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1. _Introduction

Cne of the most challenging problems in the microscopic theory
of nuclear structure is to develop a suitable approximation scheme
for deseribing collective motiond). The basic difficulty consists in
the separation of the microscopic many-body Hilbert space inteo a coi_
lective &and noncollective subspace. Such a seperation requires that
the hamiltonian of the system provides no serious coupling between
the collective subspace and its orthogonal ¢omplement. Namely, the
collective subspace must be an (approximate) invariant subspace of
the hamiltonisn. In group-theoretical modelsz"s). the hamiltonian
is artifieially devised from the outset so as to automatically ful~
fill this "maximal-decoupling” condition. In actual nuclei, however,
the choice of the proper collective subspace satisfying the maximal-
decoupling condition is quite a formidable problem because of chara=-
cteristic effects of the shell structure as well as the large number
of nucleon states contributing to the coliective mode. Usually, the
most important collective degrees of freedom can only be “"guessed"
on the besis of physical intuition. A typical example is the inter-
gcting boson approximation (IBA) ‘_8L which has achieved considerable
success in nuclear applications ” and whese microscopic Justification
is currently one of the most exciting areas of nuclear structure
phyaics‘b-1'). Once the fundamental collective degrees of freedom
are specified, the actual structure of the collective subspace can
be determined by several methodsfi—lo). based predominantly on the
variational principle.

Besides the above "heuristie™ approach to the collective subspsce,
much effert has also been devoted to formulating a theory of an opti-
mally dec&upled collective motionli's‘), which eims at specifying the
proper collective subspace from the dynemics of the system ( rather
than assuming it s priori) « Phe attempte in thie direction have been

. -2
undertsken within the framework of various "semiclassical® methods {
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but recently, there have also sppeared some works dealing with the
fully gquantum rmechenical forzulationaﬁ-”>. 7
In this paper we try to combine both the "heuristic" and the

"theoretical® approach. Cur basic idea is as follows. lle start from

the puclear shell-model hamiltonian with appropriate single-particle

energies end an effective two-body nucleon-nucleon interacticn.

Instead of extracting the collective degrees of freedom in the fer-

mion space we first transcribe the original! shell-model hamiltonian

in terms of many interacting bosons and study tre whole preoblem in

the boson space. There are several reasons that make the use of a

boson representation adventageous:

1) it is known from ;xperiment that the low=-energy collective exci-
tations of nuclei are approximately bosonic in nature ;

2) the bosons, if suitably chnosen, may represent rather complicated
fermicn configuratione, thereby incorporating a good deal of the
fergion dynamics in a simple manner 10’35’53) 3

5) the boson formulation enables us tc make ccntact with phenomeno-
logical models”'na in terms of which we have most of our physical
insight intec the nsature of ccllective states ;

4) the use of boson operators acting on the toson space makes the
calculations simpler.

Among various bosonization schemes"-uo we have chosen the Dyson

representation*kﬁﬁ) because it yields a hamiltonian with at most

quartic terms in the beson operators and it has proved to cffer a

powertful method for the descriptionm of nuclesr collective motion‘*-“l

Cnce the boson hamiltonian is constructed, we diagonalize its one-

body part. This diagonalization enables us to identify {in the first

approximation) the lowest-energy eigenvectors with the collective
degrees of freedom. The two-body part of the boson hamiltonian then

naturally contains terms which couple these collective bosons with

the poncollective (higher-energy) ones. As a second step in our way



to determining the "true" collective subspace (i.e. 8n approximate
invariant subspace of the hamiltonian) we introduce a canonicsel
transformation which eliminates the above coupling terms in the bo=-
son hamiltonian. This meens that the collective bosons determined in
the first step generate an approximate invariant subspace of the
transformed boson hamiltonian. By carrying out an inverse trensfor=-
wmation of the collective part of this transformed hamiltonian, we ob=
tain the original boson hamiltonian in terms of new bosons which ¢con-
tain both collective and noncollective components. These new (renor-
malized) bosons then span an approximate invariant subspace of the .
original hamiltonian, and therefore, they can be regarded 23 the true
¢cllective degrees of freedom. In this sense our approach is "theo-
reticel"” because it utilizes nothing but the dynamicel decoupling
condition. On the other hand, we sssume that the low-energy eigen-
vectors of the one-body part of the boson hamiltonian aelready consti-
tute the main components of the true collective bosons. In this sense
our approach is "heuristic”.

The overall ideology of the present paper is rather clese to that

zi-u). The principal aim is to formulate and test a quantum

of refs.
mechanical method for deterxzining an optimally decoupled subspace
which would be able to describe collective motion in nuclei{ However,
there are some differences in the way of achieving the goal as well
as in details of the formulation. In rer.‘f), the guiding dynamical
principle to determine the collective subspace is the invariance of
the equations of motiom under the transformation into the collective
representation. In ref5,3%30 the dynamical collective subspace is
determined so as to satigfy a stationary condition with respect teo
variations toward the nonccllective degrees of freedom. In our ap-
proach the basic dynamical condition 1s the explioit elimination of
coupling terms in the hamiltonian expressed in terms of both the col-

lective and noncollective operators. The essential point of all the



three approaches is the nonlinearity of the transformation %o the

collective operators. In practice, the corresponding expansions must

i9-34

be truncated at a rather low order ) y including only the first

nonlinear terms. In our approach we use a specific kind of the mean-

1 .
" th) which enables us to take into account

JT-H)

field approximation (MFA)
epproximately all the higher-order terms neglected in refs.
The MFA acts coherently with the decoupling condition becsuse it gi~
ves rise to some averaging of collective motion with respect to the
noncollective variables. The last point in which the present approach
differs from that of refs. ' ) concerns the unphysical { spurious)
boson states violeting the Pauli principle. The suthors of refs.’m’o
dc not worry about this problea at all and in ref.") a ¢claim iz made
that the low-lying collective states are not expected to contain es-
sential contriduticns from spurious osmponents.we discuss this problem
in more detail and we particularly point out its relation to the qua-
lity of decoupling.

The paper is orgenized as follows. In sect. 2 we present the re-
levant formalism alang the lines given above. In sect. 3 we apply the
proposed method to the multi-level pairing hamiltonian and give exe
plicit results for the even isotopes of Sn, Ni and Pb.

Sect. 4 contsins a summary and perspectives.

2, Outline of the metheod

2.1. BOSONIZATION OF THE FERMION HAMILTONIAN

We consider a system of an even number of identical nucleons
poving in several nondegenerate Shell-model orbits. The nuclear ha=-

miltonian within the model space is assuned to have the form

-

+ + ¢
H = 2, aa5a; + Zﬁvia‘kl a; 6 &, (1)
1 i
where dL , @; are the creation and annihilation operstors of the

valence nucléons in the single-particle states 1= (n;,(i,ji,'ﬂ;) §



£; stand for the corresponding single~particle energies and the co=-
efficients V,‘,'u_ represent the sntisymmetrized matrix elements of
an effective two-body nucleon-nucleon interaction. The indices i,j,k,t.
in (1) run over & complete set of single~particle states within the
selected model space. The hamiltomian (1) is sssumed to have the usu-
al properties with respe}:t tc the space rotation, time-reversal and
hermitean conjugation. In particular, the coefficients ‘V,'ju are re-
quired to satisfy the relation V-‘,‘Iu. - Vuia' » As explained in the
introduction, it is comvenient to analyze the original fermion problenm
in the bosom space. For this purpose we introduce the beson creation
and annihilation operators Etj and b.‘" , which satisfy the follbwing

sntisymmetry and commutation relations

+ +. 2
by < - b5, (2)

+
(o, bu] = %64 - ] (3)
[b.a ) blt] Sin J‘l &l.sgl .
These boson operators, together with the boson vacuum |U), , b,—ilo). =0,
define the relevent boscn space within which we intend to work in
the following. The fermion pair operators a.f-a? y 42 and a G’tJ can

be mapped onto the corresponding boson images according to the famous

generalized Dyson PTeBCription By, 45) ,
+
d}a‘; )3 = 'J = Z bl! bol'i y (ha)
ajai —» (a.,-a,-), = by , ()
+
dta; —» (oha;), = Z bubp . Che)

i
The superiority of the Dyson mapping (DM) over other boscnization

procedures“'“) lies in the finiteness of the boson expansion. On the
other hand, the DM hes an outward demerit that the tranaformation
from the fermion t¢ the Doson space is nonunitary[(ljﬂi): 4 (ﬂt‘a;‘)p]’
so that the mapped boson hagiltonien is nonhermitean. This fact hes
long been t'he major impediment for the practicel use of the DM. Teday,
however, the difficulty associated with the nonhermiticity of the
DLyson boson hamiltonian is co-mp_letely solved so—s:.) , and thus, ome can

fully exploit the advantage of the DM as to its finiteness. Foreover,
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it hes been shown s'!-sc) that the Dyeon representation provides a
very fruitful and promising framework for the description of nuclear
collective motion.

Using the expressions (48} = (4c¢) , we can eagily write down

the Dyson boson image H_, of the shell-model hamiltonian (1) :

’ + + g4

H, 'Z;,(E; J,-k&‘. ’Vi;u)b-]bn _Z;vijk! bin i boby . (5)
] ijkimm .

In accordance with the structure of H, we can define a set of new

cperetors 'B: , 'B.,t such that the following relatioms hold

Bt ~$2}¢‘; by o, a4y, (6a)
[B« B3] = &, (és)
A, 310y, = ELBiie) . (6¢)
That is, the operators 'Bt create bosons which are linesr combina-
tions of b+"$ y, and the one=-boson state 3&[0), is an eigenstate

~

of Hp . Substituting (5) and (6a) into (6c) , we obtain
(& +€a-)¢P:-:- + J.%V;ju o - E.‘ﬁj . (*)

Together with the normalization relation ZJ‘J q"f(,]' ?.:J * 1 )

this is a standard linear eigenvalue problem. The symbel o with
valueg 1,2,...,M (M=number of independent pairs of inldices i,j)

is used to label the bosons '3: sccording to their energies Eu
as follows: E,$ E; £ ... . The boson 3': is thus the most col-
lective one, being characterized by almost equal contributions
from s large number of b"}j ~bosona. The higher is the index of ,
the lower is the degree of collectivity of ’Bt y 1.e. there occurs
a definite pair of indices (i,j) = {k,8) , for which 4‘:; =1 ,
while for (i,j) #(k,l) the coefficients ﬁd- tend to zero. Of co-
urse, details of this behaviour depend on the hamiltonien as well as

on the single~particle levels considered, In order to be sble to

express Hn in terms of the boson operators 'B‘: + B« , we demand



that the transformation (6&) be unitary, i.e.

er 'ﬁ,‘ ?f;- = Sud' (4a)
2 ‘Pfj ‘Prz = %(5.’* é}z - &t é}.,) . (26)
o

The condition (8a) is equivalent to the requirement (6b) . The most
important consequence of the relation (8b) is that it enables one

to invert (6a) ,

By = VT 9BL . (9)
o
Using (7) , (8) and (9) , we obtain the boson hamiltonian (5) in
the form
~ 4 "
R, = >, Eth‘:BK + Z w.rbgé’ B, B 3335 N (10)
of l’ﬁaf
where
.- W 14 ¥
Waegs = 7 ‘f;ﬁ. Vijee Pim 5 ¥, P (1)
and 4?5 , E, are all possible solutione of eg. {7) . 43 is seen

from {10) , the effect of the transformation (£a) under the condi-
tion {6¢) is to diagonalize the one-body part of the boson hamil-
tonjan (5) . Since the new bosons '_B't already incorperste some of
the nucleon correlations [see eqs. {Ba) , (?)] y the interaction
between the :Bf( bescns is expected to be relatively weak when com-
pared to their unperturbed energies E‘ . To be more precise, let
us denote the typical value of the coupling strength in {10) by W.
Let further AEF = E, - E. be the typical value of the energy dif-
ference Ybvetween the noncellective and collective bosons. In the

concrete numerical examples discussed in this paper we then find

£ =2~ o4-01. (12}

2.2. EXTRACTION OF THE COLLECTIVE DEGREES OF FREEDOM

The Dyson hemiltonian (10} &cts on the boson space ;}-fﬂ;f-'}),}

spsnned by a set of atates

lN;fd})B - 3t‘3i‘....3t,l°)5 ) “iem'2(4rz)"')M} s (13)



where N = -';j iz half the number of valence nucleons considered

in the original fermion problem and the symbol id] stands for the

setf o, o, ,u(,..} . Let M. be the minimum kinde of boson ope-

raetors neceseary for describing the collective states. Let further

™, ,» T, be two subsets of ™. such that

M= Bt md ()

m, = fM, ., M

Accordingly, we can separate the boson operators 3: s By into the

collective (o €M) and noncollective ( of € 7M,) ones. In the fol-
lowing the collective indices o , &, ... € TN, will be dencted
by €, 4 €4 s+es , while those helonging to the set m. (the noncol~

lective omes) will be denoted by n, , By, :»- - Now, we intro-

duce two orthogonal subspaces of the boson space G .

C.: JINGENY . N D, 6.@6.- €,
whose basis states are given by

]N ) {:})3 - Bto 31" ‘Btu ‘0)3 y c; © mc (45-)

IN; (nd)s = B Bh BL, . BLIos, meM e, kx4, (46)

Hereafter, (. will be called the collective subspace, while its

orthogonal complement (3, will be called the noncegllective sub=

space. Note that the number of collective bosons (Mg) remains un-

specified at the present stage. To determine it, we-are guided by

the properties of the solutions of eqs. (7) in the concrete physi-
cal situation. This is the "heuristic" feature of our approach.

Let us now consider the matrix elements of the Dyson hamilto-
nian (10Y between the collective states (15) «.3ince the hamilto-
nian F}, is at most two-body, al) that one has to know in order to
evaluate its matrix elements hetween any two states of the form [15)
are the commutators

ra,, sti1ey, = E Bilo) (f10)
.(0![3=: gn] = E l(OIB= ’ (145)



f = gt
[, 881, BL] = 22, Wonee B Bey
+ 2, Z w:n:.c‘ 14 B+ + lzwnec,c, 3 :B: (480)

+ L awm*mc‘ :Bm-B-u ’

[Be, ,[Bc” I:.I\p]_] = 4 2 w‘yctfsc\ :B:,:Bc,
+2 Zwe.cgcn B. B 4+ ZZWq:.nch, Be (18b)

+ 2; 2 we.c.n,n‘ .3"-.301; .

hy

Tt is seen from the double commutators (18) that the hamiltonian.ﬁp
by acting on the pure collective states (15) preduces new states
which have non-zero components both in the collective subspace (15)
and in its orthogonal complement (16) . In other words, the colle-
ctive subspace spanned by the stetes (15) is not én_invariant sub=-
space of the hamiltonian ﬁ, + The coupling between the collective

and nonceollective subspaces is caused by the terms

ZW:»C.C“B‘: Bt ) g, w”ge‘ct }‘:‘Bt ; Zﬂ‘wm"\ ¢t -B-:'B':“ ,
" - - (19)

Z we.c.cn :Be -Bn ’ %wﬂhu -Bh -BE ) nz:“ wc.:. Yig My 3-.3'-. )

appearing in the double commutators (18a) and (18b)

In order to find the true collective subspace with the property
of invariance under the sction of g, , we have to specifly new
operators in terms of which the hamiltcnian QD does not contain
the coupling terms. To achieve this, we first introduce a canonical

transformation "

~

LY
A G A 'd
A, — ¥, = Hy e - (20)
with the generator

§ - Z, senWHYB e

determined so that the transformed hsmiltonian ?ﬁ, conserves

(up to a certain order) the subspace spanned by the states (15)

Using the formula



ERe® - B - [H,,6]+ +[1H,€,61-... | ()

we get

A
gﬁp - Z Eu _Bt..sd t ‘%‘ Gdnx{ 3.: -Bt-B: —-Ba + ... y (-13&.)
where

G‘B;S = W(ﬂ,,b’ - 8-’03‘ (Ed + EP - EI - E‘) (1,3[,)

and the dots represent the three-~ and more-body boson interactions
which will be neglected in this psper. Ve now require thet the one-
plus t;wo-body part of E‘Eo » Biven explicitly in (23a), does not
couple the iollective subépace (15) to the rest of the boscn space,

i.e. that 3(, satisfies the following c¢ommutation relations

[[ ‘J?,, rlt'] 1 3t,3 = 1 é' Gt,c,e'c, 3t, 3‘:,. ’ (n'Um.)
[3311[3%J ﬁ’]‘] = 1’ gc, G‘i‘t‘!ﬁ 3‘3 -Bc, . (.llfb)

It is clear from (18a,b) that this requirement cam be achieved

by putting

Gene,e, = Gucerer = Gumeree = Gucaen = Geene = Geeumgn, = O ) (1'5)
i.e. by eliminating the ccupling terms of the form (19) . Substi~-
tuting (23b) into (25) , we obtain for the coefficients Gesys »

determining the generator {21) , the following expression

Wo;r

Jeors © EE CE,-E,

()
where the quadruplet of indices («Ay& ) belongs to the set

R = I (encye),{nec ), (nme ) (eeaen) (e,eane) (e eun, "‘)3' . (‘1"')

Note that due to the nonhermiticity of the Dyson hamiltonian !:l,
[W‘"; ¥ W';_. - see eq. (11}, the transformation induced by
the operator € is not unitary.

With é specified by (31), (26) and (27) , the transformed
haziltonian QE, = eé ﬁ. e € ccntaing no two-body terms that
couple the collective and.noncollective subspaces, spanned by the

states (15) and (16Y y respectively. In other words, the one~ plus

10



- 1.1 . . ~ )
two=body pert Eﬁp of the hamiltonian 'éf.., satisfies the commu-
tation relstions (24a,b) , which means that the collective subspace

I+X -
. . Of course, €,

{15) is left invarisnt under the action of g’é
contains the three- and more-body coupling terms as well (they are
marked by the dots in eq. (23a) ) . However, the contribution of
these terms is expected to be rather small, because they sppesr
proportional to W , ¢'W , ... , so that their magnitude falls
down quite rapidly [ see t12)] . Nevertheless, at least the three-
body terms might be importent in certezin cases and some results on
this point will be reported soon.

~

Kow, with the use of the generator G , we can construct the

transform I of any opersator X

i = eaﬁe-.é = ﬁ - [i,é]*{?[[ﬁ,é],éj".“ (18)
ok ~
- [l ¢

= N
k

A

In particular, for X - :Bt we have
“ ' + ot
[—:Bt 6] = - PR 3““"“’) B3 Bas, (292)
adydy

+ o+ ot
- - + B B.E ‘B B 49b
[[Bﬁ ) c} > GJ “Zdr;'uﬁa.-h%g 34,3.1.‘3"’ t;.lrm""h‘d: 4 PRTRTE T ( )

where
’ .
g iras = ; anu,.: + 3“’“5)(%"“‘!‘5 * Sa«uﬂr) s (304)
3
' 3dr & + e )( Ay dy & + dydy )
(Poa ansstody = J’g: {(%“ i 3“ i %J' 3’ Sdy (3°b)

- (?A,J._d-f + 3.;,..‘-10) %4,“,4,. } N
the gquantities g“,'; are given by (26) and all summations 2'
are restricted in such a way that, for a -given of , all indices
attached to the g' s belong to the set R given by (27) . It is
seen from (28) and (29) that the transformed bosons :

ga-i'

A

ec Bt C-c (31)

11



are complicated many-body operators involving infinite expansions

in terme of ‘-ﬂ s+ 3B: . Hence approximations are necessary in prac-
tical epplicetions. In this paper we follow the approximation which
has been suggested in ref. 54) and applied to some realistic problem
in rer.‘k) » It consists in replacing the operators of type s

and B'E'BR in (29a,b) by their expectation values in an appro-
priate state. More precisely, we make the replacenent

B3, > i 1 <y R, (324)

3+
:‘Bt. 3:3:, 33, — 1 5 (BELLBD B, +
+
+ <EEpp> T + <ELEBBDE, I, (=)

where
Xy - lokes Xehlo), ()
with

pe TE. ¥, | Z,\falz - 1 (34)
and N = 5~ is the number of bosons {equal to nalf the number of
valence nucleons) . The coefficients T are determined variatio-
nally by minimizing the expectetion value of the boson hamiltonian
{10) in the state 7%5 (@+)Ni0). . This bosen condensate is an
example of the (number-projected) coherent statess’sq) which has pro=
ved to be very useful in treating the many-boson aystems‘n' 20,49, ‘o-u').
Under the approximation (32) , we obtain from (29b) the following

approximate expression for the double commutator

[[#,6].6] ¥ w3 (35)

where

pe = 13 (e ¢ Hae) RS

4 .13- E ('v'-{.t..l._J,J,-l t Tunyanagea, + WO‘-‘--‘:“'-‘:"!)

aydydydy
x { B3N B, 2D

with %.. and ... . given by {3Ca) and {zov) , respectively.

(358) -

12



Within the approximation (35) we have

[[%,6],8],..,6] « 78 | (36a)
Zm ' co
[..[25.61,61,...,é1 - 2’361 (366)
Am st . . - .
so that [ see (28)]
" ‘_" ~ i 2] -'- PR
B - SBeC 2 {29@755 ‘7"}3“ (3%)

- g-.zou"‘*”" 1‘}[3*:‘3] .
By evaluating the sums in (37) we get

4 4 . + D7 -
wl(73) 3, - T Mg(ﬁ*—v)[&lc.]y =0 (38) |

+l‘—
B, =

er(2) Ba - V;F' sén( ¥ -y )[3:,‘&]'; <0

a
Using the explicit expression {29a) for'[ZBt, G] s we finally -~ -

cbtain o

* + w23 (39a)
Qe( = 1. By - Z‘ Suwiidgay La, PayPuy

drdedy _ . .

where . . .
. ; mﬂ(m) ; M 2 O .(3‘“’).
T = . -
o e (=) ;0 <0,

4 ﬁma-(ﬁ?') H « 2 0
2 Pt (3?:)"' :

S ) (T J..u"-*)
wagtdy (3 uess _j___ sim (V=3") ; W0

In a completely analogous way we get o
3.{ = T By ‘Z:x. Setarands Biv 3.2, . (b-o)
-
Since the transformation eG is not unitary, one has in general
(ﬁ'ﬂ)"’ # 3. » i.e. the coefficients 7. , Suipuu, in (40) are
not the éomplex conjugates of 7, . s.“"t“,s appearing in (393).
"

With the aid of (31) and (10), the transformed hamiltonian 0

can be written as

13



32. - eé Hn e‘é = Z;Ed. Qt D, t%l‘wd&gi Qt @;ﬁgﬁa . (‘H)

Suabstituting into (41} the expressions (39) =nd (40) , we obtain

the transformed hamiltonian in terms of the orlgmal bosons 3 + B .
Since the trensformation H - 3{’. =e Hbe has been designed
so a5 to eliminate the two-body coupling between the collective

and neoncollective subspaces spanned by the states {15} and (16),

respectively, we have

A ot ~ moucnll

Hy = 3{: + Ra o+ b #p (M‘)
where

4:‘“ - Z E‘-B ‘B +l‘§ Wc,c‘t,c, BG’BE“:B%BC. ’ (hg)

is a one- plus two-body hamiltonien acting on the collective sub-
wwwesfl . . .
space (15) ‘af.p ig a one-— plus two—body hemiltonian acting
on the noncollective subspace (16) end A “a(,b involves all the
three— and more=- body boscn terms. AS already explainmed, A'a‘{b is
expected to have a small effect on the collective guentities and
its discussion will be postponed to & forthcoming paper. The para-
P

meters Ee , Wecoc, e, 8Dpearing in the collective hemiltonian (&3)

are given by

Ec = Ec 'F: Te ) (I’hq)

~ - _ — -
Wc,r.. &6, - Wc"-‘g, € Te,Te, Te, e, Ee'. Seyepeiey Ve, T Ec, Te, Se 06026,

- Z V\L‘Hld«"‘qru?&g‘.qc,q t Z B Sueeaan ?’—a,;‘c, (4 ('-f‘rla)

A Aty

Z’ SN NN T‘l S.I'C,C“I. r" Te, fZWA,JJ,J,TJ, SJ,:,E‘J‘T;., SJ,.&_‘ t‘,c.' -
Aads

The collective hamiltonisan ‘é(, thus has a form of H,, truncated
to ¢ollective bosons [cf. eq. (10)] , but the essociated collective
parameters E. , weqe;c,t., ere replaced by some renormalized valu-
es E, , ﬁc'gtc,c, according to (44&,‘0) . From the physical point

of view, the source of the renormalizstion is the coupling between

14



the collective apd noncollective degrees of freedom, Technically,
however, there are two different mechanisms €iving rise to the
renormalized collective parﬁmeters. The first one is the contrac-
tien of some rany-body terms arising from the multiple commutators
in (28), (29) . 1¢ is closely related to the presence of nonlinear
terms in (Eé) » (40) , apa therefore, it is essentially governed

by the quantities 5¢§,a ' §¢p¥s « This feature of our approsch
is completely shared with the approaches presented in refs.xq-s’).
The second mechanism of the Tencrmalization has its origin in the
mesan-field approximation which enables cne to achieve the
double commutator[[’Bt, é], é]to be proportional to 3t s+ there-~
by meking it possible to evaluate approximately san averaged contri-
bution of many terms in the transformed operstors. This mechanism
menifests itself weinly through the coefficients r, , 7, in (39,
(40) and it leads to the renormalization of the ome-boscn energies
Lsee (#42)]. This is a specific feature of our approach and it is
not encountered in refs. 19-31) y where To = 7o =14,

Now, we perform an inverse transformation of eg. (42),
A

3%,, —> e'é i,ec = }}p . (45)
Keglecting Atfé, and denoting

B - o€t ef ) (46)
B (B,B) = e SR € (4%)
we obtain R

H, ZE BB +Z W BBBE, + 5™ (2'3), ()

It is seen from (48) that in terms of the new operaters 13t B, ,
the originsl bosen hamiltonian i%n is expressed (up t¢ the two=
body terms) as & sum of a collective and a noncollective part
without their mutual coupling. Within this approximetion we can

+ .
therefore regard the operators ]3q ' llcf 48 representing the true

15



collective degrees of freedom and the hamiltonian

e ZE BB +ch,<.c,c, BBB, (49)

as the true collective hamlltonxan. The operators 3‘ y Bd satisgfy
the ordinary bosonic copmutation relations |

+ .
(8., B = du (s0)
because the transformation (88) is canonical. Un the other hand,
B‘ # mu)+ , in genersl, because this transformstion is not uni-

tery. Within our spproximations, the true collective bosona 3.

can be written as

Bt = T :Bt + z Scaiaas "B-'lv 'li-B"l . (54)

Agdrds
Due to the nonlinear terms, they contain both the collective (Et)
and the noncollective (‘.B+) original bosons, thereby incorporating
the effect of the latter on the true collective au‘bspace ( defined
as sn invarient subspace of the Dyson hamiltonian H )

The general program we intend to carry out ig a8 follows.
First we choose &2 realistic but simple fermion problem which allows
for an exact soluticn. We map exactly the fermion problem onto the
bozon one and find the one-boson eigenstates of the mapped hamil-
tocnian. Being guided by the properties of these eigenstates, we
choose the neirat-round” candidates for the creation operatoré of
the collective degrees of freedom, i.e. we specify the set of in-
dices € =1,%, -/t [cr. (14)] . Then, using the procedure described
above, we calculate the renormalized parameters 'E“c_. N 'Vn\:l"e,.‘.,c,
according to the foraulae (448) , (44b) . With these parameters
we construct the collective boson hamiltonian (49) (or equivalently
its transformed version (43) ) diagonalize it om the respective
Loson space and compare the resulting eigenvalues with the exact
ones. 0f course, this comparison makes senseé only for the lowest—
energy states because the higher-energy omnes can hardly be consi-
dered as collective . 1f a good agreement is obtained, one can be

ressonably sure that there indeed occurs & decoupling of the sele-
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cted collective subspace from the rest of the many-body Hilbert
space. If the agreement is not good, either scme of the approxima-
tions involved in the treatment are unjustified or {perhaps more
probably) the preliminary structure of the collective subspace in-
ferred from the one-boson system is oversiwplified. Onme then tries
to enlarge the assumed "first approximation" collective subspace
and to perform the calculations anew. In this way, the present app-
roagh is able to provide informatiom not only sbout the dynamies of
the system (which is described by the collective hamiltonian) but
also sbout the structure of the c¢collective subspece. Before carry-
ing out the outlined program in practice, however, another sericus

obstacle has to be overcome.

2.3. APPROXIMATE REMOVAL OF UNFHYBICAL BOSON STATES

It is well known1’“-“)that the diagonalization of any boson
image of a fermion hamiltonien in the boson basis produces not only
the eigenvectors corresponding to actual states of the underlying
fermion system but slso the unphysical (Spurious) ones. These spu=-
riocus states have no physical meaning because they are essociated
with the overcompleteness of the boscn basis with respect to the
space available for fermions. Frovided an gxact boson image of the
fermion hamiltonian is diagonalized (e.g. that given by (10)),
the physical and unphysical boson eigenstates are strictly separa-~
ted from each other and variocus recipes have been given to identify
them ““o) . However, this is not the case when some truncation of
the exact bosen hamiltonian is made. Then, the physical and unphyQ
Bical boson states are no longer well seperated, i.e. all eigensta-
tes of the truncated (collective) boson hamiltonian contain in ge=
neral both physical and unphysical components. The unphysical com~-
ponents can be removed by means of the projecticn operator ontc the

4y 6% '
physicsl boson subspace ' ) but the projected collective boson

17



stateg become no more inveolved within the collective boson sub-
space, This can easily be understood as follows. The above-mentioned

. . 4, w3
projection operator can be written as '/ )

B 20 P g iy Omlbgocbiibg o (52)

where 'Tﬂ{ and bU are the Dyson boson images of the fermion pair
operators dﬁd; and a;a; , respectively [ see eqs. (#a), (463] .
When expressed in terms of a complete set of collective and non-
collective bosons, the "Pauli—corrected" operators 'Tﬁ; contain

both of them , and thus, the opersator J' s 8cting on a purely

Phys
collective boson state, leads out of the cillective subspace. The
gituation is very similar to that discussed in sect. 2.2 with res-
pect to the hamiltonian. Now, let us imagine for a moment that we
have achieved an exact decoupling of the collective subspace from
the rest of the many-body boson space. A necessary and sufficient
condition for this to occur is that there exist certain collective
operators with closed commutation relations, i.e. such that they

de not generate operators cther than the collective cones. In this
case, however, it was shown on a very general 1evé114) that all the
nencollective boson operators appearing in ’fﬂa cen be omitted
without destroying the relevant commutation relations. This is a
highly nontrivial result which opens new possibilities for study-
ing the elimination of spurious components from the truncated (col-
lective-) boson states. At the same time, this result emphasizes
the importance of decoupling for a correct treatment of unphysical
components in the collective boson states. Of course, in any resa-
listic situation, where the decoupling is not exact, we have only

a more or less accurate eliminastion of spurious components from

the collective boson gtates. It has been observed that in cases,

where the decoupling of the collective subspace is rather poor,

s . b6
serious problems with the unphysical boson components arise ).
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On the other hand, if the decoupling is relativeiy good (though
only on a heuristic 1eve1) y there are no problems with the spu-
rious adwmixtures in the truncated boson stateszn).

In the case discussed in the present paper we have an exact
decoupling in the two-body part of the boscn hamiltonian and a re-
latively suppressed (-v £, ~ E",-n) collective-noncollective coupling
in the three— and more- body boson terms. We can therefore expect
s complete removal of unphysical components from the two-boson col-
lective etates and an epproximate removal o‘i’ them from the three-
end mere- boson states. Let us operate by {P,,l.J, on the collective
boson state (15) and consider only that portion of the physicel

boson state IN {c}) which is contained within the collective

r“r

boson subspace,
IN} ie}; f"‘Js)B ) {Z‘) S(N 't ‘:P”“}N;fc}). IN ) icrj)s . (s3)
'}

The fraction
| M 635 phys)s
fpriy l Niid) 3

is the higher the better is the decoupling of the collective sub-

space and it reaches the value 1 for N = 2, where the decoupling
is exact. Unlike the states IN; §c})s , the physical boson states
[ N;ic})rkr)s given by (53) are not necessarily linearly indepen-
dent. In order to remove the possible overcompleteness, it is con~

venient to introduce a new orthonormal bosen btaais
) N,e), IN,a')
NG ), = 2 K "IN i)y Z}x W - S, (S9)

in which the projection operator ér,?‘ is disagonsal,

= , N ) o
Z (N; ic}] fl?“ |N;iej)’ {c"} xnv ) ) . '(55)
fe .
Possible linear dependence among the physical boson states will

result in & certain number (k) of zero eigenvalues Jf,.,"_-o,ﬁ.ﬂ,?,...l:.
The corresponding boscn states |N3 €.)' [ eq. (54)] must -then be

excluded from further considerations in order to avoid spurious
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solutions. It is well known that 4.»3)

(N3E] B | NG5, = (.TJT)T' PCRGILAS) M (s¢)

where

IN; ), = Al Atl....ALIo}F :
PSR

S o
ld}ris the rermxon vacuum and the ccefficients ¢:i are the same

(s})

as those defining the collective boson operators 3ﬁqa[éee fGa),(?l]_
In prectice we therefore construct the fermion states {57} tirst,
L]
then calculate the boson matrix elements of E;T according to (56),
solve eq. [55) and after excluding the zero-eigenvelue sclutions
N, €Y . .

'x_" (.NP" s 0) , we obtain the boson basis.

N ) 52
N DA INGE), , Ged (52)

€

in which the boson collective hamiltonian with renormalized pars=
meters is diagenalized. We may thus be sure that, within the appro-
ximation explained above, the resultant boson eigenvectors lie to

a large extent in the physical collective boscon subspace.

5, Application to the multi-~level pairing model

The complexity of any realistic¢ many-particle prcblem rules out,
in general, attempts at an exact treatment based on an "ab initio”
calculation. The single-particle energies and the residusl particle-
particle interaction are usually chosen phenomenoclogically with pa-
rameters fitted to the experimental deta. Therefore, it is important
to be certsin that the theoretical method used to study the problem
is reliable before e comparison with the data is carried out. For

this reesson we consider it sensible to apply our method to a solva-
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ble "toy" model at first. Such models have become very popular and
valuable as tests for the validity of new approximation methoeds.
In order to be useful in practice, the model hemiltonisn has to be
gimple enough to be solved exactly and yet it should include the
most essential features of the realistic problem that we are inte-
rested in. Here we use the multi-level pairing model described by

the hamiltonian

-3 advan - G?:'cAt Ac (59

where

i + +
B TRt | Acs (DT (¢o)
™20
with the index a = (", % f) . The quantities & ere the single-

particle energies and (G is the pair coupling constant. The ope-

rators At ., Aa  and 2, at.. @,4 satisfy the algebra 3U(2) XSU(E)X...,
~
+ .
[An ' Atn] = gqn'(-Rn\ - ZI Q“Q....) H

£
[AQ’ 3 % a‘tnahnj = 1 S‘Q" Aq N ( )

where  #fla =dja+1 . Due to the simplicity of the commutation
relations {61) , the haciltonian (59) cen be sclved exactly by a
numerical diagonslization. At the same time, it has been rather
successful “’) in degcribing the energetically lowest collective
states in semi-magic nuclei with only one kind of valence nucleons,
such as Ni, Sn, Pb . The Dyscn representation of the operators At ’
Aq ’ .?. at._a._, is realized through

PR g~ 1 LA i ol S B

A. — Y@ ba (62)
S dhage. — 2bhba

w-t‘nere

[be, BT = &, [ba)bal [bh k] =0 . (63)

With the use of (63) it is easy to verify that the boson operators

on the right-hand side of (62) fulfill the commutation relations (64),
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The boson image of the pairing hamiltenian (59) then reads

Ay = 2 (2edes - GIRTbLba + CTIE bibthaba.  (e¥)
This is a special case of the hamiltonian (5) and it is further
treated in the framework of the method described in sect. 2.

In the present paper we study the low=1lying collective states
(the ground state and the lowest excited Of - states) of the even
isctopes of Sm, Ni and Pb. For Sa isotopes the neutrons outside the
Z=50, N=5C inert core sre restricted to occupy five (de‘ N ’lg,h,
384, » 243y, s 1hﬂﬁ)valence levels having 0.0, 0.22, 1.90, 2.20 and
2.80 MeV unperturbed single-particle energies, respectively. The
strength of the pairing interaction is taken to be G = C.187 MeV.
In the case of Ni isotopes the neutrons cutside the “Ni inert core
(Z-EB, N=28) are restricted to occcupy four (213-‘?! N ’Ifql, 2p.,h and
13,‘,:) valence levels with the energies C.0, C.78, 1.536 and 4.52
MeV, respectively, and the value G = 0.331 MeV hasg been used. The
Pb isotcopers considered have the neutron valence shell more than
half-filled. Therefore, we exploit the particle-hole symmetry’%)
and describe them as hole systems with the Z=82, N=126 inert core
and five ( 3py, , 2fg, 3Py, » Timy, and 2r,h) levels with energies
0,0, 0.57, 0.90, 1.63 and 2.35 MeV, respectively. The pairing in-
teraction strength is G = 0.111 MeV. All the values given sbove
are taken to be the same as in ref. '%) .,

In figs. 1, 2 and 3 we show the ground-state energies of the
gn, Ni and Pb isotopes, respectively, calculated in different app-
roximations. The solid lines are the exasct results obteined by the
disgonalization of the hawmiltonian {5%) . The dotted lines come
from the boson hamiltonisn (10} truncated to the single (most col-
lective') degree of freedom 3¢.4 . We shall refer to this trunca-
tion as the one~boson approximation (1BA) + The dashed lines are

obtained within the same truncation from the boson hemiltonien (43)
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Fig.1. Ground-state energies of Sn isotopes, calculated in various
approximations using the pairing hamiltonien{5¢). The parasme-
ters ¢, and G are given in the text. The solid line repre-
sents exact results, the dotted line is obtained within the
one-boson approximation (1BA) from the hamiltonisn (10), the
dashed line gives the results obtained within the same 1PA
from the renormalized hemiltonian (49) and the dash-dotted
line shows the standard BCS results.
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Fig.2. The same as in

fig. 1 for Ni isotopes. 53 60 512 64 66
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Fig.3. The same as in fig. 1
for Pb isotopes.

Eqs(MeV)

P ~—
with the renormalized pesrameters E, , Vﬂ;,,4 calculated accor-

ding to egs. (#4s) and (48b), respectively. Since it is useful to
compare new approximstion schemes with the older ones that already
have an esteblished power, we also display,(as dash-dotted 1ines)
the results of the quasiparticle BCS approach ‘) . From figs. 1=3
two important conclusicns c¢an be drawn. Pirst, the rencormalization
of parameters of the boson ccllective hamiltonian improves the ag-
reement with exact results considerably. SBecond, in the case of Sn
and Ni the "renorwalized™ 1BA results sre Vefy close to the exsact
ones, in perticular, much closer than the BCS values. However, this
is not true for the Pb isotopes, which are known not to show such
strong pairing correlations as Bn and Ni, The failure of the 1BA

in Pb simply means that the structure of the Pb ground state is
more compliceted and cannot be described in terms of only one boson.

A gimilar observation has been made in ref, ‘*) « If we take into
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o 2BA
---- 2BAR

06 204 202
A

Fig.4. Ground-state energies of FPb isotopes calculated within the
two-boson approximation (2BA) . The dotted line is the "bare"
result obtained from (10) , the dashed line represents the
"renormalized” result obtained from (49) . The exact and BCS
results (solid and dash-dotted line, respectively) are the
same as in fig. 3.

account two collective bosons Bt , ‘3: (two-boson approximation -
2BA ) y we obtain the results shown in fig. 4. As is seen, the
"renormalized™ two-boszon approximation.then works very well,

Now we turn our attention to the first excited 0*- states.
As an initial "gueess" for the structure of the cocllective subspace
we take the 2BA. The results are displayed in figs. 5=7, where the
80lid lines are again thé exact results, the dotted lines are ob-
tained by diagomalizing the boson hamiltomian {10) in the framework
of the 2BA ( o = 4,L‘) , the déshed lines represent the "renorma-
lized™ 2BA results [see (#3) with ¢; =4, sand (s8a,t)] and the
dash-dotted lines are obtained using the quasiparticle RPA "

We again observe an impressive influence of the renormalizsation and
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Fig.5. Excitation energies of the first excited 0*- states in Sn
isotopes. The exact results (solid line) are compared with
those cbtained within the 2BA from (10)(dotted lime) and
those cbtained within the renormalized 2BA (deshed line) .
The dash-dotted line represents the results cbtained in the
quasiparticle EPA. r v T T v T
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20}

R 2BA-R 'i‘ Fig.6. The same o5
.in fig. 5 for Ni isotopes.

a good sgreement of the renormalized results with the exact wvalues
in the case of Sn and Ni, buvt much a worse ome in the case of FPb.
The results for the Pb isotopes, however, are significantly improved
if we include the third boson 3; (the three-boson approximation -

BBA) +« This is shown in fig. 8. It is also worthwhile to notice
that, unlike the ground-state case, the quality of our boson appro-

ximation is roughly comparable with that of the guasiparticle app-

roech.
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Fig.?. The same as in fig. 5 } T T T
for Fb isctopes. Pb

175 _

150} ]
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o A
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Fig.8. Excitztion energies of the first excited 0'~ states in b
isotopes, calculeted in the three-boson approximation (3TAY
using the "bare" hemiltonian (10) (dotted line) and the
"renormalized” hamiltonism (49) {dashed line) . The solid and
dash—dotted lines, representing the exact and QRPA results,
respectively, are the same 23 in rfig. 7.

Concluding this section, we have shown that the low=energy col-
lective states of nuclei exhibiting strong pairing correlations’
( sn, Ni) can be microscobically described with the help of at most
two bosonic degrees of freedom (one bosen for the ground state and
twe boscons for the first excited state) « By the term "microscopi-

cally" we mesn that the structure of the relevant bosons has been
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deétermined completely by the single-psrticle nucleon energies (E.)

and the two-particle nucleon-nuclecn pairing interaction{G)}- no ad-
justment of the many-particle quantities has been performed. We have
also seen that in case of nuclei with weaker pairing correlations

(Pb) , & sstisfactory reproduction of the ground-state energies re=
quires two different bosons. At the same time, Three types of bosons

are needed to describe the properties of the first excited Of-states.
The last but not least conclusion which ¢an be drawn from our in=-
vestigation is that within our method the ground-state energies are
reproduced better than within the standard BCS approach, and the
agreement for the energiss of the excited sgtates is at least as good

as in the framework of the gquasiparticle RPA.

4. Summary end perspectives

In this paper, we have proposed and tested & method for deter-
wining an optimelly decoupled collpctive subspice of the many-body
Hilbert spece appropriate to the deseription of nuclei. The basic
ingredients of our approach are the Dyson bogon representation of
the shell-model hamiltonian and a c¢enonicel transformatiom in the
boson space which eliminates {up to the two-body interaction) the
coupling between tbe collective and noncollective one-boson eigen-
states of the Dyson hamiltonian. The method hes been applied to the
solvable multi-level pairing model and the results have been compared
with the exact ones, as well as with the usual quasiparticle approach
BCS + QRPA . The renormalization of parapmeters of the boson collecti~
ve bhawmiltonisan due to the coupling with the noncollective degrees of
freedom has been found to play an important role in deseribing the
lowest collective states of the Sn, Ni end Pb isotopes. The wethod
offers a very good approximation to the energies of the ground and

first excited states of the above nuclei (in general better than the
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2)
3)
4}
5)

quasiparticle approach) . Its peculiar feature consists in that it
is able to provide information (though only heuristically) on the
structure of the collective subspsace, i.e. not only to optimize va-
riationally the preselected structure of this subspace as, €.g., in
the BCS approach.

We have paid special attention to the problem of identifying
and remeving the unphysical components from the collective boson
states. We would like to emphasize that this probleﬁ is intimately
related to the decoupling of the collective subspace from the rest
of the boson space.

Ir summery, we (believe to) have presented a sound snd flexible
method for extracting the collective degrees of freedom frow the
picroscopie shell-model description of nuclei. In this peper we have
restricted our discussion to nuclei with strong pairing correlations.
A direct extension to other types of nuclei (especially the deformed
ones with a strong proton-neutron quadrupcle—quadrupole interaction)
is connected with three kinds of problems:

1) an explicit introduction of proton and neutron degreea of freedom;
2) the angular momentum slgebra complications }
3) an egstimate of the importance of the three-body terms in the col-
lective boson hamiltonian, because these terms are very likely
to be non-negligible in deformed nuclei $”‘5) .

Work on this subject is now in progrees.
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