), (45), (46) (53) one can easily get the pp-function in the Born approximation, i.e. the function $u^{(1)}$. Comparing $u^{(1)}$ with the pp-function obtained in the Born approximation $/ 9-11 /$ for the Volterra-type equation (see eqs. (5.27-5.31) of ref. $/ 10 /$) one may verify that our representation of $u^{(1)}$ is equivalent to the one used in these works. Therefore, if κ and σ safisfy ineq. (80), the assumption of refs. $/ 9-11 /$ is correct, i.e. the Born approximation may be used for evaluation of $\Lambda_{p}(1)$ and C (10). However, using this approximation one has to keep in mind that it cannot provide exactly the leading term of asymptotics as $k \rightarrow 0$ of C.

Due to this fact (as was explained above caused by the atructure of integrals $B_{n}\left(k, r_{p}, r\right)$ with $\left.n=1,3\right)$ the final and complete answer to the last question of Sec. 3 cannot be given within any $m^{\text {th }}$-order of the constructed perturbation theory. For this reason it is necessary to perform high-accuracy numerical investigations of Λ_{p} and Λ working beyond the scope of any perturbation theory, for instance, by the way described in Subsections 4.1 and 4.3.

6. Numerical results

Due to the facts that the polarization potential V_{p} of (4) is neglegible and long-range correction to the Coulomb potential numerical investigations of effects caused by V_{p} are no so simple as it may seem at first sight. Therefore it is useful to reconsider the most essential details of the way that has been used for numerical resulte reported belo:x.

As input data we have used: the ${ }^{3} S_{1}$-deuteron function V corresponding to the RSC-potential ${ }^{/ 43 /}$, the same ${ }^{1} S_{0}$-potential as V_{S} and potential (4) with $\alpha=10^{-3} \mathrm{fm}^{3 / 4 /}$ and r_{p} equal to its minimal possible value 4 fm that corresponds to the usually used $/ 17 /$ value for the interaction radius of V_{s}. For these α and r_{p}, according to refs. $16,7,9-11,14 /$ contribution (10) 1 B of an order of 10^{-6}. Hence the numerical investigation of expansions (5) and (11) has to be performed with a high-accuracy. For this reason eqs. (14) and (23) were numerically integrated in the intervals $0 \& r \leqslant 30 r_{c}$ and $0 \leqslant r \leqslant 100 \mathrm{R}$, respectively. The upper bounds of these intervals were choosen sufficiently large to calculate norm factor (17), phase shift (18) and the coefficients of expansions (5), (11) and (32) with the nine-significant digits accuracy. Following ref./14/ we have used the $S_{5,3}$-spline interpolation/44/ to obtain the pp-function satisfying eq. (58) with the accuracy

$$
\left|u^{-1}(k, r) H u(k, r)\right|<10^{-10}
$$

for any k and $r \leqslant r_{\Lambda}$. The practical upper limitt r_{Λ} of integrals (1) and (56) was 500 fm . which ensured the calculation of these integrals with a relative accuracy 10^{-9}. For a high-accuracy calculation of the coefficients of eqs. (5) and (11) we have integrated eqs. (23) and (56) with $V=V_{s}$ and $V=V_{s}+V_{p}$, respectively. Purther, to find the applicability range of expansions (5), (11) and (57), we have compared their parte linear in energy with the corresponding functions $\Lambda^{2}, \Lambda_{p}^{2}$ and C calculated by integration of eqs.(1) and (14). By the way described above we got the following resulte: the
coefficients of eq. (5) are $\Lambda^{2}(0)=6.96072905, \quad A=2.42552113 \mathrm{MeV}^{-1}$ and are close to $\Lambda^{2}(0)=6.934$ and $A=2.5 \mathrm{MeV}^{-1}$ calculated in ref. ${ }^{145 /}$ for the same RSC-potential as well as to the corresponding coefficients of eq. (11): $\Lambda_{p}^{2}(0)=6.96074375, A_{p}=2.42552961 \mathrm{MeV}^{-1}$. Therefore the constants of eq.(57) are $C(0)=2.1108 \cdot 10^{-6}, A_{p}-A=$ $=8.48 \cdot 10^{-6} \mathrm{MeV}^{-1}$ and are neglegible as compared with known uncertainties of $\Lambda^{2}(0)$ and A of eqs. (5) and (6). Further, using the coefficients given above we have found that the functions $\Lambda^{2}, \Lambda_{p}^{2}$ and C are linear in energy within 1.5%-accuracy if $E \leqslant 20 \mathrm{keV}$ and within 0.5%-accuracy if $E \leqslant 10 \mathrm{keV}$.

For the used α and r_{p} of eq.(4) we have established that: the inequality $r_{c} \geqslant r_{s}$ assumed in Subsection 4.2 and ineq. (44) are simultaneously valid if $\mathrm{E} \leqslant 360 \mathrm{keV}$, the constant σ of (79) is equal to $7.23 \cdot 10^{-7}$ and for the used nuclear potential $\varepsilon(k)$ of (79) is smaller than 10^{-6} for $E \leqslant 1 \mathrm{MeV}$. These results testify to the fact that for a low astrophysical energy perturbation theories of subsection 4.2 and Sec. 5 are correct and the Born approximation over total potential (4) is undoubtedly good.

For completeness we have established that contribution (10) is positive for any energy, has a broad maximum $\left(\max _{E} C(E) \approx 1.6 C(0)\right)$, achieves its upper bound $\left(\approx 3 \cdot 10^{-6}\right)$ at $E \approx 400 \mathrm{keV}$ and alowly vanishes as $\mathrm{E} \rightarrow \infty$.

7. Sumnary and conclusion

So, we have proved the low-energy representations (11) and (12), Ne have found rough conditions ($78-80$) that provide the applicability of the Born approximation for a sufficiently low energy and by high-accuracy calculations we have confirmed the conclusion common for all previous works $/ 6-11,14 /$ that the correction of the proton polarizability effect to the factor S_{11} ia small as compared with other known corrections.

In conclusion, we stress that the method of Sects. 3 and 5 is quite suitable for analytical and numerical investigations of lowenergy representations of the scattering functions for any two particles interacting via the sum of repulsive Coulomb potential, shortrange potential and a long-range potential vanishing as $r \rightarrow \infty$ rapidly than a polarization one. Knowledge of these expansions is necessary for analysis of the threshold behaviour of the S-factors for any inelastic reactions when two complex and charged opposite in aign, particles of the input channel are considered as point-like and the effective two-body interaction is asymptotically represented as a
pure Coulomb interaction plus a leading multipole correction to it. Hence the results of Sects. 3 and 5 may be succesafully used for the analysis of more general problems than those bolved in the present work.

References

1. Bahcall J.N., Ulrich R.K. Rev.Mod. Phys. 1988, 60, p. 297.
2. Bahcall J.N., Bahcall N.A., Ulrich R.K. Astrophys. J. 1969, 156, p. 559.
3. Reeves H.In: Stellar Structure (eds.) Aller L.H. and McLaughlin D.B. Chicago and London: University of Chicago Press, 1965.
4. Petrun'kin V.A. Elem.Part. and Atom.Nucl. 1981, 12, p. 692.
5. Belyaev V.B., Kartavtsev O.I., Kuzmichev V.E. JINR Preprint E4--88-66, Dubne, 1987 (Submitted to Few-Body Systems).
6. Pupyshev V.V., Solovtsova O.P. JINR, Comm. P4-86-346, Dubna, 1986.
7. L'vov A.I. FIAN, Preprint 14, Moscow, 1987.
8. Bencze Gy. Phys.Lett. 1988, B202, p. 289.
9. Levashev V.P. Phys.Lett. 1988, B214, p. 493.
10. Levashev V.P. Nucl. Phye. 1989, A491, p. 109, ITP, Preprint ITP--87-165E, Kiev, 1987.
11. Levashev V.P. Yad.Fiz. 1989, 49, p. 681.
12. Belyeev V.B., Kuzmichev V.E. In: Contributions to the XI-th IUPAP Conf. on Few-Body Systems in Farticle and Nuclear Physics (eds.) Sasakeva T. et al., Tohoku Univeraity, Sendai, 1986.
13. Belyaev V.B. et al. JINR, Preprint E4-87-35, Dubna, 1987, (Submitted to Yad.Fiz.).
14. Pupyshev V.V., Solovtsova O.P. JINR, Praprint E4-88-471, Dubna, 1988, (submitted to Phys.Lett. B).
15. Bethe H.A. Phys.Rev. 1939, 55, p. 434.
16. Salpeter E.E. Phys.Rev. 1952, 88, p. 547.
17. Brown G.E., Jackson A.D. The Nucleon-Nucleon Interaction. Amsterdam-Oxford: North-Holland. Publ. Com., 1976.
18. Abramowitz M., Stegun I.A. Handbook of Mathematical Functions, Washington, DC, US National Bureau of Standards, 1972.
19. Babikov V.V. Sov. J.Nucl. Phys. 1965, 1, p. 793.
20. Bebikov V.V. The Method of Phase Functions in Quantum Mechanics, Moscow: Nauka, 1976.
21. Calogero P. Variable Phase Approach to Potential Scattering, - New York: Acad. Press, 1967.
22. Bahcall J.N., May R.M. Astrophys. J. 1969, 155, p. 501.
23. Bahcall J.N. et al. Rev.Mod. Phys. 1982, 54, p. 767.
24. Berger R.O., Spruch L. Phyg.Rev. 1965, 138, p. B1106.
25. Landau L.D., Lifshitz E.M. Quantum Mechanics, Oxford: Pergamon, 1958.
26. Landau L.D., Smorodinsky Ya.A. Zh.Ekep.Teor.Fiz. 1944, 14, p. 269.
27. Peierls R.Surprises in Theoretical Physics, New Jersey: Prince ton University Press, 1979.
28. Bencze Gy., Chandler C. Phys.Lett. 1986, B182, p. 121.
29. Pupyshev V.V., Solovtsova O.P. Yad.Fiz. 1988, 47, p. 60, JINR Preprint E4-87-467, Dubna, 1987.
30. Bencze Gy. et al., Phys.Rev. 1987, C35, p. 1188.
31. Fröberg C.E. Rev.Mod. Phye. 1955, 27, p. 339.
32. Levy B.R., Keller J.B. J.Math. Phye. 1963, 4, p. 54.
33. Kvitsinsky A.A., Merkuriev S. P. In: Contributions to the IX-th European Conf. on Few-Body Problems in Physics, Tbilisi, Tbilisi State University, 1984.
34. Bencze Gy., Chandler C. Fhys.Lett. 1985, B163, p. 21.
35. Kvitsinsky A.A., Merkuriev S.P. Sov. J.Nucl. Phys. 1985, 41, p. 647.
36. Kuzmichev V.E., Zepalova M.I. Phys.Lett. 1986, B167, p. 268.
37. Volterra V. Theory of Functions and of Integral and Integro--Differential Equations, New York: Dover Publications, INC, 1959.
38. Kolmogorov A.N., Fomin S.V. Elemente of Theory of Functions and of Functional Analysis, Moscow: Nauka, 1976.
39. Klarefeld S. Nuovo Cim. 1966, 43A, p. 1077.
40. Kamke E. Differential Gleichungen, Leipzig, 1959.
41. Olver F.W.J. Introduction to Asymptotics and Special Functions, New York and London: Acad.Press, 1974.
42. Foldy L.L., Eriksen E. Phys.Rev. 1955, 98, p. 775.
43. Reid Jr.R.V. Ann. Phys. 1968, 50, p. 411.
44. Schumaker L.L. Spline Functions. Basis Theory. New York: Aced. Press, 1981.
45. Picker H.S., Heftel M.I. Phys.Rev. 1976, C14, p. 1293.

[^0]: * Gomel Polytechnical Institute, Gomel, USSR

