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1. Introduction 

One of the most challenging problems in the microscopic theory 

of nuclear structure is to develop a suitable approximation scheme 

for describing collective motion 1). The basic difficulty consists in 

the separation of the microscopic many-body Hilbert space into a col­

lective and noncollective subspace. Such a separation requires that 

the hamiltonian of the system provides no serious coupling between 

the collective subspace and its orthogonal complement. Namely, the 

collective subspace must be an (approximate) invariant subspace o£ 

the hamiltonian. In group-theoretical models 1 - 5), the hamiltonian 

is artificially devised from the outset so as to automatically ful­

fill this "maximal-decoupling" condition. In actual nuclei, however, 

the choice of the proper collective subspace satisfying the maximal-

decoupling condition is quite a formidable problem because of chara­

cteristic effects of the shell structure as well as the large number 

of nucleon states contributing to the collective mode. Usually, the 

most important collective degrees of freedom can only be "guessed., 

on the basis of physical intuition. A typical example is the inter-

acting boson ) '-8) approximation {IBA , which has achieved considerable 

success in nuclear applications~) and whose microscopic justification 

is currently one of the most exciting areas or nuclear structure 

physics 111 -i .. ). Once the fundamenta1 collective degrees of freedom 

are specified, the actual structure of the collective subspace can 
1S -~0) be determined by several methods , based predominantly on the 

variational principle. 

Besides the above "heuristic" approach to the collective subspace, 

much effort has also been devoted to formulating a theor: of an opti­

mally decoupled collective motionJi-Ji), which aims at specifying the 

proper collective subspace from the dynamics of the system ( rather 

than assuming it a priori). fhe attempts in this direction have been 
J<-.U) undertaken within the framework of various "semiclassical" methods , 
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but· recently, there have also appeared some works dealing with the 

fully quantum n:ech&nical f'or~ulation .l't-3i). 

In this paper we try to combine both the "heuristic" and the 

''theoretical" approach. Cur basic idea is as follows. lie start .from 

the nuclear shell-model hamiltonian with appropriate single-particle 

energies and an effective two-bod7 nucleon-nucleon interaction. 

Instead of extracting the collective degrees of freedom in the fer­

mion space ve first transcribe the original shell-model hamiltonian 

in terms of many interacting bosons and study tte whole problem in 

the boson space. There are several reasons that make the use of a 

boson representation advcntageous: 

1) it is known from experiment that the low-energy collective exci­

tations of' nuclei are approximately bosonic in nature ; 

2) the bospns, if suitably chosen, may represent rather complicated 

fermion configurations, thereby incorporating a good deal or the 

:fermion dynamics in a simple manner to ,:sz. 1 SS) j 

3) the boson formulation enables us to make contact with phenomeno­

logical models s•.~) in terms ot which we have most of our physical 

insight into the nature of collective states j 

4) tb~ use o:f boson operators acting on the toson space makes the 

calculations simpler. 
"- .,) Among various bosonization schemes we have chosen the Dyson 

representation lfL.,&t!.) because it yields a hamiltonian with at most 

quartic terms in the bcson operators and it has proved to 

powerful method for the description of nuclear collective 

of:fer a 
.. -11)' 

motion • 

Once the boson hamiltonian is constructed, we diagonalize its one­

body part. This diagonalizetion enables us to identify (in the :first 

approximation) the lowest-energy eigenvectors with the collective 

degrees of treedom. The tw·o-body part ot the boson han:.iltOnian then 

naturally contains terms which couple these collective bosons with 

the noncollect·ive (hig.ber-energy) ones. As a second step in O'.ll' way 
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to determining the "true" collective subspace {i.e. an approximate 

invariant subspace of the hamiltonian) we introduce a canonical 

transformation which eliminates the above coupling terms in the bo­

son hamiltonian. This means that the collective bosons determined in 

the first step generate an approximate invariant subspace of the 

transformed boson hamiltonian. By carrying out an inverse transfor­

mation of the collective part of this transrormed harr.iltonian, we ob­

tain the original boson hamiltonian in terms of new bosons which con­

tain both collective and noncollective components. These new (renor­

malized) bosons then span an approximate invariant subspace of the 

original hamiltonian, and therefore, they can be regarded as the true 

collective degrees or freedom. In this sense our approach is "theo­

retical" because it utilizes nothing but the dynamical decoupling 

condition. On the other hand, we assume that the low-energy eigen­

vectors or the one-body part of the boson hamiltonian already consti­

tute the main components or the true collective bosons. In this sense 

our approach is "heuristic". 

The overall ideology of the present paper is rather close to that 

of refs •. U-li). The principal aim is to formulate and test a quantum 

mechanical method for determining an optimally decoupled subspace 

which would be able to describe collective motion in nuclei. However, 

there are some differences in the way ot achieving the goal as well 

as in details of the formulation. In ret.l1), the guiding dynamical 

principle to deter$ine the collective subspace is the invarience ot 

the equations of motion under the transformation into the collective 

representation. In refs. JO,lf) the dynamical collective subspace is 

determined so as to satisfy a stationary condition with respect to 

variations toward the noncollective degrees ot freedom. I.n our ap­

proach the basic dynamical condition is the explicit elimination of 

coupling terms in the hamiltonian expressed in terms of both the col­

lective end noncollei::tive operators. The essential point o! all the 
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three approaches is the nonlinearity of the transformation to the 

collective operators. In practice, the corresponding expansions must 
,_,) 

be truncated at a rather loW' order , including only the first 

nonlinear terms. In our approach we use a specific kind of the mean­

field approximation (MFA) 11' u,r,.cr) which enables us to take into account 

., -") 
approximately all the higher-order terms neglected in refs. • 

The "'A acts coherently with the decoupling condition because it gi­

ves rise to some averaging of collective motion with respect to the 

noncollective variables. The last point in which the present approach 

differs !rom that or refs. ""'-M) concerns the. unphysical (spurious) 

boson states violating the Pauli principle. The authors of refs. 301 ·H) 

do not worry a~out this problem at all and in ref. J') a claim is made 

that the low-lying collective states are not expected to contain es­

sential contributions from spurious components.we discuss this problem 

in more detail and we particular11 point out its relation to the qua-

lity of decoupling. 

The paper is organized as follo.,.,·s. In sect. 2 we present the re­

levant formalism along the linea given above. In sect. 3 we apply the 

proposed method to the multi-level pairin~ hamiltonian and give ex­

plicit results for the even isotopes of Sn 1 Ni and Pb. 

Sect. 4 contains a summary and perspectives. 

2. Outline of the method 

2.1. BOSOBIZATION OF THE FERMIO" HAMILTONIAN 

We consider a system of an even number of identical nucleons 

moving in several nondegenerate shell-model orbits. The nuclear ha­

miltonian within the model space is assumed to have.the form 

H • L, t; o.~ a; + ">'. "Vnt a.+, a.•· a.~ a.l ( 1 ) 
i fidA d 

where Ji , «t are the creation and annihilation operators of the 

valence nucleons in the sinsle-particle states i e ( "' 1 li 1 j• 1 "'i) 1 
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€; stand tor the corresponding single-particle energies and the co­

efficients Vtjlt represent the antisymmetrized matrix elements of 

an effective two-body nucleon-nucleon interaction. ~he indices i,j.k,t 
in (1) run over a complete set of single-particle states within the 

selected model space. The hamiltonian (1) is assumed to have the usu-

al properties with respect to the space rotation, time-reversal and 

hermitean conjugation. In particular, the coefficients 1l~~f are re­

quired to satisry the relation Vijkc. • Vuij As explained in the 

intrOduction, it is convenient to analyze the original fermion problem 

in the boson space. For this purpose we introduce tbe boson creation 

and annihilation operators b~j and b;; , which satisfy the follo..,ing 

antisymmetry and commutation relations 

b\ ~ -bt• ( 1,) 

(bij, b •• ] • [btj. bt,] • 0 J (3) 
[ b;i , b\,) • Oil djc- dit di• 
These boson operators, together with the boson vacuum IO),, b~·I0)8 =C, 

define the relevant boson space within which we intend to 
f t 

the following. The rermion pair operators a.;ai , a.jai and 

work in 

a~a· can 
' I 

be mapped onto the corresponding boson images according to the famous 

generalized Dyson prescription lt.l.,ltl) 

f t t bf ._., bt bt b (~ .. ) 
n+,.o.f. _,. (Cl·O.·) = tc·· = ;; -L.J •• J" ~· 
"" 1 ' I ~ ·~ f .,. 

dja.i _. ( O.jlli)o = b;A (it~.) 

Q~Qj - co*;ai). = ~ b;, bl. (~c) 
The superiority of the Dyson mapping (DM) over other bosonization 

procedures l4-'i) lies in the finiteness of the boson expansion. On the 

other hand, the nK has an outward demerit that the transformation 

from the .fermion to the boson space is nonWlitary((a.jqi)! :/: (a~a.j)D], 
so that the mapped boson ha~iltonian is nonhermitean. This fact has 

long been the major impediment for the practical use of the DM. Today, 

however, the difficulty associated with the nonhermiticity of the 
S0-51.) 

Dyson boson hamiltonian is completely solved , and thus, one can 

fully exploit the advantage of the DM as to its finiteness. ~oreover, 
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"-.. ) it bas been shown that the Dyson representation provides a 

very fruitful and promising framework for the description of nuclear 

collective motion4 

Using the expressions {4a} - (4c) , we can easily 'W'ri te down 

the Dyson boson image HP of the shell-model hamiltonian (1) 

H. • ?;; ( t, o;k ~.i • v,i") b~- b.. - "> v'i" b~~ bJ. b.. btt 
I J jftr-:111 A 

(5) 

In accordance with the structure of H0 we can define a set of nev 
+ operators 13-.: , J!,oe such that the following relations hold 

[B· I 11-;., J 
• f 
H. 11, I o) 0 

• 

( "') 

+ E, 1!.1•) 8 (6c) 
+ That is, the operators "! 11 create bosons which are linear combina-

tions or b+ia , and the one-boson state "?>t I 0) 8 is an eigenstate 

of H • • Substituting ( 5) snd ( 6a) into ( 6c) , we obtain 

.., " .... . 
Together with the normalization relation 4 <l>;i T ;J· 

'J 
this is a standard linear eigenvalue problem. The symbol 

1 ' 
o( with 

values 1,2, ••• ,M (M•number of independent pairs of indices i~j) 

is used to label the bosons ~~ according to their energies Eet 
as follows: E.., S Et. ~ ••.• The boson "J! is thus the most col­

lective one, being characterized by almost equal contributions 

.from a larce number o:f b~·j ~ boson a. The higher is the index 0/. , 

the lower is the degree of collectivity of ~ i.e. there occurs 

a definite pair or indices (i,a") • (k,l) , f'or which ~~t:::: ~ 
while for (i, a') ""(l.,t) the coef1'icients cf>~i tend to zero. Of co­

urse, details of this behaviour depend on the hamiltonian as well as 

on the single-particle levels considered. In order to be able to 

express Ho in termb v! the boson operators 'B!. , B.c , we demand 
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that the transformation (6a) be unitary, i.e. 

:z <1'~­
ij ~ 

:z "''i • 

•' "''i bd 

"'r. • tc J.. Ji• - b;, J"rl 
(8a.) 

(8h) 

The condition {8a) is equivalent to the requirement (6b) • The most 

important consequence o~ the relation (8b) is that it enables one 

to invert (6a) , 

lt,i • l'T~ "'; "B~ ('I) 

Using (7) , (8) snd (9) , we obtain the boson hamiltonian (5) in 

the form . 
H. 

where 

snd +1i 
:from (10) 

• 

' 
( 1o) 

{11) 

E~ are all possible solutions of eq. (?) • As is seen 

the effect of th~ transformation (6a) under the condi­

to diagonalize the one-body part of the boson hamil­

tonian ( 5) • Since t-he new bosons -:B! already incorporate some o:t 

the nucleon correlations [see eqs. (6a) 1 (?)], the interaction 

between the ~! bosons is expected to be relatively weak when com­

pared to their Wlperturbed energies 'Eo~: • To be more precise, let 

us denote the typical value of the coupling strength_in (10) by V. 

Let further t.E -.. E. - Ec be the typical value o:f the energy dif­

ference between the noncollect~ve and collective bosons. In the 

tion (6c) is 

concrete numerical examples discussed in this paper we then find 

O.l - 0.2, . ( •1.1,) 

2.Z. EXTRACTION OF THE COLLECTIVE DEGREES OF FREEDOM 

The Dyson hamiltonian (10) acts on the boson space G :fl"~if•J),J 
spanned by a set of states 

( 13) 
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where N•.!!... 
2. is half the number of valence nucleons considered 

in the original fermion problem and the symbol f~J stands for the 

, olN ~ • Let Me be the minimum kinds of boson ope-

rators necessa~ tor describing the collective states. Let further 

m, • m. be two subsets 0~ m such that 

m, c f 11 2., ... > M,3 ( 1~) 
m . • ~ M .. H, ··· 1 M l 

Accordingly, we can separate the boson operators "B! , "1,« into the 

collective ( o:oC € 1Tlc) and noncollective ( o1 c: 771 .. ) ones. In the fol-

lowing the collective indices cl 1 B , E. me. vill be denoted 

by C1 t CL 1 • • • 1 While thOSe belonging tO the Set m" (the DODCOl-

lective ones) will be denoted by Pl 1 , nL, ••• Now, we intro-

duce two orthogonal subspaces of the boson space G 

G,' fiN; fcl).~ 
' 

G, :! JN; l"J).~ c;:, <!> G, • ' 
whose basis states are given by 

IN;I•l). + ~ + 
Ci £..me • ~r., ~e .. .... ~ •• \0). 

' 
(iS") 

Ilereaf'ter, Gc will be called the collective subspace, W"hile its 

orthogonal complement G., ••ill be called the noncollective sub­

space. Note that the number of collective bosons (M&) remains un­

specified at the present stage. To determine it, W"e are guided by 

the properties of the solutions of eqs. (?) in the concrete physi­

cal situation. This is the "heuristic" feature or our approach. 

Let us now consider the matrix elements of the Dyson hamilto­

nian (10~ beh•een the collective states (15) .. Since tbe hamilto­

nian H 0 is at most two-body, all that one has to know in order to 

evaluate its matrix elements between any two states of the form (15) 

are the commutators 

r A.,:s!JJo'>, 
,(oi[:S., A.J c 

E, 11~ /0)8 

E.,(oi"Bc 

8 

( f4•) 

(1H) 



' t + J [[H. I B,,] I Jl,, 

r :B., ~r:s,., li.l] = .t L.! Wc:,c.,csC, ~c:. ~e, .... 
+ 2,. 'L'Wc.·c,.c"':Be-p."' + .Z.~We,c~"c"]."'!c 

" 
+ 1 .L:; We, c.•, "'• :B ... "!.,,_ 

"'"' 

(18 .. ) 

' 
It is seen from the double commutators (18) that the hamiltonian HD 
by acting on the pure collective states (15} produces new states 

which have non-zero components both in the collective subspace (15) 

and in its orthogonal complement (16) • In other Words, the colle­

ctive subspace spanned by the states (15) is ££1 an invariant sub-
' 

space of the hamiltonian Ho . The coupling between the collective 

and noncollective subspaces is caused by the terms 

( 1'1) 

appearing in the double commutators (18&) and (18b} • 

In order to find the true collective subspace with the property 

of invariance under the action of HD we haye to speciEy new . 
operators in terms of which the hamiltonian H D does not contain 

the coupling terms. To achieve this, we first introduce a canonical 

transformation 
• ' 

<ft. eG H. e 
-G 

H. ...... (.to) 

with the generator 

• L: ~~ 11; 11¥ ll • G s. t16k& d.,,. 
' 

determined so that the transformed ha~iltonian ~P conserves 

(up to a certain order) the subspace spanned by the states {15) 

Using the forrr.ula 
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G A -G e • e H, - rli.,iJ + t[IH.,,L&J (.a) 

we get 

' z E. -(J. +L: + + ":B ( .13 ... ) :Jt • • G •• ,, .~. 1!~ 1!, • i • . . 
• tl.&,~ 

where 

G •• ,. w •• ,~r - 8 .. ,. (e.. + E.t> - E. I - E, ) (L~b) 

and the dots represent the three- and more-body boson interactions 

which will be neglected in this paper. We now require that the one-
' plus two-body part of ~ 0 , given explicitly in (23a), does not 

couple the collective subspace (15) to the rest of the boson space, 
A 

i.e. that ~D satisfies the following commutation relations 

( 

A + + ['Jt.,1!.,],1!.,] = 

[ 1!,., [ l!e,., i.J J c l L Gc.,e .. ~c., l>e_. "Be" • r,e, 
It is clear from (18a,b) that this requirement Can be achieved 

by putting 

(:..>) 

i.e. by eliminating the coupling terms of the form (19) Substi­

tuting {23b) into (25) , we obtain for the coefficients Sd•Ji , 

determining the generator (21) , the following expression 

w..,. 
, 

where the quadruplet or indices ( J r..r ~) belongs to the set 

1(. .: ~ (c~c1 c,),(hc.c 1 e~.),(lllt~~tc,),(t1Csett) 1 (t1 c,nc)lt,~l'l11'1a.)} (.tl) 
. 

Wote that due to the nonhermiticity of the Dyson hamiltonian HD 
[Wtl&tli r} W 1¥-.,. - see eq. (11) J , the transformation induced by 
the operator eG is not unitary • 

• With G specified by (21) , (26) and (27) , the trans~ormed 
~. = ec H·. e-c hamiltonian ~ ccntains no two-body terms that 

couple the collective and.noncollective subspaces, spanned by the 

states (15) and (16) , respectively. In other words, the one- plus 
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... l. .. :I " 
two-body part ~I> of the hamiltonian ~D satisfies the commu-

tation relations (24a,b) , which means that the collective subspace 

(15) is left invariant under the action of ~ I•! • <1\.o Of course, 

contains the three- and more-body coupling terms as v.'ell (they are 

marked by the dots in eq. (23a) ) • However, the contribution of 

these terms is expected to be rather small, because they appear 

proportional to rW 

down quite rapidly t see (12) J 
, so that their magnitude falls 

Nevertheless, at least the three-

body terms mi,ht be important in certain cases and some results on 

this point will be reported soon. 

Now, with 

transform i 
the use or the benerator G , we can construct the 

of any operator X 1 

X • x- [x,cJ•-b[[x,i:J,i;J 
~_d_ '' . -~ L, -;_, [ ... (X,4:], ... ,G] 
l .. o · 

(.t8) 

~ 

In particular, for we have 

where 

.t~'t (, ..... , .. ,.tl + ~6.1~ot.l,.)(~~ ..... .t,., + s. .. , ... &.,.....,) 

- (~ ........ cr .. + !J ....... .,.,.) ~ ... , ...... , ... ,. ~ ' (lob) 

the quantities ~ot"'¥' are given by (26) and all summations L:' 
are restricted in such a way that, for a given c( 1 all indices 

attached to the ~ ' s belong to the set ~ &iven by (2?) • It is 

seen from {28) and (29) that the transformed bosons 

~ .,+ -& 
e -Dot e 

{l1) 
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are complicated many-body operators involving infinite expansions 
~ 

in terms of ")... , :i.t • Hence approximations are necessary in prac-

tical applications. In this paper we follow the approximation which 
has been suggested in ret. 5~) and applied to some realistic problem 

in ref.~~) It consists in replacing the operators of type ~+B 
and :!+F"'B ~ in (29a,b) by their expectation values in an appro-

priate state. More precisely, we make the replacement 

t (l~. ~ •• ) :!!. } (l:,o.) 

'!~. ~~ '!~) 'B,,~ .. ,. _.,. 1 ~ < i:. .. :B~~ A,~~ B .. ,.)~~ -t 

+ (ll:s.t,s....s¢ :!~, • (ll"l,s!;s..,""..,_) ~t l , ( m) 
where 

• (X) (33) 

with 

p,+ • '-=::;' C' "A+_, 
LJ. d • 
• 

z iJ-1' = 1 
" 

and N • ~ is the number of bosons 

valence nucleons) The coefficients 

(equal to half the number of 

v~ are determined variatio-

nally by minimizing the expectation value of the boson hamiltonian 

(10) in the state ~ Cf})Nio) 1 . This boson condensate is an 
. ) s• S'!) example of the (number-projected coherent state ' which has pro-

1t110 lt'f b-U') ved to be very useful in treating the many-boson systems 1 1 
• 

Under the approximation (32) , we obtain from (29b) the following 

approximate expression for the double commutator 

where 

= 

J. L: 1 (u, .. ,.hol + u .. ,4o~..~,) (!-+~ .. 'l.- .. ) + 
l. .-...~ .. 

+ 1 'Ls ( '1Tot,4.a .. .~,.~,ot + ttr_. ... , .... .ttol'.l~ + /11'oe ..... .a .. """,,.~) 
... .~~ .. ,J, 

X < ~~. }!~, :B.t, :!>.t,. '> 
.,...i th tl... and ttr. given by (3Ca) and (30b) , respectively • 

12 
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Within the approximation (35) we have 

[ [ + • ] • J • ] ... 1lf . . . Jl,. ' ' ' ' . . . ) c; '?• « 
.~. .. 

~ .0, ;. A [ ... ["B,,G], GJ, ... , (;] 
J.WJ + f 

so that [ see (28)] 

~~ = ec :E~ e -G ~ f ~. ~! "1•-] "B! 
- 1 ~) + • - f ~. (i;;;fJ! 't• J ["B. I G] 

By evaluating the sums id (37) we get 

+ 1 ( ) + '] 

(3,b) 

(3l) 

(3a). 
+ I ... g(ff-')1!. - ~ ...,g v.;;' [:B!;, ~ j 

2~ " .~+· 
ol CA-o(h•') l!~ - v-1'' s-< .. ( l -l· )[:B.'~ J j 

Using the explicit expression (29a) ror· [:B~ 1 G,] 
obtain 

where 
u.((~) 

r, = l .,...('/-1.• ') ' 
"1.• ~ 0 

"t• < 0 

In a completely analosous way ve get 

~ _, w: :rt( :s.r - L. s .. .~.~~.L,. 
g; "-"'• ... , 

I 

I 

, we finally 

(3%) 

"1• ~ 0 
(3'e) 

"1• < 0 • 

( 4-o) 

Since the transformation e G is not unitary, one has in general 

(!B~ )t :f ~~ , i.e. the coefficients Y,. 1 :S.,..,•..t.."'.s in ( 40) are 
not the complex conjugates of Y.,.. , S .,_ "•.A .. ..r,_ appearing in (39a). 

A With the aid or (31) and (10), the transformed hamiltonian ~ 
can be written as 
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S11bstituting into (41) the expressions (39) and (40) , we obtain 

the transformed hamiltonian in terms of the original bosons ~! .~. 

Since the transformation H,.. ....,. i.D .::= ec HD e- c. has been designed 

so as to eliminate the two-body coupling between the collective 

and noncollective subspaces spanned by the states (15) and (16), 

respectively, we have 
A 

+ 6 ~D 

where 

- + • Z, E.~. '!e (~>) 

• 
is a one- plus two-body hamiltonian acting on the collective sub-

l..f~ :•"ntf 
space (15) , ~~ is a one- plus two-body hamiltonian acting . 
on the noncollective subspace (16) and A ~D involves all the 

• 
three- and more- body boson terms. As already explained, A ~D is 

expected to have a small effect on the collective quantities and 

its discussion will be postponed to a forthcoming paper. The para­

meters Ec , W~.c.s.c.,e. appearing in the collective hamiltonian (43) 

are given by 

~ w.t..t .. r,ct r ... & s.~,c,c,J., fe, Tc, t L,""'ti,J__.,.t,l".t,S..t,E,E,.t .. T.:, S..~..tJr,.e., 
.l.,.c, "··--'~-

~ 
. 

The collective hamiltonian *~ thus has a form o:t HI> truncated 

to collective bosons [cr. eq. (10)], but the associated collective 

parameters Ec , We.c'"c,c., are replaced by some renormalized valu-

according to {44a,b) • From the physical point 

of view, the source of the renormalization is the coupling between 
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the collective and noncollective de€rees of freedom. Technically. 
however, there are two different mechanisms giving rise to the 
renormalized collective parameters. The first one is the contrac­
tion of some many-body terms arising from the multiple commutators 
in (28), (29) It ~s closely related to the presence ot nonlinear 
terms in (39) , (40) , and therefore, it is essentially governed 
by the quantities s.,~1 6 , Stt~t& . This feature of our approach 
is completely shared with the approaches presented in rets.l'- 31). 
The second mechanism of the renormalization has its origin in the 
mean-field approximation which enables one to achieve the + .. • + double commutator [['Bot, G] 1 f:] to be proportional to :! II/( , there-
by making it possible to evaluate approximately an averaged contri­
bution of many terms in the transformed operators. This mechanism 
manifests itself mainly through the coefficients t., , T~ in (39), 
r~o) and it leads to the renormalization of the one-boson energies 
[see (4~a)]. This is a specific feature of our approach and it is 
not encountered in ref's • .. vtf - 31

) , where rc .. rc • 1 
Now, we perform an inverse transformation of eq. (42), 

• Neglecting 6 ~.D and denoting 

-c e 
• ie":"" ec (H) 

we obtain 

• - + Hb • L, E. "B,ll • 
• 

• .-.« + ) + Hb (11.,&. • 

+ It is seen from (48) that in term: of the new operators ~- , 11. , 
the original boson hamiltonian HP is expressed (up to the two­
body terms) as a sum of a collective and a noncollective part 
without their mutual coupling. ~thin this approximation we can 

+ therefore regard tbe operators llc, 1 llC",· as representing the true 
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collective degrees of freedom and the hamiltonian 

H:'" • L, E, B~ '1, + L. Wc,<,c,c, 'I!,B!_B,,Bc, ( It~) 
c C1f&¥t 

as the true collective hamiltonian. The operators 18•, 1!! satisry 

the ordinary bosonic commutation relations 

[B .. I ~~ J = 
(so) 

because the transformation ( 46) is canonical. On the other hand, 

"Bee (' CBt)+ , in general, because this transJ:ormation is not uni­

•+, 
tary. Within our approximations, the true collective bosons ~ 

can be written as 

= Y'eo :B! + L. Sc.I,.I•.As '13!, ~~,_'JS,aj. 
""'"'"'" 

(5~) 

Due to the nonlinear terms, they contain both the collective (~1) 

and the noncollective r~t) original bosona, thereby incorporating 

the- effect of the latter on the true collective subspace (defined 

as an invariant subspace of the Dyson hamiltonian HD) . 

The general program we intend to carry out is as follows. 

First we choose a realistic but simple fermion problem which allows 

for an exact solution. Ve map exactly the fermion problem onto the 

boson one and rind the one-boson eigenstate& of the mapped hamil­

tonian. Being guided by the properties of these eigenstates, we 

choose the "first-round" candidates for tbe creation operators of 

the collective degreea of freedoa, i.e. we specify the set of in­

dices ci •1J.t.1 ... 1 H,[cr. (14)]. Then, using the procedure described 
~ ~ 

above, we calculate the renormalized parameters Ec; • We,e,t,c, 

according to the formulae (44a) , (44b) . Witb these parameters 

we construct the collective boson hamiltonian (49) {or equivalently 

its transformed version {43) ) , diagonalize it on the respective 

boson space and compare the resulting eigenvalues with the exact 

ones. Of course, this comparison makes sense only for the lowest­

energy states because the higher-energy ones can hardly be consi­

dered as collective • If a &Ood a&reement is obtained, one can be 

reasonably sure that there indeed occurs a decoupling ot the sele-
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cted collective subspace from the rest of the many-body Hilbert 

space. It the agreement is not good, either s.ome of the approxima­

tions involved in the treatment ar~ unjustified or {perhaps more 

probably) the preliminary structure of the collective subspace in­

ferred from the one-boson system is oversimplified. One then tries 

to enlarge the assumed "first approximation" collective subspace 

and to perform the calculations anew. In this way, the present app­

roach is able to provide information not only about the. dynamics of 

the system (which is described by the collective hamiltonian) but 

also about the structure of the collective subspace. Before carry­

ing out the outlined program in practice, however, another serious 

obstacle has to be overcome. 

2.3. APPROXIMATE REMOVAL OF UNFHYSICAL BOSON STATES 

1 """) It is well known 1 that the diaEonalization of any boson 

image of a fermion hamiltonian in the boson basis produces not only 

the eigenvectors corresponding to actual states of the underlying 

fermion system but also the unphysical (spurious) ones. These spu-

rious states have no physical meaning because they are associated 

with ~he overcompleteness o£ the boson basis with respect to the 

space available for fermions. Provided an ~ boson image of the 

fermion hamiltonian is diagonalized (e.g. that given by (10)), 

the physical and unphysical boson eigenstates are strictly separa­

ted from each other and various recipes have been given to identify 

"""') them • However, this is not the case when some truncation of 

the exact boson hamiltonian is made. Then, the physical and unphy­

sical boson states are no longer well separated, i.e. all eigensta­

tes of the truncated (collective) boson hamiltonian contain in ge-

neral both physical and unphysical components. The unphysical com­

ponents can be removed by means o! the projection operator onto the 

"") . physical boson subspace ' but the projected collect1ve boson 
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states become no more involved within the collective boson sub-

space. This can easily be understood as follows. The above-mentioned 

projection operator can be written as "' lf:J) 

Ci:l -
""l'kl$ 

"" t+ + 2:, dn)! Z:. 'P;,j,1i.j • ... l';,j.lo),.(o/ b;•J• .... b;,j. b;.J, 
.... o ·····'• 

;~···i"' 
where -pi~ and b;j are the Dyson boson images of the fermion pair 

• + operators a:;a.J and a.Jai , respectively [ see eqs. (4a), (4b)] • 

When expressed in terms of a complete set of collective and non­

collective bosons, the "Pauli-corrected"""' operators -p,~ contain 

both .of them , and thus, the operator ~"'I' , acting on a purely 

collective boson state, leads out of the Collective subspace. The 

situation is very similar to that discussed in sect. 2.2 with res-

pect to the hamiltonian. Now, let us i~agine for a moment that we 

have achieved an exact decoupling of the collective subspace from 

the rest of the many-body boson space. A necessary and sufficient 

condition for this to occur is that there exist certain collective 

operators ~ith closed commutation relations, i.e. such that they 

do not· generate operators other than the collective ones. In this 

case, however, it was shown on a very general level~) that all the 

noncollective boson operators appearing in 1P; can be omitted 

without destroying the relevant commutation ~elations. This is a 

highly nontrivial result which opens new possibilities for study­

ing the elimination of spurious components from the truncated (col­

lective·) boson states. At the same time, this result emphasizes 

the importance of decoupling for a correct treatment of unphysical 

components in the collective boson states. Of course, in any rea­

listic situation, where the decoupling is not exact, we have only 

a more or less accurate elimination of spurious components from 

the collective boson states. It has been observed that in cases, 

where the decoupling of the collective subspace is rather poor, 

serious pr()blems with the unphysical boson components arise •') • 
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On the other hand, if the decoupling is relatively good (though 

only on a heuristic level) , there are no problems with the spu­

rious admixtures in the truncated boson states .t.o). 
In the case discussed in the present paper we have an exact 

decoupling in the two-body part of the boson hamiltonian and a re-

latively suppressed ("" l 1 "' tt.J ••. ) collective-noncollective coupling 

in the three- and more- body boson terms. We can therefore expect 

a complete removal of unphysical components from the two-boson col­

lective states and an approximate removal of them from the three­

and more- boson states. Let us operate by ~r~s on the collective 

boson state {15) and consider only that portion of the physical 

boson state ~~ IN i id) 11 which is contained within the collective 

boson subspace, 

The fraction 

I N ; !<l ; r~a·) • 
p,., IN ;!<l). 

IN i {•'J). (53) 

is the higher the better is the decoupling of the collective sub-

space and it reaches the value 1 for N ~ 2, where the decoupling 

is exact~ Unlike the states J N j ~cJ) 
13 

, the physical boson states 

r w j \d i r"r)! given by (53) are not necessarily linearly indepen­

dent. In order to remove the possible overcompleteness, it is con­

venient to introduce a new orthonormal boson basis 

IN; .. )) •• f.f :x.j.('JNji<J)B ) 
in which tl1e projection operator 

L 
1
(N ; \clj 4;,,. IN i le'J)1 J~:;' • 

le'J •. 

~ 
-/N,.s) ..,.{N1cr') 
,... i(J .)... tc:J 

' 
~1o.ds: is diagonal, 

~~ (N 1d) 
..-'~N,tr J:{c-J 

(5'1-) 

Possible linear dependence among the physical boson states will 

result in a certain number (k) of zero eigenvalues JfN,<. •01 tS:.=f,z, ... k. 

The correE'ponding bo_son states IN j <o) 8 [ eq. (54)] must ·then be 

excluded from further considerations in order to avoid spurious 
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solutions. It is well known that "• It!) 

~ 

,(N;f<ll P,.l N; !•'J>. E 

where 

A+ • 
" 

lo)ris the rermion vacuum and the coerficients ~~i are the same 

as those derining the collective boson operators "1:-c. [see (6a) 
1 
(?)]. 

In practice ve thererore construct the rermion states (5?) rirst, 
• 

then calculate the boson matrix elements or ~'I" according to (56), 

solve eq. (55) and after excluding the zero-eigenvalue solutions 

'4_:;••) ( .JfN,fl. • 0 ) , we obtain the boson basis. 

IN i c<)) •• 

in which the boson collective hamiltonian with renor~alized para-

meters is diagonalized.We may thus be sure that, within the appro­

ximation explained above, the resultant boson eigenvectors lie to 

a large extent in the physical collective boson subspace. 

3. Application to the multi-level pairing model 

The complexity of any realistic many-particle problem rules out, 

in general, attempts at an exact treatment based on an "eb initio" 

calculation. The single-particle energies and the residual particle­

particle interaction are usually chosen phenomenologically with pa­

rameters fitted to the experi~ental data. Therefore, it is important 

to be certain that the theoretical method used to study the problem 

is reliable 'before a comparison with the data is carried out. For 

this reason •~e consider it sensible to apply our method to a Belva-
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ble "toy" model at first. Such models have become very popular and 

valuable as tests tor the validity of new epproximation methods. 

In order to be useful in practice, the model hamiltonian has to be 

simple enough to be solved exactly and yet it should include the 

most essential features of the realistic problem that we are inte­

rested in. Here we use the multi-level pairing model described by 

the hamiltonian 

+ e.. a. .... a. ... (H) 

where 

A+. • ""' ( )j..•M t t L..J - a. ... a..Q,_ ... 
~>• 

(bo) 

with the index The quantities e. are the single-0.. !1: (YI.,Jl..,Jj"') 

and G particle energies 

raters A! , At~~.. 
is the pair coupling constant. The ope-

and L, a~.., a.. • .,. satisfy the algebra SU(2) X SU(2)X ... , 
~ 

[A~ I A~· J • 6 •• · (.ft. - ~ 0.~ ct •• ) 

[A.· 
1 
~"~.a .• ] 16 ••. A. , 

where ,;}.fl. .. = .Z.J .. + 1 . Due to the simplicity of the commutation 

relations (61} , the hamiltonian (59) can be solved exactly by a 

numerical diagonalization. At the same time, it has been rather 

successful 'fl.) in describing the e:nergetically lowest collective 

states in semi-magic nuclei with only one kind of valence nucleons, 

such as Ni, Sn, Pb The Dyson representation of the operators A!, 
A. ,2: 

• a.~ a...'"" is realized thr¢ugh 

A~ ___, ( '{JC b~ {±"' b: b: b.) 

A. __,. a' b. 

L; f a. .... a. ..... ....... ,_ b~ b. 

where 

[b .. b~·] • &,_a.' [b. lb.·] • [ b~. b~·J ~o ( &3) 

With the use of (63) it is easy to verify that the boson operators 

on the right-hand side of (62) ful!'ill the commutation ·relations (61). 
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The boson image of the pairing hamiltonian (59) then reads 

H. 

This is a special case of the hamiltonian (5) and it is £urther 

treated in the framework of the method described in sect. 2. 

In the present paper we study the low-lying collective states 

(the ground state and the lowest excited o+ - states) of the even 

isotopes o£ Sn, Ni and Pb. For Sn isotopes the neutrons outside the 

Z•50, N=50 inert core are restricted to occupy five (2drJ
1

, 1g'(.,_, 

3sth., 2dslt, 1h"'/
1
)valence levels having 0.0, 0.22, 1.90, 2.20 and 

2.80 MeV unperturbed single-particle energies, respectively. The 

strength of the pairing interaction is taken to beG • 0.187 ~eV. 

In the case of' Ni isotopes the neutrons outside the S Ni inert core 

(Z•28, N•28) are restricted to occupy four (2PJ/r, 1f'']L, 2p111 and 

1g,.,
1

) valence levels with the energies 0.0, 0.78, 1.56 and 4.52 

MeV, respectively, and the value G • 0.331 MeV has been used. The 

Pb isotopes considered have the neutron valence shell more than 

half-filled. Therefore, we exploit the particle-hole symmetry ~A) 
and describe them as hole systems with the Z=82, N•126 inert core 

and five ( 3P"'a. , 2!' "/a , 3plf1 , 1i'"/L and 2f\/2.) levels with energies 

o.o, 0.57, 0.90, 1.63 and 2.35 MeV, respectively. The pairing in­

teraction strength is G • 0.111 MeV. All the values given above 

are taken to be the same as in rer. '~) 

In figs. 1, 2 and 3 we show the ground-state energies or the 

Sn, Ni and Pb isotopes, respectively, calculated in ditterent app­

roximations. The solid lines are the exact results obtained by the 

diagonalization of the hamiltonian (59) • The dotted linea come 

from the boson hamiltonian (10) truncated to the sintle (most col­

lective') degree of freedom :B!.i . ife shall refer to this trunca­

tion as the one-bos_on approximation (1BA) • The dashed lines are 

obtained within the same truncation from the boson hamiltonian (43) 
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Fig.1. Ground-state energies o~ Sn isotopes, calculated in various 
approximations using the pairing hamiltonian(5~). The parame­
ters r~ and G are given in the text. The solid line repre­
sents exact results, the dotted line is obtained within the 
one-boson approximation (1BA) trom the hamiltonian (10) , the 
dasbed line gives the results obtained within the same 1EA 
~rom the renormalized hamiltonian (49) and the dash-dotted 
line shows the standard BCS ~esults. 
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Fig.3. The same as in fig. 1 

for Pb isotopes. 

~ 

with the renormalized parameters E1 ' w11H calculated secor-

ding to eqs. (44a) and (44b), respectively. Since it is useful to 

compare new approximation schemes with the older ones that already 

have an established power, we also display,(as dash-dotted lines) 

the results of the quasiparticle ICS approach 1
) • From figs. 1-3 

two important conclusions can be drawn. First, the renormalization 

of parameters of the boson collective hamiltonian improves the ag­

reement ;.·ith exact results considerably. Second, in the case of So 

and Ni the "renormalized" 1BA results are very close to the exact 

ones, in particular, much closer than the JCS values. However, this 

is not true for the Pb isotopes, which are known not to show such 

strong pairing correlations as Sn and Ni. The failure of the 1BA 

in Pb simply means that the structure of the Pb ground state is 

~ore complicl!ted and cannot be described in terms of only one boson. 

A similar observation has been made in ref. L,) . If we take into 
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Fig.4. Ground-state energies of Pb isotopes calculated within the 
two-boson approximation (2BA) • The dotted line is the 11 bare" 
result obtained from 00) , the dashed line represents the 
"renormalized" result obtained from (49) • The exact and BCS 
results (solid and dash-dotted line, respectively) are the 
same as in fig. 3· 

account two collective bosons 'i~ , '!~ (two-boson approximation -

2BA ) , we obtain the results shown in fig. 4. As is seen, the 

"renormalized" two-boson approximation _then works very well. 

Now we turn our attention to the first excited of- states. 

As an initial "guess" for the structure of the colle,tive subspace 

we take the 2BA. The results ere displayed in figs. 5-7, where the 

solid lines are again the exact results, the dotted lines are ob­

tained by diagonalizing the boson hamiltonian (10) in the rramework 

of the 2EA ( or: • 1, .t) , the dash_ed lines represent the "renorma-

lized" 2BA results [see (43) with C1• ..,_ 111., and (44a,b)] end the 

dash-dotted lines are obtained using the quasiparticle RPA i) • 

Ye again observe an impressive influence of the renormalization and 
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Fig.5. Excitation energies of the first excited Ot- states in Sn 

isotopes. The exact results (solid line) are compared with 

those obtained within the 2BA from 00)(dotted line) and 
those obtained within the renormali.zed 2BA (dashed line) • 

The dash-dotted line represents the results obtained in the 
quasiparticle RPA. 
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a good agreement of the renormalized results with the exact values 

in the case of Sn and Ni, but much a worse one in the case of Fb. 

The results for the Pb isotopes, however, are significantly improved 
+ if we include the third boson ~3 (the three-boson approximation -

3BA) • This is shown in !ig. 8. It is also worthwhile t~ notice 

t.hat, unlike the ground-state case, the quality of our boson appro­

ximation is roughly comparable with that of the quasiparticle app-

roach. 
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Fig.7. 
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Fig.8. Excitation energies of the first excited o+- states in Pb 
isotopes, calculated in the three-boson approximation (3:::·A) 
using the "bare" hamiltonian (10) (dotted line) and the 
"renormalized 11 hamiltonian (49) (dashed line) • The solid and 
dash~otted lines, representing the exact and QRPA results, 
respectively, are the same as in fig. 7• 

Concluding this section, we heve shown that the low-energy col­

lective states of nuclei exhibiting strong pairing correlations 

(sn, Ni) can be microscoPically described with the help of at most 
t~o bosonic degrees of freedom (one boson for the ground state and 

two bosons :for the f'irst excited state) • By the term "microscopi­
cally" we mean that the structure of the relevant bosons has been 
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determined completely by the single-particle nucleon energies ( £.) 

and the two-particle nucleon-nucleon pairing interaction(G}- no ad­

justment of the many-particle quantities has been performed. We have 

also seen that in case of nuclei with weaker pairing correlations 

(Pb) , a satisfactory reproduction of the ground-state energies re­

quires two different bosons. At the same time, three types of bosons 

are needed to describe the properties of the first excited ot-states. 

The last but not least conclusion which can be drawn from our in-

vestigation is that within our method the ground-state energies are 

reproduced better than within the standard BCS approach, and the 

agreement for the ener~ies of the excited states is at least as good 

as in the framework of the quasiparticle RPA. 

4. Summary and perspectives 

In this paper, we have proposed and tested a method for deter­

mining an optimally decoupled coll,ective subspace of the many-body 

Hilbert space appropriate to the description of nuclei. The basic 

ingredients of our approach are the Dyson boson representation of 

the shell-model hamiltonian and a canonical transformation in the 

boson space which eliminates (up to the two-body interaction) the 

coupling between the collective and noncollective one-boson eigen-

states of the Dyson hamiltonian. The method has been applied to the 

solvable multi-level pairing model and th~ results have been compared 

witb the exact ones, as well as with the usual quasiparticle approach 

BCS + QRPA • The renormalization of parameters of the boson collecti­

ve hamiltonian due to the coupling with the noncollective degrees of 

freedom has been found to play an important role in describing the 

lowest collective states of the Sn, Ni end Pb isotopes. The method 

offers a very good approximation to the energies of the ground and 

first excited states of the above nuclei (in general better than the 
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quasiparticle approach). Its peculiar feature consists in that it 

is able to provide information (though only heuristically) on the 

structure of the collective subspace, i.e. not only to optimize va­

riationally the preselected structure of this subspace as, e.g., in 

the BCS approach. 

We have paid special attention to the problem of identifying 

and removing the unpnysical components from the collective boson 

states. We would like to emphasize that this problem is intimately 

related to the decoupling of the collective subspace from the rest 

of the boson space. 

In summary, w.e (believe to) have presented a sound and flexible 

method for extracting the collective degrees of freedom from the 

n:.icroscopic shell-model description of nucle'i. In this paper we have 

restricted our discussion to nuclei with strong pairing correlations. 

A direct extension to other types of nuclei {especially the deformed 

ones with a strong proton-neutron quadrupole-quadrupole intEraction) 

is cornected with three kinds of problems: 

1) an explicit introduction of proton and neutron degrees of treedoa: 1 

2) the angular momentum algebra complications j 

3) an estimate of the importance of the three-body terms in t~e col­

lective boson hamiltonian., because these terms are very likely 

to be non-negligible in deformed nuclei "·") . 
Work on this subject is now in progress. 
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