


1. INTRODUCTION

The inverse problem of a nonrelativistic classical point
particle moving in a confining potential is well known’ 1,2/
and has been solved by inversion of an Abelian integral equa-
tion., The data for the reconstruction of the (symmetric) po-
tential are the values of the full period T(E).

The same problem is solved in this letter for a relativis-
tic classical particle trapped in a symmetric confining po-
tential ¢(x) which is the fourth component of a 4~potential.
The Newtonian equation of motion and the relation between the
full energy and 3-momentum are used. The resulting integral
eqn. for T(E) is inverted by a Laplace-transformation techni-
que, and finally we get the explicit formula for x(¢) without
any approximations. The nonrelativistic limit is considered
too. This new example of an exactly solvable inverse problem
manifests the classical limit of a (future) relativistic
quantum inverse problem in WKB-approximation. :

2. FORMULATION OF THE DIRECT PROBLEM
The Lorentz—invariant action for a point particle moving

in a 4—potent1a1 A* with the components. (A V)“, which only
depends on x, is: .

§= [(~m c®+ LA ut) dr, o _ n
o e u A

*The conventions are: —¢2dr? = Ta dxadxﬁ with a,8=1,...4,
Lk =1,2,3, n,g = diag(1,1,1,~1), x% ~(xl,ct), dvdr = y,
vl = dxf/du Then the components of the fbur—veloczty are:
u? ~ y(vi,e) ; and of the four-force, K* ~y(F;v,/c) where F,
is the Newtonian force. The rest mass is m, and m=ym, .
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and leads at Ay = 0 and ¢ = eV in one dimension to the equa-
tion of motion:
dp d¢

T:F(x)=-a-, (p = m—2). (2)

The connection between the total relativistic energy H and
the 3-momentum in this case is

(H - ¢)% = p2c? 4 mﬁc4-. . ' (3)

Note, that a Lorentz-invariant scalar potential o) can,
as is well known, be coupled only.to the mass-term. This
would lead to a velocity-dependent force, but in this paper
we restrict ourselves to investigations of pure x-dependence
of the force. The problem is to define the (symmetric) poten-—
tial ¢(x) if, for a fixed E, the time for a full period T(E)
is known. It is assumed, that the inverse function x(¢) exists
for x > O.

From (2) it immediately follows the full period

T(E) = 4 f TL‘ ~ 4)
0 —d‘gF(qs) »

and fixing the zero of ¢(x) in its minimum, with H = m c® +

. N )
+ E'= const, one obtains from (3):

E-¢ 2 E-¢
cv4 m02] *'Z‘ET‘?T
dé 0 0

dp - E-¢ ’ (5)

]

with the dimensionless abbreviations

-4m°c

Yy = E > 0, z=_.é_>0, r(z) =-
m c® F(z)

&

(6)

the period will be

2

R y
T(y) = [ «(z)
o \/(y—z)2+2(y-—z) N

vy -z ' (7)

3. THE INVERSION FORMULA-

If we assume that the period T(y) is known, eqn.(7) is an
integral eqn. determining the force r(z). It is solved by
the Laplace transformation '

(=]

Le(x) = [ dze f(x) : (8)

(o]

f(s)

which results (see Appendix) in the factorized formula ’
T(s) = r(s)e’ K, (s), (9)

where K;(s) denotes the modified Bessel- (or McDonald-) func-
tion of the third kind’®/. Using the identity

82
g f-—-e ds = (e ds, ’ (10)

one obtains the inversion~formula for the Laplace transformed .
function x(z):

€+l sz -8 '
d : a8 e A
x(z) = %= S [ A8 — T(s). ; (11)
moodz s K. (s)

With the convolution theorem the result finally shows

Z

x(z) = L —9—— { dyG(z-y)T(y) | (12)
4 dz 0
with
'c+lg 52 —
-1 ° : .
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Note that for the derivation of the explicit formulas (12)
and (13) one does not need any approximations.

4, THE NONRELATIVISTIC LIMIT
For the large |s| case, being important for small values

of the potential z, there ex1sts the asymptotic representa-
tion of the function K (s)

Om— —s =
K,(s) = 21\/-_— = —“;. (14)
with

oy 1(8/2 -k)

Using the relation (n = 1,2,...,)

. gty e-l/?) ~(n+1/2) .
L[ l]=-=s . (16)
3...(20~1)n

we get for the kernel G(z) the following asymptotic series:

. oy y )" V2
G(z) = 2 3 By 1(22) , (17)
T y=1 1.8.5...(2f-1)

and the coefficients B; are defined by the recursion formula“

B, =a,= 1):

{=n R

B,=- % a8 (18)
i=1

n-{

The first term in the series (17) results in the known
(e.g.”’2/ ) inversion formula for nonrelativistic mechanics,
expressed by the Abelian integral transformation

VEX: )
x(z )nonrel. = An '({ \/-Z—:—y— (]9)

Inserting the constant value of the period T = 2n/w, eqn.(19)
gives the oscillator-potential. Taking the next terms in (17)
into account we get the potential with the constant period:

.

m a)2X2

(]

2
e 229, o=l 20y

¢(x) =
2 16¢? ¢

Defining the oscillator as a potential admitting constant va-
lues of the period for all energies, we thus find this poten-
tial in the relativistic (kinematic) case from the inversion
formula (11).

APPENDIX

The Laplace transform of T(y) is

00 y
T(s) = [ dye [ #(z)

[+] [+]

‘(1+y—z)dz

Ve(y-z) +(y-z ¥
Changing the succession of integration, it can be written as

o0 - liy—2 -

F dzr(z) [ dye 8y
ve(y-z) + (y —2z)°

L] (o]

In order to factorize these integrals we set &= y-z in the
second one and get

+&

00 00 1
f dz T(Z ) e_szf dfe—sf—m— .
[}

V&4 £2

The first integral by definition is ;(s), and the second can

be expressed analytically and gives esKl(s) so that formula
(9) is proved.
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