

объединенный институт
 ядерных исследований
 дубна

H.Funke*, Yu.Ratis

AN INVERSE PROBLEM
FOR CLASSICAL RELATIVISTIC MECHANICS

Submitted to "Inverse Problems"

[^0]
1. INTRODUCTION

The inverse problem of a nonrelativistic classical point particle moving in a confining potential is well known ${ }^{1,2 /}$ and has been solved by inversion of an Abelian integral equation. The data for the reconstruction of the (symmetric) potential are the values of the full period $T(E)$.

The same problem is solved in this letter for a relativistic classical particle trapped in a symmetric confining potential $\phi(x)$ which is the fourth component of a 4 -potential. The Newtonian equation of motion and the relation between the full energy and 3 -momentum are used. The resulting integral eqn. for $T(E)$ is inverted by a Laplace-transformation technique, and finally we get the explicit formula for $x(\phi)$ without any approximations. The nonrelativistic limit is considered too. This new example of an exactly solvable inverse problem manifests the classical limit of a (future) relativistic quantum inverse problem in WKB-approximation.

2. FORMULATION OF THE DIRECT PROBLEM

The Lorentz-invariant action for a point particle moving in a 4-potential A^{μ} with the components ($A_{i j}, V$)*, which only depends on x, is:
$\mathrm{S}=\int\left(-\mathrm{m}_{0} \mathrm{c}^{2}+\frac{\mathrm{e}}{\mathrm{c}} \mathrm{A}_{\mu^{\mathrm{u}}}{ }^{\mu}\right) \mathrm{d} \tau$,

[^1]and leads at $\mathrm{A}_{1}=0$ and $\phi=\mathrm{eV}$ in one dimension to the equation of motion:
\[

$$
\begin{equation*}
\frac{d p}{d t}=F(x)=-\frac{d \phi}{d x}, \quad\left(p=m \frac{d x}{d t}\right) \tag{2}
\end{equation*}
$$

\]

The connection between the total relativistic energy H and the 3 -momentum in this case is
$(\mathrm{H}-\phi)^{2}=\mathrm{p}^{2} \mathrm{c}^{2}+\mathrm{m}_{\mathrm{o}}^{2} \mathrm{c}^{4}$.
Note, that a Lorentz-invariant scalar potential $\phi\left(x^{\mu}\right)$ can, as is well known, be coupled only to the mass-term. This would lead to a velocity-dependent force, but in this paper we restrict ourselves to investigations of pure x-dependence of the force. The problem is to define the (symmetric) potential $\phi(x)$ if, for a fixed E, the time for a full period $T(E)$ is known. It is assumed, that the inverse function $\mathrm{X}(\phi)$ exists for $x>0$.

From (2) it immediately follows the full period

$$
T(E)=4 \int_{0}^{E} \frac{\mathrm{~d} \phi}{\frac{\mathrm{~d} \phi}{\mathrm{dp}} \mathrm{~F}(\phi)}
$$

and fixing the zero of $\phi(x)$ in its minimum, with $H=m_{0} c^{2}+$ $+E=$ const, one obtains from (3):

$$
\begin{equation*}
\frac{d \phi}{d p}=\frac{0 \sqrt{\left[\frac{E-\phi}{m_{0} c^{2}}\right]^{2}+2 \frac{E-\phi}{m_{0} c^{2}}}}{1+\frac{E-\phi}{m_{0} c^{2}}} \tag{5}
\end{equation*}
$$

with the dimensionless abbreviations
$y=\frac{E}{m_{0} c^{2}}>0, \quad z=\frac{\phi}{m_{0} c^{2}}>0, \quad r(z)=-\frac{4 m_{0} c}{F(z)}$
the period will be
$T(y)=\int_{0}^{y} x(z) \frac{1+y-z}{\sqrt{(y-z)^{2}+2(y-z)}}$.

3. THE INVERSION FORMULA

If we assume that the period $T(y)$ is known, eqn. (7) is an integral eqn. determining the force $r(z)$. It is solved by the Laplace transformation
$\hat{f}(s) \equiv \hat{L} f(x)=\int d x e^{-s \mathbf{x}}(x)$
which results (see Appendix) in the factorized formula

$$
\begin{equation*}
\hat{T}(s) \equiv \hat{\tau}(\mathrm{s}) \mathrm{e}^{\mathrm{s}} \mathrm{~K}_{1}(\mathrm{~s}), \tag{9}
\end{equation*}
$$

where $K_{1}(s)$ denotes the modified Bessel- (or McDonald-) function of the third kind ${ }^{/ 3 /}$. Using the identity
$\frac{d}{d z} \int \frac{e^{s z}}{s} d s=\int e^{s z} d s$,
one obtains the inversion-formula for the Laplace transformed function $x(z)$:
$x(z)=\frac{c}{8 m^{i}} \frac{d}{d z} \int_{\epsilon-1 \infty}^{\epsilon+1 \infty} d s \frac{e^{s z}}{s^{2}} \frac{e^{-s}}{K_{1}(s)} \hat{T}(s)$.
With the convolution theorem the result finally shows
$x(z)=\frac{c}{4} \frac{d}{d z} \int_{0}^{z} d y G(z-y) T(y)$
with
$G(z)=\frac{1}{2 \pi i} \int_{\epsilon-i \infty}^{\epsilon+1 \infty} d s \frac{e^{s z}}{s^{2}} \frac{e^{-s}}{K_{1}(s)}$.

Note that for the derivation of the explicit formulas (12) and (13) one does not need any approximations.

4. THE NONRELATIVISTIC LIMIT

For the large $|s|$ case, being important for small values of the potential z, there exists the asymptotic representation of the function $K_{1}(s)^{1 / 3 /}$:
$K_{1}(s)=\sqrt{\frac{\pi}{2}} \frac{e^{-s}}{\sqrt{s}} \sum_{k=0}^{\infty} \frac{a_{k}}{z^{k}}$,
with
$a_{k}=\frac{1}{2^{k} k!} \frac{\Gamma(3 / 2+k)}{\Gamma(3 / 2-k)}$.
Using the relation ($n=1,2, \ldots$,)
$\hat{L}\left[\frac{2^{n_{z}^{(n-1 / 2)}}}{1.3 \cdot \ldots(2 n-1) \sqrt{\pi}}\right]=s^{-(n+1 / 2)}$,
we get for the kernel $G(z)$ the following asymptotic series:
$G(z)=\frac{2}{\pi} \sum_{j=1}^{\infty} \frac{\beta_{j-1}(2 z)^{j-1 / 2}}{1.3 \cdot 5 \cdot \ldots(2 j-1)}$,
and the coefficients β_{n} are defined by the recursion formula ($\beta_{0}=a_{0}=1$):
$\beta_{n}=-\sum_{i=1}^{1=n} a_{i} \beta_{n-1}$.
The first term in the series (17) results in the known (e.g./2/) inversion formula for nonrelativistic mechanics, expressed by the Abelian integral transformation
$x(z)_{n o n r e l .}=\frac{\sqrt{2} c}{4 \pi} \int_{0}^{z} \frac{d y T(y)}{\sqrt{z-y}}$.

Inserting the constant value of the period $T=2 \pi / \omega$, eqn. (19) gives the oscillator-potential. Taking the next terms in (17) into account we get the potential with the constant period:
$\phi(x)=\frac{m_{0} \omega^{2} x^{2}}{2}\left[1+\frac{\omega^{2} x^{2}}{16 c^{2}}\right]+\mathcal{C}\left[\frac{1}{c^{4}}\right]$.
Defining the oscillator as a potential admitting constant values of the period for all energies, we thus find this potential in the relativistic (kinematic) case from the inversion formula (11).

APPENDIX

The Laplace transform of $T(y)$ is
$\hat{T}(s)=\int_{0}^{\infty} d y e^{-s y} \int_{0}^{y} r(z) \frac{(1+y-z) d z}{\sqrt{2(y-z)+(y-z)^{2}}}$.
Changing the succession of integration, it can be written as

In order to factorize these integrals we set $\xi=y-z$ in the second one and get
$\int_{0}^{\infty} \mathrm{dz} \tau(\mathrm{z}) \mathrm{e}^{-\mathrm{sz}} \int_{0}^{\infty} \mathrm{d} \xi \mathrm{e}^{-\mathrm{B} \xi} \frac{1+\xi}{\sqrt{2 \xi+\xi^{2}}}$.
The first integral by definition is $\hat{r}(s)$, and the second can be expressed analytically and gives $e^{s} K_{1}(s)$ so that formula (9) is proved.

REFERENCES

1. Firsov O.B. - Zh.Exp.Theor.Fiz.,1953,24,p. 279 (in Russian). Keller J.B., Kay I., Shmoys J. - Phys.Rev., 1956, 102, p. 557.
2. Landau L.D., Lifshitz I.M. - Classical Mechanics, 4th Edition, Moscow, Nauka, 1988.
3. Gradstein I.S., Ryshik I.M.- Tables of Integrals, Sums, Series and Products, Moscow, Nauka, 1971.

[^0]: *Permanent address: Zentralinstitut fuer Kernforschung, Rossendorf 8051 Dresden, .Pf.19, GDR

[^1]: * The conventions are: $-\mathrm{c}^{2} \mathrm{~d} \mathrm{r}^{2}=\eta_{a \beta} \mathrm{dx}^{\alpha}{ }_{\mathrm{dx}}{ }^{\beta}$ with $a, \beta=1, \ldots 4$, $\mathrm{i}, \mathrm{k}=1,2,3, \eta_{a \beta}=\operatorname{diag}(1,1,1,-1), \mathrm{x}^{\alpha} \sim\left(\mathrm{x}^{\mathrm{i}}, \mathrm{ct}\right), \mathrm{dt} / \mathrm{d} \tau=\gamma$, $\mathrm{v}^{1}=\mathrm{d} \mathbf{s}^{1} / \mathrm{dt}$. Then the components of the four-velocity are: $u^{a} \sim \gamma\left(v^{1}, c\right)$; and of the four-force, $K^{a} \sim \gamma\left(F_{1} v_{1} / c\right)$, where F_{i} is the Newtonian force. The rest mass is m_{0} and $\mathrm{m}=\gamma \mathrm{m}_{0}$.

