

объединенный ИНСтитут ядерных исследований дубна

V.G.Soloviev, N.Yu.Shirikova

DESCRIPTION OF LOW-LYING VIBRATIONAL $K{ }^{\pi} \neq 0^{+}$STATES OF DEFORMED NUCLEI

IN THE QUASIPARTICLE-PHONON NUCLEAR MODEL

Submitted to "Zeitschrift für Physik A"

1. Introduction

The energies and wave functions of two-quasipartiole and one-phonen atates in doubly-even deformed nuclei were caloulated in 1960-1975. A good enough description was obtained (see [1-4]) of the available at that time experimental data; the predictions were made which were later confirmed experimentally in many cases. It seems to us that new oalculations of vibrational states in deformed nuclei are needed. This is necesaitated by a large amount of new experimental data in addition to the first quadrupole and ootupole states. The experimental data are available on hexadecapole states and on higher-lying collective and weakly collective atates. Many experimental data are expected at a new generation of accelerators and the reaulta of calculations may turn out to be useful. Vibrational atatea are to be calculated on a new basia. As is know, there are par-ticle-hole ($p-h$) and particle-particle ($p-p$) effective interactions between quasiparticles. Particle-hole interactions are responsible for the formation of vibrational low-lying states and giant resonances. Therefore, only p-h interactions are usually taken into account. It is necessary to take p-p interactions as well. It is to be mentioned that p-p interactions greatly influence the double β decay [5], probabilities of β^{+}decays in apherical [6-8] and deformed [9] nuclei and the strength functions of (n, p) transitions [7]. A new series of calculations is performed within the quasipartiole-phonon nuolear model (QPNM) [10-13] with the wave functions containing one- and two-phonen componenta and taking account of the Pauli principle in two-phonon components. The role of two-phonon come

ponents of the wave functions and the influence of the Pauli principle have been studied in [14-16], hexadecapole vibrational states in [17], influence of the quadrupole pairing on the energies of two-quasiparticle states in [18] and the influence of $p-p$ interactions on the properties of $K^{\pi}{ }^{\pi} 2^{+}$states in [19]. The importance of the monopole pairing is evident and it is interesting to study the influence of the quadrupole pairing.

In recent years, low-lying states in deformed nuclei have been studied within the interacting boson model (IBM). It is important to compare the description of deformed nuclei in the QPNM and IBM and to reveal shortcomings and advantages of each model. This comparison has been made in [20] on the basis of earlier calculations. It showed the necessity of new calculations within the QPMM and IBM and further experimental atudiea of deformed nuclei.

It is reasonable to develop a general description of nonrotational states of well deformed nuclei with monopole and quadrupole pairing and isoscalar and isovector multipole p-h and $p-p$ interactions between quasiparticles. Then, spin-multipole interactions and states of the magnetic type are to be studied. Further, detailed calculations should be made with the Coriolis interaction. As a first step, the general QPNM Hamiltonian and equations for O^{+}atates in deformed nuclei have been derived in [21]. In the present paper, as a second atep, we shall describe in the QFNM vibrational states of the electric type with $K^{\pi} \mathrm{O}^{+}$and demonstrate its epecific featurea taking ${ }^{158}{ }_{\mathrm{Er}}, \quad{ }^{172} \mathrm{Yb}$ and ${ }^{178_{\mathrm{HI}}}$ as an example.
2. Equations for $K^{\pi} \neq 0^{+}$Viprational States and tae Details

The mathematical apparatus of the QPNM for deformed nuclei has firgt been given in $[10,11,14,16]$ and in more detail in
[12,13]. Pormulae allowing for $p-h$ and $p-p$ interactiona are given in [19,21]; they will be used in the present paper, Therefore, we shall give only aeveral necessary formulae and also formulae that have not been given in [21]. The QPNM Hamiltonian contains an average field of neutron and proton ayatems as a deformed axial aymetric Saxon-Woods potential, monopole and . quadrupole pairing and the effective $p-h$ and $p-p$ interactions. In this paper, we ahall use only the multipole interections. The Hamiltonian is transiformed by using the Bogolubov tranaformation

$$
\begin{equation*}
a_{q 5}=u_{q} \alpha_{q \sigma}+\sigma v_{q} d_{q-\sigma}^{+} \tag{1}
\end{equation*}
$$

and introducing the RPA phonone $Q_{\lambda \mu i \sigma}^{+}$and $Q_{\lambda \mu i \sigma}$ where

$$
\begin{align*}
& Q_{\lambda \mu i \sigma}^{+}=\frac{1}{2} \sum_{q q^{\prime}}\left[\psi_{q q^{\prime}}^{\lambda \mu i} A^{+}\left(q q^{\prime} ; \mu \sigma\right)-\varphi_{q q^{\prime}}^{\lambda \mu i} A\left(q q^{\prime} ; \mu-\sigma^{\prime}\right)\right] \tag{2}\\
& A^{+}\left(q q^{\prime} ; \mu \sigma\right)=\sum_{\sigma^{\prime}} \delta_{\sigma^{\prime}\left(K-K^{\prime}\right), \mu^{\mu}} \sigma_{q \sigma^{\prime}} \alpha_{q^{\prime}-\sigma}^{+} \text {or } \sum_{\sigma^{\prime \prime}} \delta_{\sigma^{\prime}\left(K-K^{\prime}\right), \mu \sigma^{d}}^{q} q^{+} \alpha_{q^{\prime} \sigma^{\prime}}^{+}
\end{align*}
$$

Here q, σ are quantum numbers of onemparticle statea, q equals K^{π} and asymptotic quantum numbers introduced by S.G.Nilsson, $\sigma \pm 1 ; K$ is the projection of the angular momentum onto the nuclear symmetry axis, $\alpha_{q \sigma}^{+}$and $\alpha_{q \sigma}$ are the creation and absorption operators of quasiparticles.

The QPNA Hamiltonian is written in the form

$$
\begin{equation*}
H_{Q P N M}=\sum_{q^{5}} \tilde{\varepsilon}_{q} \alpha_{q \sigma}^{+} d_{q \sigma}+H_{v}+H_{v q} \tag{3}
\end{equation*}
$$

where $\tilde{\varepsilon}_{q}$ is tho quasiparticle enersy witi the monopole and quadrupole pairing $[16,21]$. The explicit Iorm of the Hamiltonian and notation are given in [21]. To derive tine RPA equations the following variational principle is used:

$$
\begin{equation*}
\delta^{2}\left\{<Q_{\lambda \mu i \sigma}\left\{\sum_{q \sigma} \tilde{\varepsilon}_{q} \alpha_{q \sigma}^{+} \alpha_{q \sigma}+H_{v}\right\} Q_{i \mu i \sigma^{+}}^{+} \frac{u^{\prime} \mu i}{2}\left[\sum_{q q^{\prime}} q_{9 q^{\prime}}^{\lambda \mu i} w_{q q^{\prime}}^{i \mu i}-2\right]\right\}=0 \tag{4}
\end{equation*}
$$

where

$$
g_{q q^{\prime}}^{\lambda \mu i}=\Psi_{q q^{\prime}}^{\lambda \mu i}+\varphi_{q q^{\prime}}^{\lambda \mu i} \quad, w_{q q^{\prime}}^{\lambda \mu i}=\Psi_{q q^{\prime}}^{\lambda \mu i}-\varphi_{q q^{\prime}}^{\lambda \mu i}
$$

The RPA equations for $K^{\boldsymbol{T}} \mathrm{FC}^{+}$states are given in [21]. Tine RPA equations for multipole statea $\lambda \mu$ witin $\lambda \mu \nLeftarrow 20,1 . \dot{e}$, with $K^{\pi} \neq 0^{+}$statea have the following form:

$$
\tilde{\varepsilon}_{q q^{\prime}} g_{q q^{\prime}}^{\lambda \mu i}-\omega_{\lambda \mu i} w_{q q^{\prime}}^{\lambda \mu i}-\left(x_{0}^{\lambda \mu}+x_{1}^{\lambda \mu}\right) f^{\lambda \mu}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)} D_{\tau}^{\lambda \mu i}-
$$

$$
\begin{equation*}
-\left(x_{0}^{\lambda \mu}-x_{1}^{\lambda \mu}\right) f^{\lambda \mu}\left(q q^{\prime}\right) t_{q q^{\prime}}^{+)} D_{-r}^{\lambda \mu i}-G_{\tau}^{\lambda \mu} f^{\lambda \mu}\left(q q^{\prime}\right) v_{q q^{\prime}}^{(-1} D_{g \tau}^{\lambda \mu i}=0 \tag{5}
\end{equation*}
$$

$$
\tilde{\varepsilon}_{q q^{\prime}} \omega_{q q^{\prime}}^{\lambda \mu i}-\omega_{\lambda \mu i} g_{q q^{\prime}}^{\lambda \mu i}-G_{\tau}^{\lambda \mu} f^{\lambda \mu}\left(q q^{\prime}\right) v_{q q^{\prime}}^{(t)} D_{u \tau \tau}^{\lambda \mu i}
$$

Here $x_{0}^{\lambda \mu}$ and $x_{1}^{\lambda \mu}$ are the isoscalar and isovector constants of the p -h interaction of multipolarity λ with projection $\mu, G_{\tau}^{\lambda \mu}$ is the $p-p$ interaction constont; $\tilde{\varepsilon}_{q q^{\prime}}=\tilde{\varepsilon}_{q}+\tilde{\varepsilon}_{q^{\prime}}$; the single-particle matrix elements $f^{\lambda \mu}\left(q q^{\prime}\right)=\langle q| R_{\lambda}(r) Y_{\lambda \mu}(\theta, \varphi)\left|q^{\prime}\right\rangle$ are taken with $R_{\lambda}(r)=\frac{\partial V(r)}{\partial r}$ where $V(r)$ is the central part of the Saxon-iroods potential.

$$
\begin{aligned}
& D_{\tau}^{\lambda \mu i}=\sum_{q q^{\prime}}^{\tau} f^{\lambda \mu}\left(q q^{\prime}\right) u_{q q^{\prime}}^{(+)} g_{q q^{\prime}}^{\lambda \mu i}, \\
& D_{g \tau}^{\lambda \mu i}=\sum_{q q^{\prime}}^{\tau} f^{\lambda \mu}\left(q q^{\prime}\right) v_{q q^{\prime}}^{(-)} g_{q q^{\prime}}^{\lambda \mu i}, \\
& D_{u \tau}^{\lambda \mu i}=\sum_{q q^{\prime}} f^{\lambda \mu}\left(q q^{\prime}\right) v_{q q^{\prime}}^{(+)} v_{q q^{\prime}}^{\lambda \mu i}, \\
& u_{q q^{\prime}}^{(\pm 1}=u_{q} v_{q^{\prime}} \pm u_{q^{\prime}} v_{q}, \\
& v_{q q^{\prime}}^{(\pm)}=u_{q} u_{q^{\prime}} \pm v_{q} v_{q}^{\prime},
\end{aligned}
$$

Sumation over aingle-particle states of the neutron and proton systems is denoted by $\sum_{99^{\prime}} ; \sum_{q 9} F$ I'mplies sumation
over the levels of the neutron at $\tau=n$ and proton at $\tau=p$ systems. Eqs. (5) and (5') are used to derive the secular equation for the energies $\omega_{\lambda \mu i}$ of one-phonon. states as an equality to zero of the determinant of rank 6.

To describe deformed nuclei in the QPNM we can use more complex interactions. Thus, in [22] the QPNM equations with effective separable interactions of a finite rank are derived for spherical nuclei. Por separable interactions of the rank no the RPA secular equation is $\overline{\text { Given }}$ as an equality to zero of a determinant of the ranik $6 n_{0}$.

Let ua give formulae for nonrotational states with $K^{\pi} \neq 0^{+}$ of doubly even deformed nuclei within the QFNu taxing account
of $p-h$ and $p-p$ interactions whose wave functions consist of one and two-phonon terns, namely

$$
\begin{aligned}
& \left.P_{\lambda_{1} \mu_{1} i_{1} i_{2} \mu_{2} i_{2}}^{\nu} Q_{\lambda_{1} \mu_{1} i_{1} \sigma_{4}}^{+} \cdot Q_{\lambda_{2} \mu_{2} i_{2} \sigma_{2}}^{+}\right\} \psi_{0},
\end{aligned}
$$

where $j_{0}=K_{0}$. Ita pormaliaation condition is

$$
\left[\sum_{i_{0}}\left(R_{i_{0}}^{v}\right)^{2}+\sum_{\left(\lambda_{1} \mu_{1} i_{i} \geqslant\left(\lambda_{2} \mu_{2} i_{2}\right)\right.}\left(P_{\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}}^{\nu}\right)^{2}\left(1+\mathcal{K}^{K_{0}}\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right\}\right)\right]=1 \text {. }
$$

The function $\mathcal{K}^{K_{0}}\left(\lambda_{1} \mu_{1} i_{4}, \lambda_{2} \mu_{2} i_{2}\right)$ is responsible for the effect of the Pauli principle in two-phonon terms of the wave function (6); its form is presented in $[13,14,16]$.

Using the variationsl principle we get the following equetione

$$
\begin{align*}
& -P_{\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}}^{\nu} U_{\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}}^{\lambda_{0} \mu_{0} i_{0}}\left(1+\mathcal{K}^{K_{0}}\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right)\right)=0, \\
& \left(\omega_{\lambda_{1} \mu_{1} i_{1}}+\omega_{\lambda_{2} \mu_{2} i_{2}}+\Delta \omega\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right)-\eta_{\nu}\right) P_{\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}}^{\nu}- \tag{8}\\
& -\sum_{i_{0}}\left(1+\delta_{\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}}\right)^{\frac{1}{2}}\left(1+\delta_{K_{2}, 0}^{\eta}\left(1-\delta_{\mu_{1}, 0}^{2}\right)\right)^{-\frac{1}{2}} R_{i_{0}}^{\nu} U_{\lambda_{1} \mu_{1} i_{1}, \lambda_{2}, i_{2} i_{2}}^{\lambda_{2} \mu_{i} i_{0}}=0,
\end{align*}
$$

wine

$$
\begin{aligned}
\Delta w\left(\lambda_{1}, \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right)= & \sum_{i^{\prime}}\left\{\mathcal{K}^{K_{0}}\left(\lambda_{2} \mu_{2} i_{2}, \lambda_{1} \mu_{1} i^{\prime} \mid \lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right) W_{i_{1}, i^{\prime}}^{\lambda_{1} \mu_{1}}+\right. \\
& \left.+\mathcal{K}^{K_{0}}\left(\lambda_{2} \mu_{2} i^{\prime} \lambda_{1} \mu_{1} i_{1} \mid \lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right) W_{i_{2} i^{\prime}}^{\lambda_{2} \mu_{2}}\right\}
\end{aligned}
$$

$$
U_{\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}}^{\lambda_{0} \mu_{0} i_{0}}\left[1+\mathcal{K}^{K_{0}}\left(\lambda_{1} \mu_{1}, i_{1}, \lambda_{2} \mu_{2} i_{2}\right)\right]=-\frac{1}{2} \sum_{\sigma_{1} \sigma_{2}} \delta_{\sigma_{1} \mu_{1}+\sigma_{2} \mu_{2}, \sigma_{0} K_{0}}
$$

$$
\cdot\left\{\left\langle Q_{\lambda_{0} \mu_{0} i_{0} \sigma_{0}} H_{v q} Q_{\lambda_{1} \mu_{1} i_{1}}^{+} Q_{\lambda_{2} \mu_{2} i_{2}}^{+}\right\rangle+\left\langle Q_{\lambda_{2} \mu_{2} i_{2}} Q_{\lambda_{1} \mu_{1} i_{1}} H_{v q} Q_{\lambda_{0} \mu_{0} i_{0} \sigma_{0}}^{+}\right\rangle\right.
$$

From eqs. (8), taking account of condition (7), we calculate the energies η, end functions $R_{i_{0}}^{\nu}$ and $P_{\lambda_{1} \mu_{1} i_{1}, \lambda_{1} \mu_{1} i_{2}}^{\nu}$. Equations (8) coincide with those of [13,16,23]. These formule will be used in further calculations.

The calculations are performed with the eingle-particie energies and wave functions of the Saxon-Woods potential with the parameters for the zones $A=165,173$ and 181 fixed in 1968--73 and presented in $[4,24]$. For all nuclei of the zone the same deformation parameters β_{2} and β_{4} are used. Thus, for
$178_{\mathrm{Hr}} \beta_{2}=0.24$ and $\beta_{4}=-0.03$, the parameter of the hexadecapole deformation 34 differs from the one proposed in [25] where $\beta_{4}=-0.155$. This difference of β_{4} influences the energies of some two-quasiparticle poles. The single-particle spectrum is. taken from the bottom of the well up to +5 MeV . The monopole and quadrupole pairing constants were fixed [18] by the airing energies and those of two-quasiparticle states with $K>4$. The energies of two-quasiparticle poles were calculated taxing account of the blocking effect ana the Gallagner-moazkowski correctiona. As has been shown in [18], the inclusion of the quadrupole pairing does not practically improve the description of the energies of two-quasiparticle states with $K>4$. The isovector interaction constants are equal to $x_{1}^{\lambda \mu}=-1.5 x_{0}^{\lambda \mu}$; with this relation a good description of the isovector quadrupole and octupole giant resonances in deformed nuclei was obtained. The calculations performed with $x_{1}^{\lambda \mu}=-x_{D}^{\lambda \mu}$, when the neutron--proton interactions are increased, do not provide considerable effect. The constants $x_{0}^{\lambda \mu}$ and $G_{\lambda}^{\lambda \mu}$ were chosen from the expertmental energies of the first $K_{\nu=1}^{\pi}$ nonrotational states described by the wave function (6). The dependence of the characteriatics of $K^{\pi}=2^{+}$states on G_{τ}^{22} has been studied in [19]; it was shown that for $G_{\tau}^{22}<0.5 \mathfrak{F}_{0}^{22}$ the influence of the $\mathrm{p}-\mathrm{p}$ interaction ia negligible and it can be neglected, at $G_{\tau}^{12}=(0.8 \div 1.0) x_{0}^{22}$ the best description of the energies and $B(E 2)$ values is achieved, for $G_{\tau}^{22}>1.1 \mathscr{X}_{0}^{22}$ the discrepancy with the experimental data is observed and for $G_{\tau}^{22}>4.2 x_{0}^{22}$ RPA becomes inapplicable.

The dependence of $p-p$ interactions on the truncation of the space of single-particle states has been studied in [19]; it was shown that the decrease in the number of aingle-partickle states for the pop interaction can be compensated by
renormalisation of the corstant G_{τ}^{22}. In our calcuiations ne have used the same single-particle basia for $p-h$ and $p-p$ interactions and assumed $G_{p}^{\lambda \mu}=G_{n}^{\lambda \mu} \equiv G^{\lambda \mu} \quad$ and $G^{\lambda \mu}=0.9 x_{0}^{\lambda \mu}$.

- In this paper we study the states with $K^{\pi} \not \mathrm{C}^{+}$. As a basis we take into account phonors with multipolarities $\lambda \mu=20,22$, $30,31,32,33,43$ and 44 , and for each $\lambda \mu$ we uee 10 RPA phonons. Phonons with $k^{\pi} \notin 20$ are calculated with $p-i n$ and $p-p$ interactiona. Fhorors with $\lambda \mu=20$ are calcilated with $G_{\tau}^{20}=0$. A Eore detailed description of phonons with $\lambda \mu=20$ is unnecessary as these phonons enter only into two-pionon terma of the wave function (0). The constants $\mathscr{X}_{0}^{\lambda \mu}$ are fixed for each value of $\lambda \mu$ equally for all nuclei except for x_{0}^{32} that chanEes within 10%; x_{0}^{43} in 168 Er and x_{0}^{44} in 178 Hf are taken 10% leas than in other nuclei.

The present calculations pretend to a qualitatively correct deacription of vibrational atates. Por a detailed deacription one needs to take the Coriolis interaction into account, to determine more accurately the parameters of the Saxon-Woods potential for each nucleus and to calculate the parameters of the quadrupole and hexadecapole deformation.

We have calculated the energies and wave functions of nonrotational states and the reduced probabilities of E2, E3, and E4 transitions from the ground atate $?_{\text {g.s. to the excited ones }}^{+}$ with a fixed value of $I^{\pi} K$. The reduced probabilitiea of electromagnetic and isoscalar transitions are written as

$$
\begin{align*}
& B\left(E \lambda, O_{q . s .}^{+} \rightarrow I^{\pi} K_{y}\right)=\langle 00 \lambda \mu \mid I K\rangle^{2}\left\{\sum _ { i _ { 0 } } R _ { i _ { 0 } } ^ { \nu } \frac { e } { \sqrt { 2 } } \left[\left(1+e_{p}^{e f f}\right)\right.\right. \tag{10}\\
& \left.\left.\cdot \sum_{q_{1} q_{2}}^{P} p^{\lambda \mu}\left(q_{1} q_{2}\right) U_{q_{1} q_{2}}^{(f)} g_{q_{1} q_{2}}^{\lambda \mu i_{0}}+e_{n}^{e f f} \sum_{q_{1} q_{2}}^{n} p^{\lambda \mu}\left(q_{1} q_{2}\right) u_{q_{1} q_{i}}^{(+)} g_{q_{1} q_{2}}^{\lambda \mu i_{0}}\right\}\right\}^{2}
\end{align*}
$$

$$
\begin{align*}
B^{\prime}\left(I S E \lambda ; 0_{\hat{g} s}^{+} \rightarrow-\pi K_{v}\right)= & \langle 0 \cup \lambda \mu \mid I K\rangle^{2}\left\{\sum_{i_{0}} R_{i_{0}}^{\nu} \frac{e}{\sqrt{2}} \frac{z}{A}\right. \tag{11}\\
& \left.\cdot \sum_{a_{1} q_{2}} p^{\lambda \mu}\left(q_{1} q_{1}\right) u_{q_{1} q_{2}}^{(+)} \dot{g}_{q_{1} q_{s}}^{\lambda \mu i_{0}}\right\}^{2}
\end{align*}
$$

where $\rho^{\lambda \mu}\left(q_{1} q_{2}\right)$ is the single-particle matrix element of tio operator $r^{\lambda}\left(Y_{\lambda \mu}+(-1)^{\mu} Y_{\lambda-\mu}\right) ; e_{\tau}^{e f f}$ ia the proton or neutron effective charge. Cur calculations are performed with the radial dependence of multipole interactions in the form of $\frac{\partial V(r)}{\partial r}$ instead of r^{λ} in $[3,4]$, which leads to a certain decresse in $B(E \lambda)$ values. The $B(E \lambda)$ calculated with $e_{c}^{e f f}=0$ are close to the B (ISEX) values. More correct are the $B(E \lambda)$-valuea calculated with $e_{\tau}^{e f f}=0.2$ aince we use the truncation of the space of single-particle states. Calculations with aingle-particle states from the bottom of the well up to +50 MeV with $e_{\alpha}^{\text {eff }}=0$ give almost the same $B(E \lambda)$-values as the calculations with Eingle-particle statea from the bottom of the well up to +5 MeV and with $e_{\tau}^{e f f}=0.15 \div 0.20$. In the last case, the $B(E \lambda)$ values calculated with $e_{\tau}^{e f f}=0.2$ are almost twice as large as those calculated with $e_{\tau}^{e+\psi}=0$.
3. Low-Lying Vibrational States with $K^{\pi} \neq 0^{+}$in ${ }^{168}$ Er, 172 Yb and 178_{Hf}

He shall now calculate quadrupole with $K^{\pi}=2^{+}$, octupole with $K^{\pi}=0^{-}, 1^{-}, 2^{-}$and 3^{-}and hexadecapole with $K^{\pi}=3^{+}$and 4^{+}states in ${ }^{168} 8_{\text {Er, }}{ }^{172} \mathrm{Yb}$ and 178_{H} for which there are the most complete experimental data. The results of calculations are listed in Tables $1-4$ only for the states for which the re are experimental data. The $B(E \lambda)$ values are extracted from the Coulomo excitation; B(ISEX) values are obtained in [26] from the inelastic scattering of α particles and deuterons. Since $B(E \lambda)$ and $B(I S E \lambda)$ values are close to each other, we will

Table I. Vibrational stateswith $\mathrm{B}^{\pi}=2^{+}, 3^{+}$and 4^{+}in ${ }^{168}$ Er

K^{\top}	Experiment		Calculation in the QPNM	
K_{y}	MeV^{5}	T(EX) s.p.u. Structure $\%$	$\begin{gathered} \frac{3}{2} \\ \mathrm{MeV} \end{gathered}$	$B(E \lambda)$ s.p.u. Structure L_{0}
$2+$	0.821	$\begin{aligned} B(E 2)= & 4.7 \\ & \text { pp } 413 \nmid-411 \nmid 50 \\ & \text { pp } 4114+411 \nmid 37 \end{aligned}$	0.8	$\begin{aligned} B\left(\mathrm{E}_{2}\right)=4.6 \quad & 221: 96 \\ 221: & \text { pp } 413 \nmid-411 \nmid 40 \\ & \text { pp } 411++411 \nmid 30 \\ & \text { nn } 523 \nmid-521 \nmid 20 \\ & \text { nn } 5214+521 \nmid .8 \end{aligned}$
$2+$	0.848	0	1.7	$\begin{aligned} B(E 2)= & 0.01 \quad 222: 98 \\ & 222: \\ & \text { m } 512 t-521+97 \\ & \text { pp } 411 t+411 t 2 \end{aligned}$
$2+$	1.930	-	1.8	$\begin{aligned} B\left(E_{2}\right)= & 0.2 \end{aligned} \quad 223: 94$
${ }_{4}^{+}$	2.193	$\begin{gathered} (\vec{t} \alpha): \\ p p 4114+411 t \\ (20-30) \end{gathered}$	2.2	
${ }_{5}^{+}$	2.425	$\begin{aligned} & (\vec{t} d): \\ & \quad \text { pp } 412 t+411 t \end{aligned}$	2.3	$\begin{array}{ll} \mathrm{B}(\mathrm{E} 2)=0.2 & 225: 97 \\ 2258 & \mathrm{nn} \mathrm{6334-651t} 36 \\ & \mathrm{nn} \mathrm{521t+521t} 16 \\ & \text { pp 4114+411t} 15 \\ & \text { nn 6244-642t 10 } \end{array}$
1	1.653	(dd') is large for $4^{+}{ }^{\prime}$	1.5	$\begin{aligned} B(E 4)= & 0.4: & 431: 99 \\ & 431: & \text { nn } 3124+521+98 \end{aligned}$
${ }_{2}^{+}$	2.186		2.0	$\begin{aligned} B(E 4)= & 0.003432: 98 \\ & .432: \text { an } 523 t+521 t \end{aligned}$
1	2، 055	$B(E 4)=0.6$	2.1	$\begin{array}{ll} B(E 4)=2.0 & 441: 88 \\ & \{201,441\}: 4 \\ 441: & \text { nn } 514 \nmid+521 \nmid 15 \\ & \text { nn } 512 \nmid+512 \nmid 14 \\ & \text { nn } 523 \nmid+521 \nmid 10 \\ & \text { pp } 5234+541 \nmid 6 \end{array}$
2	2.238	-	2.5	$\begin{array}{cc} B(\mathrm{E} 4)=0.1 & 442: 53 \quad 4431 \\ & \{221,221\}: 1 \\ & 4421 \\ & \text { nn } 514 \downarrow+521 \downarrow 62 \\ & \text { nn } 5124+512 \downarrow 32 \end{array}$

Table 2. Octupole states in ${ }^{168} E_{E_{r}}$

$K^{\frac{\pi}{7}}$	Experiment		Calculation. in QPNM	
	\%\% ${ }_{\text {GeV }}$	$B(E \lambda)_{\text {s.p. }}$ Structure		$B(E \lambda)_{\text {s.p.u. Struoture }} \mathbf{S}$
0_{1}^{-}	1.786	$B(E 3)=1.96$	1.9	$\begin{array}{rl} B(E 3)=3.0 & 301: 98 \\ 301: & \text { nn 642t-512ヶ } 25 \\ & \text { nn 514t-633t } \\ & \text { pp } 523 \uparrow-404 t \end{array}$
1_{1}^{-}	1.358	$\begin{aligned} & B(E 3)=3.92 \\ & (\mathrm{dt}),(\mathrm{dp}): \\ & \text { nn } 6334-512480 \end{aligned}$	1.4	$\begin{array}{rl} B(E 3)=4.6 & 311: 98 \\ 311: & \text { nn 633t-5124 } 72 \\ & \text { nn } 633 t-523 t 4 \end{array}$
$1{ }_{2}$	1.936	(\vec{t}, d) : is small	1.9	$\begin{gathered} B(E\})=0.35 \quad 312: 96 ;\{221311\}: 1 \\ 312: \text { nn } 633 t-523 t 85 \end{gathered}$
2_{1}^{-}	1.569	$B(E 3)=4.94$	1.5	$\begin{array}{rl} B(E 3)=4.6 & 321: 94 ;\{201,321\}: \\ 321: & \text { nn 633t-521t 25} \\ & \text { nn } 6424-521 \downarrow 10 \\ & \text { pp } 523 t-411429 \end{array}$
22	2.230		2.1	$B(E 3)=0.2 \quad 322: 96$
$3{ }_{1}$	1.542	$\begin{aligned} & B(E 3)=0.25 \\ & (\mathrm{dp}): n n 6334-521+90 \\ & (\vec{t}, d): \operatorname{pp} 523 t-411 \downarrow 4 \end{aligned}$	1.6	$\begin{array}{rl} B(E 3)=0.14 & 331: 98 \\ 331: & \text { nn 633t-521t } 95 \\ & \text { pp 523t-411t } 2 \end{array}$
32	1.828	$\begin{aligned} & B(E 3)=0.60 \\ & (d p): n n 6334-521 \downarrow 10 \end{aligned}$	2.1	$\begin{array}{rl} \mathrm{B}(\mathrm{E} 3)=0.60 & 322: 75 ; 333: 20 \\ 332: & \text { nn } 521 t+642480 \\ & \text { pp } 5234-411 t 12 \\ & \text { nn } 6334-521 t 2 \end{array}$
33	1.999	$\begin{aligned} & B(E 3)=0.42 \\ & (\vec{t}, \alpha): \operatorname{pp} 5234-411 \downarrow \\ & (\mathrm{dp}): \ln 6334-521 \downarrow \\ & I d \end{aligned}$	2.2	$\begin{array}{rlr} \mathrm{B}(\mathrm{~B} 3)=0.3 & 333: 72 ; 332: 22 \\ 333: & \\ & \text { pp 5234-411t} 76 \\ & \text { pp } 5144-512 t & 9 \\ \text { nn } 633 t-521 t & 1 \end{array}$
34	2. 262	$B(E 3)=4.68$	2.4	$\begin{gathered} B(E 3)=2.0 \quad 334: 91 ; 333: 2 ; \\ \{221,311\}: 2 \\ 334: \operatorname{pp~} 5144-411 \uparrow \\ \text { nn } 624 \uparrow-521 \downarrow \\ \end{gathered}$

Table 3. Vibrational states with $K^{\pi} \neq 0^{+}$in ${ }^{172}{ }_{\mathrm{Yb}}$

$K_{\nu}^{\text {J }}$	Experiment		Cal culation in QPMM	
	$\begin{aligned} & \xi_{\nu} \\ & \mathrm{Me}_{\mathrm{e}} \mathrm{~V} \end{aligned}$	$B(E \lambda)_{\text {s.p.u }}$ Structure	$\begin{gathered} \eta_{y} \\ \mathrm{~m}_{\mathrm{e}} \mathrm{y} \end{gathered}$	$B(E \lambda)_{\text {s.p.u. }}$ Structure \%
${ }_{1}{ }_{1}^{+}$	1.466	$\begin{aligned} & B\left(E_{2}\right)=1.4 \\ & (\mathrm{~d} t) \end{aligned}$	1.4	$\begin{array}{rl} B(B 2)=1.5 & 221: 60 ; 222: 10 \\ & \{201,221\}: 2 \\ & \{201,222\}: 1.5 \\ 221: & \text { nn } 512 \uparrow-521 \downarrow 32 \\ & \text { nn } 5124-510414 \end{array}$
2_{2}^{+}	1.608	$\begin{aligned} & B(E 2)=0.42 \\ & (d p)(d t): \end{aligned}$ nn 512ł-511 \downarrow is lange	1.6	$\begin{aligned} & B(E 2)=0.7 \text { 222:81; } 221: 10 \\ & 222: \text { nn } 512 \ddagger-521 \downarrow 65 \end{aligned}$
$3+$	1.172	$\begin{aligned} & B(E 4)=6.9 \\ & \mu: \\ & n n 5124+521 \downarrow \sim 70 \\ & (p \alpha): \\ & \operatorname{pp~} 404 \downarrow-411 \downarrow \sim 27 \end{aligned}$	1.16	$\begin{array}{rl} B(E 4)=2.7 & 431: 99 \\ 431: & \text { nn } 5124+521 \downarrow 50 \\ & \text { pp } 404 \downarrow-411 \downarrow 25 \end{array}$
3_{2}^{+}	1.663	$\begin{aligned} & (p \alpha): \\ & \text { pp } 404 t-411 \downarrow 26 \end{aligned}$	1.65	$\begin{array}{rl} B(E 4)=0.2 & 432: 99 \\ 432: \operatorname{nn} 5124+521 \downarrow 48 \\ \text { pp } 404 t-411 \downarrow 40 \end{array}$
3_{3}^{+}	2.175		1.9	$B(E 4)=0.03 \quad 433: 99$
4_{1}^{+}	2.073	$\begin{aligned} & (p \alpha): \\ & \text { pp } 404 \downarrow+411 \downarrow \\ & \text { is noticeable } \end{aligned}$	1.9	$\begin{array}{rl} B(E 4)=0.13 & 411: 92\{201,441: 3 \\ & \{221,222\}: I \\ 441: & \text { nn } 514 \downarrow+521 \downarrow 80 \\ & \text { pp } 404 \downarrow+411 \downarrow 17 \end{array}$
$4{ }_{2}^{+}$	2.344		2.1	$B(E 4)=0.01 \quad 442: 93$
4_{3}^{+}	2.599		2.3	$B(E 4)=2.5 \quad 443: 80 ; 441: 2$
0_{1}^{-}	1.600	$B(E 3)=0.63$	1.68	$\begin{array}{rlr} B\left(E_{3}\right)=1.1 & 301: 98 \\ 301: & \text { nn 514t-6334 } 40 \\ & \text { nn 5124-6424 } & 4 \\ & \text { pp 523t-404t } \end{array}$
I_{1}^{-}	$\begin{aligned} & 1.155 \\ & (\mathrm{~d} t): \end{aligned}$	$\begin{gathered} B(E 3)=1.3 \\ \text { nn } 6334-5124 \\ \text { is large } \end{gathered}$	1.2	$\begin{array}{ll} B(E 3)=1.8 & 311: 97 \\ & \text { nn 633t-512†92} \end{array}$

Continuation of Table 3

not distingiish between them. The experimeatal and calculated $B(E A)$ values are given in the single-particle unita. The experimental data on the structure of states are obtained, as a rule, from the one-nucleon transfer reactions. The contribution of a two-quasiparticle component is determined in some cases given in Tablea 1-4 in per cent whereas in other cases it is shown through what two-quasiparticle component the reaction proceeds.

The calculations were performed with the aingle-particle energies and wave functions of the Saxon-Woode potential of
 178 Hf. The energies and $B(E \lambda)$ values are calculated without taking the Coriolie interaction into account." The caloulated etructure is given as a contribution (in per cent) of the one--phonon $\lambda \mu i$ and two-phonon $\left\{\lambda_{1} \mu_{4} i_{4}, \lambda_{2} \mu_{2} i_{2}\right\}$ componente to normaliaation (7) of the wave function (6). In the contribution

Table 4. Vibrational states with $K^{\top \pi} \neq 0^{+}$in ${ }^{178_{H P}}$

Continuation of Table 4

of two-phonon componente we take into account the factor $\left\{1+\mathscr{K}^{K_{0}}\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right)\right\}$. Then, we list the largest two-quasineutron $n n$. and two-quasiproton $P P$ components of the wave functions of one-phonon atates $\lambda \mu i$. To denote aingle-particle atates we use the asyaptotic quantum numbers $N n_{2} \wedge \uparrow$ at $K=\Lambda+\frac{1}{2}$ and $N n_{2} \Lambda \downarrow$ at $K=\Lambda-\frac{1}{2}$.

The resulta of calculations of the vibrational states in
${ }^{158} \mathrm{Er}$ and experimental data $[26-28]$ are listed in Tables 1 and 2. In ${ }^{163}$ Er five states with $K^{\pi}=2^{+}$are observed. The atates 2_{1}^{+}and 2_{4}^{+}are excited in the $(\vec{t} \alpha)$ reaction. According to the calculations, each wave function of the first five $K^{\pi}=2^{+}$states has the cominating one-phonon componert. The first 2_{1}^{+}, state is collective and the other is meakly collective. The calclilations are reasonable in agreement with experimental data on the structure of the first five $K^{\top}=2^{+}$atates. Thus, a larger part of the configuration $p p 411 \uparrow+411 \downarrow$ belonge to tha 2_{1}^{+} and 2_{4}^{+}statea; and a smaller part, to the 2_{3}^{+}and 2_{5}^{+}states; nowever, the 2_{3}^{+}state has not been observed in the $(\vec{E} \alpha)$ reaction.

According to [29] the states $\mathrm{I}^{\mathrm{T}} \mathrm{K}=4^{+} 3$, in the Br, Yb and Hf laotopes are trongly exolted in the (d^{\prime}) reaction,
which indicates collectivity of the 3_{1}^{+}states. Description of the $K^{\pi}=3^{+}$and 4^{+}states in the QPNM has been made in [17]. In the present calculations we have taken into account the p-p interaction and a better fit of the constants x_{0}^{43} and x_{0}^{44} was made. The states $3_{1}^{+}, 3_{2}^{+}, 4_{1}^{+}$and 4_{2}^{+}have the dominating one--phonon componente; the total contribution of two-phonon componente in the 4_{1}^{+}and 4_{2}^{+}states is less than 10%. In comparison with the calculations in [17] the 4_{1}^{+}state energy decreases and becomes close to the experiaental one, the difference cetween the energies of the 4_{1}^{+}and 4_{2}^{+}states becomes larger whe-
reas in [17] they were close to each other. The calculated $B(E 4)$ value for the 4_{1}^{+}state turned out to be three times as larger as the experimental one.

The first octupole atates $0_{1}^{-}, 1_{1}^{-}$and 2_{1}^{-}in ${ }^{16}{ }^{\text {E }}$ Er are collective and the $B(E 3)$ values for excitation of the $I^{\#} K_{\nu}=3^{-} K_{1}$ states are large. According to the calculations the $C_{1}^{-}, 1_{1}^{-}$ and 2_{1}^{-}states are collective and the $0_{2}^{-}, 1_{2}^{-}$and 2_{2}^{-}states are weakly collective. All of them have the dominating one-phonon components. The structure of tie 11_{1}^{-1} state is correctly described. The $K^{\pi}=3^{-}$states in ${ }^{166_{E r}}$ have an unusual tehaviour. The fourth 3_{4}^{-}state is collective; the $E 3$ strength concentrated on it is 3.5 times as large as that on the $3_{1}^{-}, 3_{2}^{-}$and 3_{3}^{-}states. The $3_{1}^{-}, 3_{2}^{-}$and 3_{3}^{-}states are also collective aince the $B(E 3)$ value is rather large. Their wave functions contain two-quasiparticle componente on 633 -521 \downarrow and pp 523t-411 \downarrow whose distribution is qualitatively correctly reproduced by calculations. A qualitatively correct description of the energies and structure of octupole states is obtained.

According to the experimental data [28] on the (dp) and (${ }^{7}$ d) reactions the 4_{1}^{-}and 4_{2}^{-}atates in ${ }^{168} \mathrm{Er}$ are not pure twoquasiparticle states. The wave function of the 4_{1}^{-}state with
the energy 1.094 MeV includes the componente $n \mathrm{n}$ 633个+5211~70\%, pp $411 \downarrow+5234 \sim 25 \%$, in $4 \frac{-}{2}$ with the energy 1.905 MeV pp $411 \downarrow+$ $+523 \uparrow \sim 60 \%$ and $n n 6334+521 \downarrow \sim 30 \%$. Thus, the two-quasineutron and two-quasiproton components are distributed among the 4_{1}^{-} and $4_{2}^{-}, 8$ tates. To describe this mixing, in [18] the multipole interactiona witin $\lambda \mu=54$ have been introduced. Por ${ }^{168} \mathrm{Er}_{\mathrm{E}}$ the following results have been obtained: at $\mathcal{X}_{0}^{54}=0.018 \mathrm{fm}^{2} \mathrm{MaV}^{-1}$ the energies and structure of the 4_{1}^{-}and 4_{2}^{-}states are equal to
$\omega_{541}=1.0 \mathrm{NeV}, \operatorname{nn} 633 \uparrow+521 \downarrow 86 \%, \operatorname{pp~} 411 \downarrow+523412 \%$;
$\omega_{542}=1.5 \mathrm{MeV}, \mathrm{nn} \dot{0} 33 t+521 \downarrow 12 \%$, pp $411 \downarrow+523 \mathrm{f}$ 87\%;
at $x_{0}^{54}=0.020 \mathrm{rm}^{2} \mathrm{meV}^{-1}$ are equal to
$\omega_{541}=0.95 \mathrm{MeV}$, on $633 \uparrow+521 \downarrow 61 \%$, pp $411 \downarrow+523 \uparrow 16 \%$; $\omega_{542}=1.5 \mathrm{MeV}, \mathrm{nn} 633++521 \downarrow 1 \mathrm{c} \%, \mathrm{pp} 411 \downarrow+523+80 \%$.

Thus, there is mixing of a two-quasineutron with a two-quasiproton state. The enersy ω_{542} is less than the experimental one due to the scheme of single-particle states. This example indicates that in some cases multipole interactions of such a high multipolarity as $\lambda=5$ are important.

The calculated energies of two-quasiparticle states in ${ }^{168} \mathrm{Er}$ are close to the energies given in [4] since the inclusion of the quadrupole pairing does not improve considerably their description.

The results of calculations and experimental data [26,30-33] for ${ }^{172}{ }^{\mathrm{Yb}}$ are shown in Table 3. In ${ }^{172} \mathrm{Yb}$ a very rare case takes place when not only the 2_{1}^{+}etate but also the 2_{2}^{+}atate are collective. Acoording to the calculations [2,4], the $B(E 2)$ value for the 2_{2}^{+}atate is larger than that for the 2_{1}^{+}state. The $p-p$ interactions improve the description: the $B(B 2)$ value for the 2_{1}^{+}state is twice larger than for the 2_{2}^{+}state and the wave function of the 2_{2}^{+}atate contains the component nn 5124 -- 521 manifesting itself in the (dp) reaction.

The 3_{1}^{+}state in ${ }^{172}$ Yo has earlier been treated $[1,4]$ as a two-quasineutron state. Experiments on the ($\alpha \alpha^{\prime}$), (dd') and ($p \alpha$) reactions and measurement of the magnetic moment have ahown that the atate is collective with a complex atructure repreaented in Cable 3. The calculations correctly reproduce the collectivity and atructure of the 3_{1}^{+}atate and weak collectivity of the 3_{2}^{+}and 3_{3}^{+}states. Gne should remember tiat the structure of the $2_{1}^{+}, 2_{2}^{+}, 3_{1}^{+}$and 3_{2}^{+}atates in ${ }^{172_{Y}}$ is strongly complicated by the Coriolis interaction diaregarded by us.

There are three $K^{\top \pi}=4^{+}$states in ${ }^{172} Y$ which are not honever observed in the ($\alpha \alpha^{\prime}$) reaction [26]. The calculated energies of the 4^{+}atates are $0.15-0.30 \mathrm{HeV}$ as leas as the experimental ones. According to our csiculations, the 4_{1}^{+}and 4_{2}^{+} atatea are weakly collective and the 4_{3}^{+}state is collective. It would be interesting to measure experimentally the $B(E 4)$ value for the 4_{3}^{+}atate. The structure of the 4_{1}^{+}state we have calculated differs from the one in [17], which indicates the dependence of the structure on $p-p$ interactions. The wave functions of the four $K^{\pi}=3^{+}$and 4^{+}states have one dominating one-phonon component.

In ${ }^{172}$ Yb all four octupole states with $K_{\nu}^{\pi}=0_{1}^{-}, 1_{1}^{-}, 2_{1}^{-}$and 37 have bean observed; they turned out to be collective. The $B(E 3)$ values shown in Table 3 are taken from [26] where the $B(I S E 3)$ values have been determined in the $\left(\alpha^{\prime}\right)$ reaction; they somewhat differ from the $B(E 3)$ values obtained in [31] from the Coulomb excitation. The $B(E 3)$ values oalculated by us are between the values obtained in $[26,31]$ and more close to the values in [31]. The wave functions of the first fcur octupole atates with $k^{\pi}=0_{1}^{-}, 1_{1}^{-}, 2 \overline{1}$ and $3-$ have one dominating one-phonon component.

Viorational states in ${ }^{172}$ Yo should be atudied in the (dp) and ($d t$) reactions.

We shall list the two-quasiparticle atate energies in ${ }^{172} \mathrm{Yb}$ calculated without quadrupole pairing $G_{\tau}^{20}=0$ and with quadrupole pairing with the conatant $G_{\tau}^{20}=0.5 x_{0}$ and taking account of the blociing effect. The energy of $K_{\nu}^{\pi}=6{ }_{1}^{-}$nn $633++$ +512 t atate is equal to 1.5 MeV at $G_{n}^{20}=0$ and 1.4 MaV at $G_{n}^{20}=$ $0.5 x_{0}^{20}$. The energy of 4_{1}^{-}no $6334+521 \downarrow$ atate in both the cases equals 1.7 MeV . The energy of the $5_{1}^{7} \mathrm{mn} 642 \uparrow+5124$ atate equals 2.2 MeV at $G_{n}^{20}=0$ and 2.0 MeV at $G_{n}^{20}=0.5 x_{0}^{20}$. The state 8^{+}pp $523 \uparrow+514 \uparrow$ has the energy 2.7 and 2.4 KeV , wheraas the energy of the 8^{-}an $633 \uparrow+624 \uparrow$ state is 1.9 MeV at $G_{n}^{20}=0$ and 1.8 MeV at $G_{n}^{20}=0.5 x_{0}^{20}$.

The resulta of calculationa and experimental data [34-36] for ${ }^{178}$ Hf are listed in Table 4. The first 2_{1}^{+}atate is collective, the two-quasineutron configuration nn 514 - 512 \downarrow enters into the wave functions of the 2_{1}^{+}and 2_{2}^{+}states. Therefore, they are well excited in the (dp) reactions. These properties of the 2_{1}^{+}and 2_{2}^{+}states are well reproduced in the calculations. At the same time, the calculated 2_{2}^{+}energy equals 2 MeV, which is due to the absence of two-quasiparticle poles with an energy less than 2.2 MeV . If the $I^{\pi}=2^{+}$state with the energy 1.561 KeV has $K=2$, then there ie descrepancy with the calculated results. It can be due to the bexadecapole deformation $s_{4}=-0.16$ given in [25] whereas our calculation bave been performed at $\beta_{4}=-0.03$.

According $=0$ the calculations, the 3_{1}^{+}atate in ${ }^{178}$ Hf is collective and it should be well excited in the (dy) reaction; the aecond 3_{2}^{+}state is weakly collective. The states $3_{3}^{+}, 3_{4}^{+}$ and 3_{5}^{+}have the enargies $2.2,2.3$ and 2.4 MaV . The wave functions of tinese atatea have one dominating one-phonon component.

The 4_{1}^{+}state in ${ }^{17} 3^{H f}$ is collective with the dominating component $\lambda \mu i=441$ in the wave function; the contribution of the two-phonon component $\{221,221\}$ equals 3%. According to experimental data[36] there is no evidence for E2 collectivity of the tranaition from the 4_{1}^{+}atate to the 2_{1}^{+}one. The contribution of the two-phonon component $\{221,221\}$ to the $4_{2}^{+}, 4_{3}^{+}$ and 4_{4}^{+}states with the energies $2.0,2.3$ and 2.4 MeV does not exceed 2%. The energy and atructure of the $\mathrm{K}^{\pi}=2^{+}, 3^{+}$and 4^{+} states in ${ }^{178} \mathrm{Hf}$ are influenced by the Coriolis interaction.

The experimental data on the octupole states in ${ }^{17 Q_{\mathrm{Hf}}}$ are scarce. Thus, the $K_{\gamma}^{\pi}=0_{1}^{-}$state mas not detected. Among the $1_{1}^{-}, 2_{1}^{-}$and 3_{1}^{-}atates only the $B(E 3)$ value for excitation of the 3^{-2}, state was measured. The calculated $B(E 3)$-values for the $1 \overline{1}, 2_{1}^{-}$and 2_{j}^{-}states are amall; therefore, it is not surprising that they were not measured experimentally. The calculated energies of the 2_{2}^{-}and 2_{3}^{-}states lie above the experimental ones.

The energies of two-quasiparticle states calculated with the monopole and quadrupole pairing are close to the data from [4]. The energies of two states $w i t h K^{\top}=6^{+}$and 5^{-}are overestimated as compared with the experimental ones. Here we again observe shortcomings of the acheme of aingle-particle levels.

It would be desirable to add rich experimental data on 178_{Hf} by new measurements of the (dp) and (dt) reactions as in 28] and (d d^{\prime}) reactions as in [26].

The calculations performed with the p-h and p-p interactions are shown to give a reasonable deacription of the energies and structure of vibrational states.
The structure of states depends rather atrongly on the energies of single-particle states and blocking effect. The $B(E \lambda)$ values depend on the constant $G_{\tau}^{\lambda \mu}$; with increasing $G_{\tau}^{\lambda \mu}$ the $B(E \lambda)$ values decrease.
4. Distritution of the $\operatorname{E\lambda }-$ Strensin Agons Low-Lying Stateg

The first quadrupole β - and γ states are assized to be collective and there are no oticer collective states up to collective states forming giant isoscalar and isovector quadrupole resonances. In the case of octupoles, apart from the first octupole states collective are the states forming the low--lyirg (LEOR) and high-lying (HEOR) isoscalar and isovector octupole giant resonances. In some nuclei, the low-lying collective hexadecapole states were observed. The collectivity of the first quadrupole and octupole states and absence of higher-lying collective atatea up to the giant resonances underlie phenomenological’modela including the interacting boson model (IBM).

Let us study the El-strength distribution among low-lying atates with an energy up to 3 MeV . The coupling between the vibrational and rotational motion will be neglected, Experiments [26] on inelastic scattering of α particles made it possible to atudy the isoscalar EX -strength distribution.

Let us consider the quadrupole strength distribution. Expericental data and restits of calculations in the QPNM and IBM [26] are listed in Table 5. In ${ }^{168} \mathrm{Er}_{\mathrm{Er}}$ and ${ }^{178_{\mathrm{Hf}} \text { a standard }}$ case takes place - the main part of the $E 2$ strength is concentrated on the Y vibrational state. According to our calculations there are about 30% in ${ }^{160} \mathrm{Zr}$ and 15% in ${ }^{17 \mathrm{Hf}}$ of the E2 strencth of the γ vibrational state in other 2^{+}states.

The E_{2} strengti distribution in ${ }^{172} \mathrm{Yo}$ differs qualitati-
 distribution in ${ }^{172} \mathrm{Yb}$ is specified by that both the first 2_{1}^{+} and second 2_{2}^{+}states are collective and a considerable part of the E2 strength is concenirated in the energy interval $2+3 \mathrm{MeV}$. It is very difficult to describe phenomenologically

Table 5. E2-Strength Distribution

Nucleus	K_{y}^{π}	$\begin{gathered} \xi, \mathrm{HeV}_{\mathrm{e}} \\ \Delta \xi, \mathrm{M}_{\mathrm{e}} \mathrm{~V} \end{gathered}$	$B\left(E_{2}\right)_{\text {s. }}$ p.u.		
			exp. ref.	$\begin{aligned} & \text { calc. } \\ & 0 P N M A \end{aligned}$	$\operatorname{cal}_{\text {IBM }_{\text {cal }}}$
${ }^{168} \mathrm{Err}$	$0^{+}, 2_{2^{+}}^{+}$	$\begin{aligned} & 0.821 \\ & 1.2-2.5 \end{aligned}$	$\begin{aligned} & 4.7[26] \\ & - \end{aligned}$	$\begin{aligned} & 4.6 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 0.02 \end{aligned}$
$172^{Y}{ }_{\square}$	$\begin{aligned} & 2_{1}^{+} \\ & 2_{2}^{+} \\ & 0^{+} \end{aligned}$ $0^{+}, 2^{+}$,	$\begin{aligned} & 1.47 \\ & 1.61 \\ & 1.0-2.0 \\ & 2.0-3.0 \end{aligned}$	$\left.\begin{array}{lr} 1.4 & {[26,31]} \\ 0.42[26,31] \\ 0.005 & {[26]} \\ 0.66 & {[31]} \\ 2.4 & {[26]} \end{array}\right]$	$\begin{aligned} & 1.5 \\ & 0.7 \\ & 0.9 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \text { I. } 0 \\ & 0.007 \\ & 0.2 \\ & 0.2 \end{aligned}$
${ }^{178} \text { H }$	$2+$ 2^{+}	$\begin{aligned} & 1.174 \\ & 3.0-3.2 \end{aligned}$	$\begin{array}{cc}3.9 & {[35]} \\ - & \end{array}$	4.1 0.6	-

the cases when both the first 2_{1}^{+}and the second 2_{2}^{+}states are collective. Thus, according to the IBM calculations [26], in ${ }^{172} 2_{\mathrm{yb}}$ the E2 strength concentrated on the 2_{2}^{+}atate is 100 times as less as on the 2_{1}^{+}state, i.e. there is a sharp discrepancy with experimant. Our calculations provide reasonable agreement with experimental data. According to the experimental data [26], in ${ }^{172} \mathrm{Yb}$ the $E 2$ atrength in the energy interval from 2 to 3 MeV is 1.3 times larger than in the first two collective states and 1.7 times larger than in the 2_{1}^{+}state. This is a new and very important result which shows a marked discrepancy with the generally accepted $E 2$ strength distribution. This diatribution of the E2 strength cannot be described in the IBM. According to our calculations about $2 / 3$ of the $E 2$ atrength on the 2_{1}^{+}state is concentrated in the interval $2+3 \mathrm{MeV}$.

Now let us consider the isoscalar E3 strength distribution in ${ }^{168}$ Er. According to [26], there are first collective states with $0_{1}^{-}, 1_{1}^{-}$and 2_{1}^{-}ans six collective $K^{\pi}=3^{-}$states. On the first taree $3{ }_{1}^{-}, 3_{2}^{-}$and 3_{3}^{-}states there are 1.3 s.p.u.; and on the fourth 3_{4}^{-}state, $4.68 \mathrm{~s} . \mathrm{p} . \mathrm{c} .$. In the interval from 2.25 to $2.50 \mathrm{MeV} 7.9 \mathrm{~s} . \mathrm{p} . \mathrm{u}$. are concentrated. This distribution of the 23 strength sharply differs from the standard one.

The E3 strength distribution in ${ }^{168}$ Er is shown in Fig. 1. These are experimental data from [26], our calculations within the QPNM, the IBM calculations in [26] and the calculations [37] Fithin the IBM $-1+f$ boson model. In the calculations [26] the $B(E 3)$ values were normalized to the experimental value. of the $3^{-1} 1_{1}$ state. As a result, for the first $3^{-1} \mathbf{3}_{1}$ atate the calculated $B(E 3)$ value turned out to diverge by a factor of 500 from the experimentel one. If most of the $E \lambda$ strength is concentrated not on the first K_{1}^{π} state, it is practically impossible to describe it within the IBM. This is confirmed by the calculations in [37] in the IBM-1 $+P$ boson model in which the firat three $K^{\pi}=3^{-}$levels are omitted. The main part of the $E 3$ strength is concentrated on the 3_{4}^{7} state which is considered by them as a first collective $K^{\top}=3^{-}$ state. It should be noted that in [37] weakly collective $K^{\top}=3^{-}$ states with energies larger than the 3_{4}^{-}state energies are listed for ${ }^{168} 8_{\text {Er }}$. The firat three $K{ }^{\pi}=3^{-}$states in ${ }^{168} \mathrm{E}_{\mathrm{Er}}$ have been omitted in [37] as two-quasiparticle ones and the whole E3 strength is concentrated on one $K_{\nu}^{\pi}=3_{4}^{-}$state. According to the experimental data [26] on inelastic scattering of α particles, the $3_{1}^{-}, 3_{2}^{-}$and 3_{3}^{-}states are colleotive enough, and according to the experimental data [28] on the (dp) and ($\vec{t} \alpha)$ reactions, tiaeir wave functions contain the sum of two-quasiproton and two-quasineutron terms. If the $3_{1}^{-}, 3_{2}^{-}$and 3_{3}^{-}states

Fig. 1. E3 strength distribution in ${ }^{168} \mathrm{Er}$. $\mathrm{K}_{\mathrm{T}}^{\mathrm{T}}$-values equal to $0^{-}, 1^{-}, 2^{-}$and 3^{-}are given above the virtical lines.
are close to the two-quasiparticle ones, the $B(E 3)$ values are equal to $0.005,0.02$ and 0.005 s.p.u. Hence, it is seen that the $B(E 3)$ vallues for the $3_{1}^{-}, 3_{2}^{-}$ard 3_{3}^{-}states listed in Table 2 are 30-j0 times larger than the $B(E 3)$ values for the corresponding two-quasiparticle states. All this shows that these states are not two-quasiparticle ones.

Our calculations, as is seen from Fig. 1, describe correctly the $E 3$ strength diatribution in ${ }^{160} \mathbf{E r r e}^{\text {. The calculated }}$ $3(E 3)$ values for the first $0_{1}^{-}, 1 \overline{1}, 2 \overline{1}$ and 3_{1}^{-}reasonably afree with the experimental ones. The fourth 3_{4}^{-}atate among tine $K^{\pi}=3^{-}$ states ass the largest $B(E 3)$ value. According to the calculations, at the energy 2.4 MeV there is a state $3^{-1} 3^{\text {w }}$ with $\mathrm{B}(E 3)=$ $=4.9 \mathrm{~s} . \mathrm{p} . \mathrm{u}$. It is probable that the calculated $B(E 3)$ values for the $3^{-3} 3_{4}$ and $3^{-1} 3_{3}$ states can describe the experimentally observed statea with $I^{\pi}=3^{-}$and energies 2.324 and 2.486 MeV . According to the calculations, the $E 3$ strength equal to about 5 s.p.u. is concentrated on the $\mathrm{K}^{\pi}=0^{-}$atates in the interval $2.8-3.4 \mathrm{MeV}$. The total octupole E 3 strength concentrated on the states with an energy up to 2.5 MeV equals $20 \mathrm{~s} . \mathrm{p}_{\mathrm{o}} \mathrm{u}$. . according to the experimental data [26], and 20.3 s.p.u., according to our calculations.

All the first octupole stetes that turned out to be oollective were observed in ${ }^{172} \mathrm{Yb}$ [26]. Their total E 3 strength equals $12 \mathrm{~s} . \mathrm{p} \cdot \mathrm{u}$. According to our calculations, all the first octupole states are collective; their total 83 strength equale 8 s.p.u. The total E 3 strength equal to 11 a.p.u. is conceritrated in the interval $2+3 \mathrm{MeV}$. According to tine calculations [37] in the IBM-1 + f boson model the $E 3$ strength is concentrated on the firat octupole states; and only about 3%, on the $3^{-1} \mathbf{1}_{2}$ state. It would be intereating to check this discrepancy in the distribution of the $E 3$ strength at $2-3 \mathrm{MeV}$ experimentally.

Experimental data on the E3 strenfth distritution in ${ }^{178} \mathrm{Hf}$ are scarce. According to our calculations for $K=2$ and 3, tine E3 atrength is concentrated on the first 3 tates. The 0_{1}^{-}and C_{2}^{-}states have the enersies 2.0 ard 2.4 JeV and $\mathrm{B}(33)$ values equal to 2 and $4 \mathrm{s.p.u}$. ; in the interval $1.5-3.0 \mathrm{MeV}$ the E 3 strengtin is equal to $0.5 \mathrm{~s} . \mathrm{p} . \mathrm{Li}$. The E 3 strengtin distribution on the $K{ }^{\pi}=1^{-}$states is the following: on the first two states there are 0.0 s.p.u.; and in the interval $2-3 \mathrm{MeV}, 7.5$ s.p.u.., i.e. the main part of the $E 3$ strength is above the first two 1_{1}^{-1} and $1_{2}^{\overline{2}}$ states. In this case, there is a strong discrepancy with the results of calculations [37].

Note that in the calculations of LEOR in deformed nuclei in [38] the E3 atrength was observed to be somewhat higher than the eirst octupole states.

Data on the $E 4$ atrength distribution are scarce. It follows from the analyais of the experimental data [29] that in the isotopes of $E r, Y b$ and $H f$ the first $K_{V}^{\pi}=3_{1}^{+}$states and in the isotopes of $0 S$ the first $K_{V}^{\pi}=4_{1}^{+}$etates are collective. This collectivity of the 3_{1}^{+}and 4_{1}^{+}atates is correctly described in [17] and confirmed by the present calculations.

According to our calculations, in ${ }^{168} \operatorname{Er}$ for the $I^{\pi} K_{2}=4^{+} 3_{1}$ state $B(E 4)=0.4$ s.p. . . . and according to the calculations [39] in the sdg IBM $B(E 4)=50.8$ s.p.u. Such a large discrepancy should be verified experimentally. Accorcing to our calculations in ${ }^{15} 8_{E r}$ for the $K^{\pi}=3^{+}$states with the energy $2-3 \mathrm{KeV}$ the $E 4$ strength equals 1 s.p.u. and the $B(E 4)$ value for the 4_{j}^{+}statea is overesticuated. In ${ }^{172} Y o$ the most part of the E4 strenetin is concentrated on tine 3_{1}^{+}state, and on all other $K^{\pi}=3^{+}$states up to 3 MeV it equals 1 s.p. u^{m}. As concerns the $K^{\pi}=4^{+}$states in ${ }^{172} Y \mathrm{O}$, the most part of the E4 atrength is concentrated on the 4_{3}^{+}state with tiae energy 2.3 MeV . In 178_{HP}
the most part of the E4 strength is concentrated on the 3_{1}^{+}, 3_{2}^{+}and 4_{1}^{+}atates; on the other levels up to 3 MeV it equals $0.7 \mathrm{~s} . \mathrm{p} . \mathrm{u}$.

It should be noted that according to the experimental data [40] a large part of the hexadecapole strength with $\lambda \mu=42$ is concentrated on γ-vibrational states of some rare-earth nuclei. A aatiafactory description of these experimental data has been obtained in [41] in the RPA calculations with a aimultaneous inclusion of quadrupole $\lambda \mu$ e 22 and hexadecapole $j_{\mu}=42$ interactions.

It should be emphsaised that p-p interactions considerably influence the $E \lambda$ strength dietribution among the low-lying states. With increasing $G_{\tau}^{\lambda \mu}$ part of the $F \lambda$ strongth is shifted towards firet and second etates with fixed value of K^{π}.

5. On Energy Centroids of Imo-Fhonon Collective. States

Based on the calculations in the QPNR we. . . have concluded in $[14,16]$ that colleotive two-phonon etates cannot exist in deformed nuclei. If the contribution of the two-phonon component to the wave function normalisation exceeds 50%, this state is thought to be two-phonon one. The existence of two--phonon states is still being discussed in a number of papers, for instance, in [39,42-44]. Yet, there are no experimental data on collective two-phonon states in deformed nuclei. The Iragmentstion of two-pionon states cannot be calculated in the QPNM since for these calculations the wave function (5) should be supplemented by three-phonon terms. Therefore, we shall discliss only the energy centroids of two-phonon atates.

Increase in the energy centroids of two-pionon atates $\left\{\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{1}\right\}$ with respect to the sum of energies of the vibrational states with the dominating one-phonon components
of their wave functions is caused by two reasona. The first ie anharmonicity of vibrations since the energies of one-phonon states are larger than the energies of the atates with the dominating one-phonon component deacribed by the wave function (6). The second is the shift of the two-phonon pole $\Delta \omega\left(\lambda_{1}, \mu_{1} i_{1}\right.$, $\lambda_{2} \mu_{2} i_{2}$) after taking the Pauli principle into accourt in the two-phonon terms of the wave function (6). In the calculations $[16,20]$, a very large shift of $\Delta \omega$ was obtained for atrongly colleotive states; in some casea this shift exceeded $2-3 \mathrm{MeV}$. Since the shift $\Delta \omega$ is due to going beyong the boson approximation for phonons, then a very large shift $\Delta \omega$ makea the applicability of the RPA doubtful. A large shift of $\Delta \omega\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right)$ is due to a strong collectivity of the first $i_{1}=1, i_{2}=1$ atates in the aum over i^{\prime} and to a large value of $\left|Y^{K_{0}}\left(\lambda_{1} \mu_{1} i_{1}-1, \lambda_{2} \mu_{2} i_{2}=1\right\rangle\right|$.

The present calculations taking account of $p-h$ and $p-p$ interactions provide the energies and $B(E \lambda)$ values for the 2_{1}^{+} and firat octupole states which are in reasonable agreement with the experimental data. With $p-p$ interactions included the collectivity of the first 2_{1}^{+}and octupole states decreasea thus diainiahing the shift of $\Delta \omega$. The results of calculations of the shifts $\Delta \omega\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right)$, quantities $1+\mathcal{K}^{K_{0}}\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right)$ and energy centroids of two-phonon atatea are shown in Table 6. The function $1+\mathcal{K}^{K u}\left(\lambda_{1} \mu_{1} i_{1} \mu_{1} \mu_{2} i_{2}\right)$ entering into normalisation (7) differs from unity due to the Pauli principle. It is seen from the Table that shifts $\Delta \omega$ are from 0.1 to 1.5 MeV . As a rule, $\Delta \omega$ increases with decreasing $i+\mathcal{K}^{K}$. This is responsible for a large shift $\Delta \omega(221,221)$ for the $K^{\pi}=4^{+}$state in comparison with the $K^{\pi}=0^{+}$state. The largest shifts appear for the $K^{\pi}=4^{+}\{221,221\}$ atatea; for other atates they do not exceed 1 MeV .

Table 6. Centroid Energies of Two-Phonon States

Nucleus	$K^{\text {I }}$	$\lambda_{1} \mu_{i} i_{4}, \lambda_{2} \mu_{2} i_{2}$	$\begin{gathered} \Delta \omega\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right) \\ M_{0}{ }^{V} . \end{gathered}$	$\mid 1+H^{K}\left(x_{1} \mu_{4} i_{4}, \lambda_{2}, \mu_{2} i_{2}\right)$	Centrold energy, MeV
${ }^{168} \mathrm{E}_{\mathrm{E}}$	0^{+}	221, 221	0.9	0.90	2.7
	4^{+}	221, 221	1.5	0.75	3.3
	2^{-}	221, 301	0.4	0.95	3.2
	$3-$	221, 311	0.4	0.95	2.7
${ }^{17}{ }^{2} Y_{b}$	0^{+}	221, 221	0.5	0.94	3.4
	0^{+}	221, 222	0.2	0.97	3.3
	0^{+}	321, 321	0.1	0.98	3.3
	2^{+}	221, 441.	0.6	0.42	4.1
	4^{+}	221, 222	0.6	0.47	3.6
	4^{+}	221, 221	1.1	0.60	4.0
	4^{+}	222, 222	0.4	0.62	3.7
	1^{-}	221, 311	1.0	0.45	3.7
	2^{-}	221, 301	0.3	0.95	3.4
	3^{-}	221, 311	0.2	0.96	2.7
${ }^{178}{ }_{\text {Hf }}$	0^{+}	221, 221	I. 0	0.90	3.5
	O_{+}^{+}	321, 321	0.1	0.99	2.5
	$2+$	301, 321	0.1	0.97	3.1
	4^{+}	221, 221	1.5	0.78	4.0
	4^{+}	221, 222	0.4	0.88	3.9
	0^{-}	221, 321	1.3	0.65	3.9
	2^{-}	221, 301	0.6	0.88	3.8
	3	221, 311	0.2	0.95	2.8
	3^{-}	431,301	0.2	0.93	4.0

The energy centroid of the $0^{+}\{221,221\}$ state in ${ }^{168_{E r}}$ equals 2.7 MeV ; according to the calculations in [43] it equals 2.9 MeV and in[44] it equels 2.8 MeV . The energy centroids of the $0^{+}\{221,221\}$ states calculated in the QPNM are approximately the alme as thcse calculated in [44] by tha multiphonon method. The alscrepanoy takes place for the $4+\{221,221\}$ states. It ie unclear from this discrepancy what is more im-
portanta a large number of degrees of freedom as a large number of one- and two-phonon etates in the QPNM or one degree of freedom as a γ-vibretional phonon and the wave funotion with multiphonon configurations in the multiphonon method. In [16] the wave function (6) has been added by three-phonon terms and the shifts of three-phonon poles have been calculated. It is shown that these ahifts may exceed tince or wore tiaes tie shifts of two-phonon poles. It has been shown in
[15] that the energy skift of η_{1}, of the 2_{1}^{+}atates with respect to the ore-pronon energies ω_{221} ia spproximatoly twice smaller when the Pauli principle is taken into account in comparison with the case when it is neglected. The multiphonon tercs of the wave Iunction does rot walially lead to a strong shift of the root from tice corresponding pole. If nevertheless the root η_{V} is strongly lowered with respect to the pole $\omega_{\lambda_{1} \mu_{1} i_{1}}+\omega_{\lambda_{2} \mu_{2} i_{2}}$ $+\Delta \omega\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right)$ the two-phonon state turns out to be strongly fragmented. Therefore, additional lange shifta of the energy centroids of two-phonon states can hardly be expected without atrong fragmentation when miltiphonon terma are added in the wave function (6).

According to our calculations, the shifts $\Delta \omega\left(\lambda_{1} \mu_{1} i_{1}, \lambda_{2} \mu_{2} i_{2}\right)$ are as a rule considerably lese than the aum $\omega_{\lambda_{1} \mu_{1} i_{1}}+\omega_{\lambda_{2}} \mu_{2} i_{2}$. The shifts are caused by two reasons: first, deviation of the phonon operators from the ideal boaons, and second, collectivity of phonona. In case of large shifts, decrease of the $B(E \lambda)$ value by (10-20)\% leads to decrease of the ahift $\Delta \omega$ by $1 / 3$. We can etate that in well deformed nuclei of the rare-earth region the RPA can undoubtedly be applied to describe the QPNM phonon basis.

As is seen from Table 6, the energy oentroids of colleotive twomphonon states equal $2.5-4.0 \mathrm{MeV}$. At these energies the twomphonon strength should be distributed over many levele.

The present calculations confirn the conclusion we have made in $[14,15]$ that collective two-jhonon states cannot exist in well deformed nuclei.

6. Conclusion

The atudy of vibrational atates with $K^{\pi} \not \mathcal{O}^{+}$in well deformed doubly even nuclei has shown that the energy and atructure of each atate are determined mainly by the aingle-particle energies and wave functions of the Saxon-Woods potential; monopole pairing and p-h isoscslar multipole interaction. The multipole p-h isovector interaction, quadrupole pairing and multipole p-p interaction are of minor importance. Incluaion of the p-p interaction improves the description of vibrational states. Moreover, it justifies the applicability of RPA to deacribe states with an energy leas than 1 MeV .

Nonrotational states with $k^{\pi}=0^{-}, 1^{-}, 2^{ \pm}, 3^{ \pm}$and 4^{+}with energiea up to 2.5 KeV have dominating one-phonon components. For the statea with an energy up to 2 MeV the dominating ons--phonon component contributes more than 90% and the two-phonon componente not more than (3-5) \% to normalisation of the wave function. Taking into account the fact that in our caloulations we disregarded the Coriolis interaction and used the single-particle energies and wave funotions of the Saxion-Woods potentisl with the parameters fixed in 1968-1970 we can state that the experimental deta on the energies, $B(E X)$ values and structure of vibrational atates in ${ }^{168} 8 \mathrm{Br},{ }^{172} \mathrm{yb}$ and ${ }^{178} \mathrm{Hf}$ are desoribed correctly.

A qualitatively new result beoame evident in the picture of low-lying vibrational states: the $g \lambda$ strength distribution differs in some cases from the generally accepted one. In particular, there are cases when collective is not the first but a higher lying atate with a given $K^{\pi^{\circ}}$, or the largest part
of the $E \lambda$ atrength ia concentrated not on tine first states but in the energy interval $2+3 \mathrm{KeV}$. Fhis diatribution of the E λ etrengtin can hardly be descriced within phenozenological models even in auch es the adg IBM or adf IBM.

With the inclusion of $p-p$ interactions the pole shifta of two-phonon collective statea decrease in comparison with those when $p-p$ interactions are dis regarded. They equal 0.1-1.5 MeV. The calculated energy centroids of the lowest two-phonon states equal 2.5 . 4.0 MeV . The conclusion we have made earlier sbout the absence of collective two-phonon atates in deformed nuclei is valid.

He can assert that in the framework of the QPNM we have constructed the basia for describing the atructure of atatea of deformed nuclei. If necessary, the methematical apparatus of the QPNM can be generalised, as in [22], to tha finite rank aeperable intersctions that can reproduce complex effective interactions between quasipartioles. In further caloulations one should take into account the coupling between vibrational and rotational motion, introduce additional sones with respect to A and determine more accurately the parameters of the Saxon-Woods potential. Maybe the form of the potential describing the average field of a nucleus will need to be compliosted.

We hope that the present caloulations will be useful in experimenta at a new generation of accelerators. Of great intereat. is experimental atudy of excited atates of deformed nuclei at 2-3 HeV .

Acknowledgementa

We sre grateful to V.O.Nesterenko and A.V.Sushkov for help and discuseions.

References

1. Gallagher C.J., Soloviev V.G.: Mat.Pye.Skr.Dan. Fid. Selak. I, No 11 (1962).
2. Soloviev V.G.: Nucl.Phys. 69, I (1965).
3. Soloviev V.G.: Theory of complex nuclei, Moscow: Nauka, 1971: (Engliash translations Theory of complex nuclei Oxford: Pergamon Pre日s 1976).
4. Grigoriev E.P., Soloviev V.G.: Struoture of Even Deformed Nuclei, Koscow: Nauka, 1974.
5. Vogel P., Zirnbauer M.R. : Phys.Rev.Lett., 57, 3148 (1986). Civitarese P., Faessler A., Tomoda T.i Phys.Lett., B194, II (1987).

Muto K., Klapdor H.V.: Phys.Lett., B201, 420 (1988).
6. Kuzmin V.A., Soloviev V.G.: Pisma JETP 47. 68 (1988).
7. Kuzain V.A., Soloviev V.G.: Nucl. Pbyse, 1486 , 118 (1988); Mod. Phys. Lett.: A3, 1533 (1988).
B. Suhonen J., Faessler, Taigel T., Tomoda T.: Phys.Lett., B202, 174 (1988).
Suhonen J., Taigel T., Faessler A.: Nucl.Phys., A486 91 (1988).
9. Soloviev V.G., Sushkov A.V. : Phys.Lett., B216, 259 (1989).
10. Soloviev Y.G.: Particle and Nuclei 2, 580 (1978) (Transl. Sov. J.Part. Nucl. 2, 343 (1978)).
Malov L.A., Soloviev V.G.: 1dem 11, 301 (1980)
(Transl. Sov. J.Part. Nucl. II, 111 .1980).
11. Soloviev V.G. : Teor.Mat. Fiz - 53, 399 (1988).
12. Soloviev V.G. : Prog. Part.Nuol. Phys. 19, 107 (1987).
13. Soloviev V.G.: Theory of Atcmic Nucle1, Quesiparticle and Phonons, Moscow: Energoatomizdat 1989.
14. Soloviev V.G., Shirikova N.Yu.s Z.Phys. A. - Atoms and Nuclei 301, 263 (1981).
15. Soloviev V.G., Shirikova N.Yu. e.a.: Izv.Akad. Nauk SSSR Ser.Fyz. 45, 1834 (1981).
16. Soloviev V.G., Shirikova N.Yu.: Yad.Fyz. 36, 1376 (1982).
17. Nesterenko V.O., Soloviev V.G., Sushkov A.V., Shirikova N.Yu.: Yad.Fyz. 44, 1449 (1986).
18. Karadjov D., Soloviev V.G., Sushkov A.V.: Preprint JInR E4-89-55, Dubna, 1989.
19. Soloviev V.G., Shirikova N.Yu.: Izv.Akad.Nauk SSSR Ser.Fyz. 52, 2095 (1988).
20. Soloviev V.G. $:$ Piama JEIP, 40, 398 (1984); Yad.Fyz. 47, 332 (1988).
Soloviev V.G.: Z.Phys. A - Atomic Nuclei 324, 393 (1986). J. Phys. G. - Nucl. Phys. 14 Supp. S. 39 (1988).
21. Soloviev V.G. : Preprint JINR P4-88-845, Dubna, 1988, Z. Phys.A.
22. Soloviev V.G.: Preprint JINR, E4-88-737, Dubna, 1988.
23. Malov L.A., Meliev F.M., Soloviev V.G.: Z.Phyg. A Atoms and Nuclei, 320, 521 (1985).
24. Soloviev V.G.: Theory of Atomic Nuclei. Nuclear Models, Mogcow: Energoiddat 1981.
25. Nettles W.G., Ramayya A.V. e.a.: J.Phys. G.: Nucl. Phys., 14, L223 (1988).
26. Govil I. M., Fulbright H.W, e.a.s Phys.Rev., ©́33, 793 (1986); C36, I442 (1987).
27. Davidaon W.F., Dixon W.R., Storey R.S.: Can. J. Phys. 62, 1538 (1984).
28. Burke D.G., Maddock B.L.W. e.a.: Nucl. Phys., A442, 424 (1985).

Burke D.G., Davidson W.F. e.a.: Nucl.Phys., A445, 70 (1985).
29. Walker P.M., Carvalho J.L.S., Bernthat F.M.: Phys.Lett., 116B, 393 (1981).
30. Gonging W.: Nuclear Data Sheets 51, 577 (1987).
31. Cresswell J.R., Forsyth P.D., Martin D.G., Morgen R.C.: J. Phys. Ge: Nucl. Phys. 7, 235 (1981).
32. Burke D.G., Blezins J.W.: Can. J. Pbys. 60, 1751 (1982).
33. Walker P.M., Paber ड.R., e.a.: Nucl.Phys., A343, 45 (1980).
34. Browne E.: Nuclear Data Sheets 54, 199 (1988).
35. Ronningen R.M., Hamilton J.H., Ramayya A.Y.: Phye.Rev., G15, 1671 (1977).
36. Hegue A.M., Casten R.F. e.a.: Nucl.Phys., A455, 231 (1986).
37. Barfield A.F., Barrett B.R., Wood J.L., Scholten O.: Annals Phys., 182, 344 (1988).
38. Malov L.A., Nesterenko V.Q., Soloviev V.G.: J. Phys. G.: Nucl. Phys., 3, L219 (1977).
39. Yoshinaga N., Akiyama Y., Arima A.: Phys.Rev., C38, 419 (1988).
40. Ichihara T., Sakaguchi H. et al.: Phys.Lett., 149B, 55 (1984);
Phys.Rev., C36, 1754 (1987).
41. Nesterenko V.O., Kukhtina I.N. e.a.: J.Phys., G: Nucl. Phys. 14, 725 (1988).
42. Soloviev V.G.: Rev.Roum. Phys., 33, 947 (1988).
43. Matauo M., Mateuyanagi K.: Prog.Theor. Phys., 74, 1227 (1985); 76, 93 (1986).
44. Piepenbring R., Jammari M.K.: Nucl. Phys., A481, 81 (1988), A487, 77 (1988).

Received by Publishing Department on March 29, 1989.

