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In the last years a considerable progress has been 
achieved in the description of a system consisting of three 
particles interacting via a short-range potential. In this 
case, as is well known, the equations ' * / with Fredholm 
kernels have been derived and rather rapidly convergent 
regular procedures have been developed for solving three-
particle equations ' 2 ' . 

However, calculations of the properties of such a sys
tem with realistic interaction potentials as the Reid po
tential are still rather complicated and for positive ener
gies of three-body systems these only begin to develop / з / . 
This situation is due to the following. First , the realistic 
potentials, being very complicated, generate many com
ponents in the wave function of three-particle system. Se
cond, the solution of the Faddeev equations even with 
central local potentials are still more complicated than 
that of two particle system with the same interaction. 

Thus, if the first difficulty cannot, generally, be avoid
ed, one may try to simplify the solution of three-particle 
equations with central potentials. 

In this note we propose a version of such an attempt 
based on the separable expansion of the potential V 

У2 ' ^ 23 ' ^13 ш t n e six-dimensional space. 
Let us take the Lippmann-Schwinger equation describ

ing a bound state of three identical spinless particles: 

14' - ( i „ ( K ) V | r - . (1) 

In the momentum representation it has the form: 

G 0(qpE) _ _ ^ _, _ 
4<(qp) r < q p | 4»>= — / d a ' d p ' < q p | V | q ' p ' > 4 4 o ' p ' K 2 ) 

(2n)b 
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where G„(qpE) = —•—^ is the Green function of 
° * V m E - q * - ^ 

noninteracting particles, m is the mass of the particle. 
By introducing the functions with the given total angular 

momentum Y H 1 ( qp) 

rLffl/ 

" (v 
ttt(l 

VpL

x

m(qp)= S ЦК^\\ЩХЫ (q)YA„ (p), (3) 

(here q , p are the unit vectors directed along the vec
tors q and p , resp. , {t Xm/i}LM) is the Clebsch-Gor-
dan coefficient), from (2) we get the equations for partial 
waves: 

i Gn(qpE) 2 2 i t 

( 2?7) о ' А 

(4) 

The kernel К has the form: 
• Г М^ л A F M A •* А Л А Л 

K^ n-(op.q'p') -J Y n (qp) <<rp! V (q 'p**> >е-АД q *P') d qdpdq 'dp '. (5) 

As we are solving the bound-state problem of three par
ticles, the solutions of equations (2) and (4) are square 
integrable functions. This, in principle, allows us to 
change the square nonintegrable function < q p | V | q'p* '> by 
a more regular function. It is clear that the scattering 
problem should be handled with more carefully. 

Hence, instead of the exact potential V= V13+ V23+ V 1 3 we 
introduce the approximate one V 

<qp|V N |q*p'> = . I <qp |V | X > d"1 < X . I V | q f '> , ( 6 ) 

where d ̂  = < Xi I V| x j > > functions у } are defined in 
the six-dimensional space, i.e., expression (6) realizes 
the complete separation. As a result, the problem becomes 
algebraic. The functions Xi can, clearly, be introduced 
in the n < 6 dimensional space. For example, if we 
introduce tbem in five-dimensional space equation (4) r e 
duces to a set of one-dinemsional integral equations. Let 
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us note that expansion (6) is a direct multidimensional 
analog of the separable expansions of a two-body poten
tial which have been applied extensively to various prob
lems of nuclear physics. 

Inserting (6) into (5) we get the approximate kernel 

^ r A , ( q p , q ' P ' b 2 ' R ^ q p H - l i R f 4 ^ q > ' ) , (7) 

where 

'Vxt'TP) = / Y £ A " ( 4 P ) <qP I V'! Xi>dqdp. (8) 

Using the approximate kernel instead of exact one in the 
equation (4) we get the expansion in projected matrix 
elements of the potential for the wave function: 

4' L ( qp ) = — * ™ - L I 'R J* ( qp ) С \ ( E) . (9) 

Coefficients С .'(E) satisfy the system of algebraic 
equations: 

C L (K) = —! 2 A J - . C ^ E ) . (10) 
1 ( 2 т г ) 6 i , J J 

Here the matrix Â . is defined as 

A L = £ d - ; J \ L

A , ( E ) , (11) 

where 
1 J l l F S A . (E) - 7 n*dqp 2dpG 0(qpE) J ' B f V r (qp) J lR^ v (4P)-(12) 

0 
For the sake of simplicity consider states with L = 0 , and 
besides, restr ict ourselves to values £ = A = 0 , as we 
have the short-range potential. In this case expression 
(8) takes the form: 

' К !!о(ЯР) - i~ / < P 4 l V | X i >4dJ. (13) 
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Introducing the Jacobian coordinates £, rj for the matrix 
elements <qpT| V| у. > we have 

^ q p l V l x ^ - J d f d ^ e 1 ^ 4 - 1 ^ < 6 ? l x i > ! V 1 2 + ^ 3 + V 1 3 l . (14) 

Here <£~ч\х- > are Xj functions in the coordinate 
representation. Expanding in (14) exponents in spherical 
functions 

and inserting (14) into (13) we get: 

^ Г ^ . Ч * Ч 0 ( ^ ( Ч Р ) < £ > lx,> l y Kl)+ \ai\l,+£\)+va<\Z- | |) 1. 

(15) 

Further calculation will be made for the two-body poten
tial 

VU) * V - ^ . (16) 

Parameters V0 and ft are chosen to reproduce the expe
rimental value of binding energy of deuteron and of triplet 
np scattering length. For this potential there are known 
very exact estimations of lower and upper bounds of the 
binding energy of the three-particle system: 

- E T = 9.7813 ±0.0024. (17) 

The functions x'. will be chosen also in the Gaussian 
form: 

X, ^ - ' C ' - " ' " ' . (18, 

For the application of expansion (6) ошу the linear inde
pendence of functions x is required. The energy of the 
system is obtained from the condition: 
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det( 1 - A ( E ) - ) =- 0 . (19) 
( 2 * ) 6 

Expressions for matrix elements 'Rp 0 (qp) and inte
grals (12) are given in the appendix. By using the poten
tial (16) and functions (18). .integral (15) can be calculated 
explicitly. Coefficients 33il0

00(E) are expressed by 
one-dimensioaal integrals which were calculated numeri
cally. 

The results of binding energy calculations are given 
in the table: 

1 2 3 4 5 6 7 

a i 0.45 0.4 0.35 1 0.35 0.45 0.95 
b i 0.55 0.4 0.30 1 0.35 0.4 0.95 
-Кт 8.86 8.90 9.46 S.51 9.64 9.68 9.72 

From this table it is clear that even three terms in the 
expansion of the potential given by expression (6) enable 
us to find the tritium binding energy with an error not 
higher than 4%*. 

From the table it is also clear that all the functions 
Vj have appeared to depend, in practice, only on the six-
dimensional radius рг ^ £ 2 + 7?2. The wave function 1!'{}О(ЯР) 
of bound state, as follows from formula (1A) of the 
appendix, depends on the six-dimensional radius R =q2 + p 2 

only in thejimit u. = /^. >:• (i , i.e., when the approximate 
potential V reproduces well the exact one at distance small 
as compared with the range of the two-body potential. 

In conclusion the authors express their gratitude to the 
participants of the seminar of sector 3 in the Laboratory 
of Theoretical Physics for useful discussions and interest 
in this work. 

*The choice of the parameters a . and j3i was realized 
by minimizing energy E. . ' 
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Appendix 

Here we will give the explicit form of in tegra l s (12) 
and mat r ix e lements (15), which de te rmine the functional 
dependence of the bound s ta te wave function. 

i „ 0 , - 4 7 r V 0 i 9 / V - В 1 у 2 - С * » г з Ь ( А | Х у ) -ЕрЛ-^х 2 

' W I P ) = - 7 F i 2 v A i e ~ ^ — + D i e ! 

(1A) 

x - - J - ; y = J L , a. = 1 1 . b . - ^ t , 

3 / 2 Л / = 4a; ( 1 + Ь 4 ) + b p D j 1 = 8 [ b , ( 1 + a , ) 

» i - ( 1 + b , ) A , , K , 1 = 4 ( 1 + a , ) , 

С в = l- , F , 1 = 4 b , . 
4( 1 -i b.) ' 

.. „ 16 V ;т 2 m 
Ц | 0 ( И = 9 U ' J I (K) + 2 l I J l (K)+ , J I (E)1+ 1 J 1 (E)l, 

0<Г ' я 4 II 12 12 22 
(2A) 

V'A.-A, я/2 E , J f + ( 0 
4 , ( E ) = У - / ie ' E [-F1Jf|(0)l - ( 3 A ) 

V3 _^/2 

- e J E [ - E " {~(ф)]Ыф, 

f * (ей) = i j B x s n V + - ^ = i i A i

± s i n ^ c o s < ) 6 + — i i C 1 c o s 2 0 , 
v'3 

(4A) 
U B , = B , + B J ?

 U A ± , = A 1 ± A J , и С , = С 1 + С , , 
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2n ,, 4 ( ___12J__!_ 4 I =

 Zn.,'A D f 
3V3 J » 4^ . i " (7J- /4 ' , B l , C -A2 

V 7 ! ff/2 Е Ц 1 , ( ч Ь ) „ 
- ^ / e

 г E . [ ~ E u f (<£) Isintfcosjbdsbl» 

D -

(5A) 

2 77 - 77/2 

f,, ( ф) = H p sin <£ + - = . A . s i n0cos$ + — L c o s <6 , 

В = В . +1 
2 1 J 

N/3 J 

С = С. + F . 
2 1 j 

(6A) 

9 „ D . I ) . 
.^77 i t 1 J 

22 -1- • ( • 

3 3 3 
• - 1 -

3 V 3 ± U C U B 4 U C i i B ± , J j B i j c 

3 J J 3 л J з N 3 з 
(7A) 

0 

i J B = E. + E . , i J C , = F. + F . . 
3 1 j 3 i j 
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