

объединенный институт ядерных исследований

 дубна

 дубна}

E4-89-259

V.G.Soloviev

EFFECT OF PARTICLE-PARTICLE INTERACTIONS
ON EXCITED STATES OF SPHERICAL
AND DEFORMED NUCLEI

Submitted to the International Conference on Selected Problems of Nuclear Structure, Dubna, 1989.

I. Introduction

Within the quasiparticle-phonon nuclear model (QPNM)/1-4/ one can oaloulate excited states of spherical and deformed nuclei. The QPNM Hamiltonian includes an average field of neutron and proton systems as the Saxon-Woods potential, the monopole and quadrupole pairing and the effective isoscalar and isovector multipole, spin--multipole and tensor interactions between quasipartioles. They include charge-exchange interactions. Only partiole-hole (ph) interaotins are usually taken into, account. In this report I give a review of the papers devoted to the study of the influence of particle--partiole ($p-p$) interactions on nuclear obaracteristios and to the QPN generalisation to effective separable interactions of a finite rank.
2. The QPNM Equations with Separable Interactions of a Finite Rank

Expansion of central interactions over multipole λ and spinmultipole $L \lambda$ include the radial functions $R^{\lambda}\left(r_{1} \tau_{2}\right)$ and $R^{\dot{L} L}\left(\tau_{i} r_{2}\right)$ that are usually written in a simple separable form. Nuoleon-nucleon potentials are sometimes represented in a separable form. Thus, separable representations of rank $\Pi_{\max } \leqslant 5$ for the Paris and Bonn potentials provide a satisfactory approximation for these potentials. Calculations of nuclear charaoteristios depending on the matrix olements of effective interactions over single-partiole states are less sensitive to the radial dependence of forces in oomparison with the calculations of few-nucleon systems where the use is made of separable representations of nuoleon-nuoleon potentials. Therefore, the use of separable interactions of a finite rank in calculating oharacteristics of complex nuolel is justified.

The QPNM equations with effective separable interactions of a finite rank have been derived in res./5/. The radial functions for $\mathrm{p}-\mathrm{h}$ and $\mathrm{p}-\mathrm{p}$ separable interactions of a rank $n_{\text {max }}$ are

$$
\begin{equation*}
R^{\lambda}\left(\tau_{1} \tau_{2}\right)=\sum_{n=1}^{n_{\text {max }}} R_{n}^{\lambda}\left(v_{1}\right) R_{n}^{\lambda}\left(\tau_{2}\right), R^{\lambda L}\left(\tau_{1} \tau_{2}\right) \approx \sum_{n=1}^{n_{\text {max }}} R_{n}^{\lambda L}\left(\tau_{1}\right) R_{n}^{\lambda L}\left(\tau_{2}\right) \tag{I}
\end{equation*}
$$

We perform the Bogolubov transformation and introduce the operators of quasipartioles $\alpha_{j m}^{+}, \alpha_{j m}$ and phonon $Q_{j_{i} i}^{+}, Q_{y \mu_{i}}$. As a rem suit of transformation the QPNM Hamiltonian is

Ofrefieveritim

$$
\begin{equation*}
H_{Q P N M}=\sum_{j m} \varepsilon_{j} \alpha_{j m}^{+} \alpha_{j m}+H_{v}+H_{v g}, \tag{2}
\end{equation*}
$$

where ε_{j} is the quasiparticle energy on the subshell j. The first two terms describe quasiparticles and phonons in the RPA and $H_{\text {vp }}$ describes the quasipartiole-phonon interaction.

For the energles $\omega_{A i}$ and wave functions $Q_{y \mu i}^{+} 4_{0}^{\prime}$ of one-phonon states of the eleotric and magnetio type re get the RPA secular equations as a determinant equal to zero. The rank of the determinant is $12 . n_{\max }$, i.e. $n_{\text {max }}$ times larger than simple separable interactions with $n_{\text {max }}=1$. If $p-p$ interactions are neglected, the rank of the determinant is 4 . $n_{\text {max }}$.

For the solutions of the RPA secular equations when the energies $\omega_{\lambda i}$ and phonon amplitudes $\Psi_{j}^{d i}$ and $\varphi_{j i}^{\lambda i}$ are found, Hamiltonian (2) appears to be determined. It contains no any free parameters and no unfixed constants.

In the OPNM the wave funotions of excited states are represented as a series in the number of operators; in odd nucled each term is multiplied by the operator of quasipartioles. The approximation implies break off this series. In most of the calculations performed earlier, the wave function oonsisted of one- and two-phonon terms.

For doubly even nuolei the secular equation is written as an equality to zero of the deteminant whose rank equals the number of one-phonon terms in the wave function. Effect of the Paull principle in two-phonon terms of the wave function leads to the factor $1+$ $+\mathcal{K}^{J}\left(\lambda_{1} i_{1}, i_{2} i_{2}\right)$ and shifts the two-phonon poles $\Delta \omega\left(\lambda_{1} i_{1}, \lambda_{2} i_{2}\right)$. With the use of the finite rank $n_{\text {max }}>1$ of separable interactions the rank of the determinant does not increase in comparison with $n_{\text {mas }} /$. The inolusion of separable interactions with $n_{\text {max }}>1$ makes the expressions for $\Delta \omega\left(\lambda_{1} i_{1}, \lambda_{2} i_{2}\right)$ and $U_{\lambda_{2} i_{2}}^{\lambda_{1}}(J i)$, caused by the quasipartiole-phonon interaotion, more complicated. This complication of the functions turns out to be unessential in computer calculations.

Thus'; the basic $Q P N$ equations have been derived in ref. $/ 5 /$ for $p-h$ and $p-p$ isoscalar and isorector multipole, spin-multipole and tensor separable interaotions of a finite rank. The finite rank of separable interactions makes the RPA equations more complicated, which is unimportant in computer caloulations. Most important is the fact that allowance for the finite rank separable equations does not result in any essential complication of equations for calculating the fragmentation of quasipartiole and oolleotive motion. This implies that the QPNM may serve as a basis for calculating many properties of atomic nuol e1 and speotroscopic factors of nuclear reaotions.
3. β^{+}Decay of Neutron-Deficit Nucle1, Strength Functions of (n, p) Transitions and Renormalisation in Nuclei of the Constent of the Axial-Vector Weak Interaction
Monopole pairing and p-h interactions play the basic role in describing low-lying vibrational states and giant resonances of different types. As concerns $p-p$ interactions, as has been shown in refs. ${ }^{6-I 0}$, their role is important in describing double β decay, Gamow-Teller (GT) β^{\top} decays of neutron-deficit spherical and deformed nuclei and the strength functions of GT (n, p) transitions.

In the RPA with $p-h$ and $p-p$ interactions the summed $\tilde{f t}$ values determined as $(\widetilde{f t})^{-1}=\sum_{i}(f t)_{i}^{-1}$ have been calculated for GI $O_{g h}^{+} \rightarrow 1^{+}$ transitions where the summation was over the states i in the energy interval $\Delta \&$. In this interval $\Delta \&$ there are nuclear levels to which the experimentally observed decays proceed. The single-particle energies and wave functions of the Saxon-Woods potential, monopole pairing, $p-h$ and $p-p$ GT interactions were used in the calculations. The results of calculations $/ 7,8, I 0$ and experimental data are listed in Table 1. According to the calculations, the low-lying states occupied by intensive β^{+}decays are separated by the gap of $3-4$ MeV from higher-lying states. Therefore, the results of calculations are almost independent of the position of low-lying states. The $p-p$ interactions decrease the total $G T$ strength and shift a part of the GT strength to the higher-lying part of the spectrum. In the calculations, the main role is played by the $\sigma \tau$ matrix elements, and the use of more complex interaotions with the same number of constants fixed from the experimental data, as in reis. , has a symbolic meaning as has been demonstrated in ref. $/ 11$.

The agreement of the calculated loy values with the experimental ones, demonstrated in Table I, takes place at $\left|G_{A} / G_{Y}\right|=1.26$ and under renormalisation $\left|G_{A} / G_{V}\right|=1 \quad$. In ref. $/ 8 /$ the total S. strength of the $G T(n, p)$ transition on ${ }^{54} \mathrm{Fe}$ has been caloulated. At $G_{1}^{E_{1}}=-\frac{7.5}{A} \mathrm{MeV}$ it was obtained that $S_{+}=4.2$ wh1 ch 1 s in agreement with $5_{+}=3.8$ measured in ref. ${ }^{12 /}$ in the ${ }^{54} \mathrm{Fe}(n, p)^{54} \mathrm{Mn}$ reaction. With increastng renormalisation of the constant of the axial-vector weak interaction G_{A} one should decrease $\left|G_{1}^{01}\right|$ for describing
$\log \widetilde{f t}$ of the GT β^{+}decays, which will make the agreement of the calculated value of S_{+}with the experimental one worse.

Based on the calculations of log for the GI β^{+}decays of a large number of neutron-deficit spherical and deformed nuclei, given in Table I, and total strength functions S_{+}of the $G f(n, p)$ transitions we can state that in complex nuclel the following condition. should hold: $\quad\left|G_{A} / G_{V}\right| \geqslant 1$.

A further experimental study of β^{+}decays of neutron-deficit spherical and deformed nuclei is necessary. Fenormalisation of the G_{A} in nuclei can be determined more accurately by measuring β^{+}decay in ${ }^{100} S_{n}$.
4. Low-Iying Vibrational States in Deformed Nuclei

Within the QPNM with monopole and quadrupole pairing and isoscalar and isovector $p-h$ and $p-p$ multipole interactions one can study low-lying pibrational states in deformed nucle1. The calculations are made with the wave function

$$
\begin{aligned}
& \Psi_{i j}\left(K_{0}^{\pi_{0} \sigma_{0}}\right)=\left\{\sum_{i_{0}} R_{i_{0}}^{\prime} Q_{\lambda_{0} \beta_{0} i_{0} \sigma_{0}}^{+}+\right.
\end{aligned}
$$

The Pauli principle is taken into account in the two-phonon terms (4). The variational principle $/ 13,14 /$ was used to derive equations for the energies η_{1} and coefficients $R_{i_{o}}^{p}$ and $P_{i_{1} n_{1} i_{1}, h_{3} p_{2} i_{2}}^{y}$. Phonons are calculated in the RPA with $p-h$ and $p-p$ interactions. For the $K^{\pi}=0^{+}$states from the condition of eliminating spurious states there were derived equations for monopole and quadrupole poiring which have been investigated in ref. ${ }^{/ 15 /}$.

Good enough description of the energies, $B(E \lambda)$ values and the structure of quadrupole, octupole and hexadecapole states in ${ }^{168}{ }_{E r}$, ${ }^{172} \mathrm{Y}_{\mathrm{b}}$ and ${ }^{178} \mathrm{Hf}$ has been obtained in ref. $/ 14 /$. It is shown that nonrotational states with $K^{\top \top}=0^{-}, 1^{-}, 2^{ \pm}, 3^{ \pm}$and 4^{+}with energies up to 2.5 MeV have dominating one-phonon components.

The study of vibrational states with $K^{\top} \neq 0^{+}$in well deformed doubly even nuclei has shown that the energy and structure of each state are determined mainly by the single-particle energies and wave functions of the Saxon-Woods potential, monopole pairing and p-h isoscalar multipole interaction. The multipole p-h isovector interac. tion, quadrupole pairing and multipole p-p interaction are of minor importance. Inclusion of the $\mathrm{p} \rightarrow \mathrm{p}$ interaction improves the desoription of vibrational states. Moreover, it justifies the applicability of fPA to describe states with an energy less than 1 MeV .

Phenomenological methods of describing low-lying vibrational states are based on that the first quadrupole and octupole states are collective and then there are no collective states up to those forming giant quadrupole and octupole resonances.

A qualitatively new result has been obtained in studying low--lying ribrational states: the E λ strength distribution differs in some cases from the generally accepted one. In particular, there are cases when collective is not the first but a higher lying state with a given K^{π}, or the largest part of the $E \lambda$ strength is concentrated not on the first states but in the energy interval $2 \div 3 \mathrm{MeV}$.

Consider now the E_{3} strength distribution in ${ }^{168} \mathrm{Er}_{\mathrm{Er}}$ shown in Table 2. According to $/ 16 /$ the first $K_{y}^{\pi}=0_{1}^{-}, 1_{1}^{--}$and 2_{1}^{-}states are collective. Six collective $K^{\pi}=3^{-\pi}$ states have been observed. On

Table 2
E3-Strength Distribution in ${ }^{168}$ Er
the first three $3_{1}^{-}, 3_{2}$ and 3_{3} states there are 1.3 s.pom 2.25 to on the fourth $3-\frac{1}{4}$ state, 4.68 s.p.u.. In $2.50 \mathrm{MeV} 7.9 \mathrm{s.p.u}$. are concent strength sharply aiffers from in in the QPNM, in sdf, IBM in $/ 16 /$ and results of calculations/. In the calculations/16/, the $B(E 3)$ values IBM-I $+f$ boson in the experimental value of the $3^{-1} I_{1}$ state. As a were normallzed first 3^{-3}, state the calculated $B(E 3)$ value turned result, for the first 1 of 500 from the experimental one. If most out to diverge by a factor of of the $E \lambda$ strength is concentra $1 t$ within the $I B M$. This is confirpractically impossible to desori/ in the IBM-I + f boson model in med by the calculations $K^{\pi}=3^{-}$levels are omitted. The main part of which the first three $K=J_{4}^{-}$state which is considered the $E 3$ strength is concentre $K=3^{-}$state. The first three $K^{\pi}=3^{-}$
 states are $168_{\text {In cannot be thought two-quasiparticle states. Accorâ- }}$ and 33^{-}in Er cannot de $/ 18$ on $(d \beta)$ and $(\vec{t} \alpha)$ reactions, their ing to the exper contain the sum of two-quasiproton and two-quasineutron terms. Aocording to the experimental data $/ 16 /$ on ($\alpha \alpha$) reactions, the $B(E 3)$ values for the $K_{y}^{\pi}=3_{1}^{-}, 3_{2}^{-}$and 3_{3}^{-}states are $30 \div 60$ times larger than the values for the corresponding two-quasiparticle states.
cocording to the calculations /14/ in the QPNM, the $B(E 3)$ values
 Among the $K^{\pi}=3^{-}$states the fourth 3_{4}^{-}state has the largest $B(E 3)$ value, which is in agreement with experiment. The total actupole E3 strength concentrated on the states with an energy up to 2.6 MeV equals $20 \mathrm{s.p.u.}$, according to the experimental data and 20.3 s.p.u., according to oalculations in $/ 14$.

The $F^{\prime} \lambda$ strength distribution differing from the standard one is observed in other nuclei. In ${ }^{172} \mathrm{Yb}$ apart from the first 2^{+}state $/ 16$ the second λ_{2}^{+}state is also collective. By the experimental datal ${ }^{16}$, in ${ }^{172} \mathrm{Ib}$. that ooncentration of the E 2 strength is 1.7 times larger in the interval from 2 to 3 MeV than on the first 2^{+}state.

It is to be noted that in some cases the predictions made in the IBM and QPN strongly differ. Thus, according to the calculations $/ 19$ in sdg IEM in ${ }^{168} E_{\text {E }}$ for the $I^{\pi} K_{y}=4^{+} 3_{1}$ state $B(E 4)=50.8$ s.p.u., and according to the calculations $/ 14 /$ in the $Q P N M B(E 4)=0.4$ s.p.u. It is expedient to check this discrepancy experimentally.
/20/ On the basis of calculations in the QPN it has been concluded that collective two-phonon states do not exist in deformed

- References

1. Soloviev V.G. Particle and Nuclei, 1978, 9, p. 580.
2. Malov L.A., Soloviet V.G. Particle and Nuclei, 1980, 11, p. 301.
3. Vdovin A. I., Soloviev V.G. Particle and Nuclei, 1983, 14, p. 237. Voronov V.V., Soloviev V. G. Particle and Nuclei, 1983, 14, p.1380. Vaovin A. I., Voronov V.V., Soloviev V.G., Stoyanor Ch. Particle and Nuclei, 1985, 16, p. 245.
4. Soloviev V.G. Progress in Particle and Nucl. Physics, 1987, 19, p.I07.

Soloviev V.G. Theory of Atomic Nuclei. Quasiparticle and phonons. Moscow: Energoatomizdat, 1989.
5. Soloviev V.G. Yad. Fiz., 1989, 50, p. 758.
6. Vogel P., Zirnbauer M. P. Phys. Rev.Lett., 1986, 57, p. 3148.

Civitarese P., Faessler A., Tomoda T. Phys.Lett., 1987, B194, p.11. Muto K., Klapdor H.V. Phys.Lett., 1988, B2OI, p. 420.
7. Kuzmin V.A., Soloviev V. G. Pis'ma V JETP, 1988, 47, p. 68.

Mod. Phys.Lett., 1988, A3, D.1533; Preprint JINR E4-89-218, Dubna, 1989.
8. Kuzmin V.A., Soloviev V.G. Nucl. Phys., 1988, A486, p.118.
9. Suhonen J., Faessler A. e.2. Phys.Lett., 1988, B202, p.174; Nucl. Phys., 1988, A486, p. 91.
IO. Soloviev V.G., Sushkov A.V. Phys. Lett., 1989, B 216, p.259.
11. Yee K., Engel J., Vogel P. Phys. Rev., 1988, c38, p. 2971.
12. Vetterl1 M.C. e.a. Phys.Rev. Lett., 1987, 59, p. 439.
13. Soloviev V.G., Shirikova N. Yu. Izv. Akad. Nauk SSR, ser.fiz., 1988, 52, p. 2095.
14. Soloviev V.G. Preprint JINR P4-88-345, Dubna, 1988. Soloviev V.G., Shirikova N. Yu. Preprint JINR E4-83-211, Dubna, 1989.
15. Karadjov D., Soloviev V.G., Sushkov V.A.Preprint JINR E4-39-55, 1989.
16. Govil I.M., Fulbright H. W. e.a. Phys.Rev., 1986, ©33, p.793; 1987, C36, p. 1442.
17. Barfield A.F., Barrett B. R., Wood J.L., Scholten O. Annals Physics, 1988, 182, p. 344.
18. Burke D.G., Maddock B.L. e.a. Nucl. Phys., 1985, 442, p. 424. Burke D.G., Davidson W.T. e.a. Nucl.Phys., 1985, A445, p.70.
19. Yoshinaga N., Akiyama Y., Arima A. Phys. Rev., 1988, C38, p. 419.
20. Soloviev V.G., Shirikova N.Yu. Z. Phys.; 1981, A30I, p. 263, Yad. Fyz., 1982, 36, p. 1376.

Соловьев В.Г.

Продемонстрировано, что в рамках квазичастично-фононной модели ядра можно проводить расчеты с эффективными конечного ранга $\mathrm{n}_{\max }$ сепарабельными взаимодействиями. Учет сеnaрабельных взаимодействий $\boldsymbol{\eta}_{\text {тах }}>1$ не приводит к сущест венному усложнению вычислений Фрагментации квазичастичных и коллективных состояний. Нзучена роль частично-частичных взаимодействий. Показано, что они оказывают большое влияние на гамов-теллеровские β^{+}распады и (n, p) переходы. На основе хорошего их описания утверждается, что перенормировка в ядрах константы аксиально-векторного слабого вэаимодействия невелика и $\left|G_{A} / G_{V}\right| \geq 1$. В КФМЯ с p-h и р-р взаимодействиями получено достаточно хорошее описание низколежащих квадрупольных, октупольных и гексадекапольных вибрационных состояний в ряде деформированных ядер. Исследовано распределение Ел-силы среди низколежащих состояний и показано, что в отдельных случаях оно отлично от стандартного - основная часть Е入-силы сконцентрирована не на первом, а на бо лее высоких состояниях.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного института пдерных исследований. Дубна 1989

Soloviev V.G.
Effect of Particle-Particle Interactions on Excited States of Spherical and Deformed Nucle

It is shown that in the quasiparticle-phonon nuclear model one can perform calculations with effective separable interactions of a finite rank $\mathrm{n}_{\max }$. Inclusion of separable interactions with $\mathrm{n}_{\max }>1$ does not lead to essential complication of the calculations of fragmentation of quasiparticle and collective states. The role of particle-particle interactions is studied. They are shown to affect greatly the Gamow-Teller β^{+}decays and (n, p) transitions. Thelr good description allows us to make a conclusion that renormalization in nuclel of the constant of the axlal-vector weak interaction is not large and $\left|G_{A} / G_{V}\right| \geq 1$. A good enough description of lowlying quadrupole, octupole and hexadecapole states in some deformed nuclei has been obtalned in the QPNM with p-h and p-p interactions. The EX strength distribution among low-lying states is studied; it is shown that in some cases it differs from the standard one: the main part of the E λ strength is concentrated not on the first but on higher-lying states.

The investigation has been performed at the Laboratory of Theoretical Physics, JiNR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1989

