ОБЪЕАИНЕННЫЙ ИНСТИТУТ
 คАЕРНЫХ
 ИССАЕАОВАНИЙ
 АУБHA

$z-16$
E4-8818
V.A.Zagrebnov, I.G.Brankov, N.S.Tonchev
$2359 / 2.75$
A RIGOROUS STATEMENT
ABOUT SYSTEMS INTERACTING
WITH BOSON FIELD

E4 • 8818

V.A.Zagrebnov, I.G.Brankov, N.S.Tonchev

A RIGOROUS STATEMENT ABOUT SYSTEMS INTERACTING ${ }^{*}$ WITH BOSON FIELD

Submitted to $\triangle A H C C C P$

A system consisting of two coupled subsystems B, and L contained in a volume V is investigated. The space of states \mathcal{H} of such a system is tensor product of the corresponding separable Hilbert spaces: $\mathcal{H}=\mathcal{H}_{B} \otimes \mathcal{H}_{I}$. Consider the case when B is a free boson field with M modes having energies $\omega_{k} \geq \omega_{0}>0(k=1,2, \ldots, M)$ and the N-particle subsystem L is described by a Hamiltonian $H_{L, N}$ which obeys the following conditions:

$$
\begin{equation*}
\frac{1}{N}\left\|H_{L, N}\right\| \leq c_{1}, \left\lvert\,-\frac{1}{\beta N} \ln \operatorname{Tr}_{H_{L}} \exp \left\{-\beta H_{L, N}\right\} \leq c_{2}\right. \tag{1}
\end{equation*}
$$

Here the trace is over the Hilbert space $\mathcal{H}_{L}(N)$ for the N particles.

In the present note we confine our attention to a class of models described on $H(M, N)=H_{B}(M) \otimes H_{L}(N) \quad$ by a Hamiltonian $H_{N}=T+U$ with

$$
\begin{align*}
& T=\sum_{k=1}^{M} \omega_{k} b_{k}^{+} b_{k} \otimes 1 \\
& U=\frac{1}{\sqrt{N}} \sum_{k=1}^{M} \lambda_{k}\left[b_{k} \otimes L_{k}^{+}+b_{k}^{+} \otimes L_{k} l: 1 \otimes H_{L, N} .\right. \tag{2}
\end{align*}
$$

Theorem. If a system is described by a Hamiltonian of the form (2) satisfying conditions (1) and if

$$
\begin{equation*}
\frac{1}{N} \|\left[H_{L, N}, L_{k}:\left\|_{H_{L}(N)} \leq c_{3}, \frac{1}{N}\right\| L_{k} \|_{\mathcal{H}_{L}(N)} \leqslant c_{4},\right. \tag{3}
\end{equation*}
$$

then
(i) $f_{\mathbf{N}}\left\{\mathrm{H}_{\mathbf{N}}\right\}=-\frac{1}{\beta \mathrm{~N}} \ln \operatorname{Tr} \exp \left\{-6 \mathrm{H}_{\mathbf{N}}\right\} \quad$ exists and is
bounded uniformly in N,
(ii) $\mid f_{\mathbf{N}}\left[\mathrm{H}_{\mathbf{N}}\right]-\min _{(\eta)} \mathrm{f}_{\mathbf{N}}\left[\mathrm{H}_{\mathbf{0}, \mathbf{N}}(\eta)| | \leq \max _{(\mathrm{k})}\left|\lambda_{\mathrm{k}}\right| \cdot \mathrm{M} \cdot \epsilon_{\mathbf{N}}\right.$,
where $\underset{\substack{\mathbf{N} \\ \mathbf{N} \rightarrow \infty}}{ } \rightarrow 0$
$H_{0, N}(\eta)=\sum_{k=1}^{M} \omega_{k}\left(b_{k}^{+}+\frac{\lambda_{k}}{\omega_{k}} \sqrt{N} \eta_{k}^{*}\right)\left(b_{k}+\frac{\lambda_{k}}{\omega_{k}} \sqrt{N} \eta_{k}\right) \otimes 1-$
$-1 \otimes \sum_{k=1}^{M} \frac{\lambda_{k}^{2}}{\omega_{k}}\left(L_{k}^{+} \eta_{k}^{+}+L_{k} \eta_{k}^{*}\right)+1 \otimes H_{L, N^{+}} 1 \otimes \sum_{k=1}^{M} N \frac{\lambda_{k}^{2}}{\omega_{k}}\left|\eta_{k}\right|^{2}$.

We shall present here the main points of the proof. Short arguments for the validity of the first part of our statement have been given by Hepp and Lieb in Ref. $1 /$.
(i) One can easily verify that the densely defined selfadjoint operators $T \geq 0$ and U satisfy the conditions of the Kato-Rellich theorem $/ 2 /$, i.e., $\mathrm{D}(\mathrm{T}) \subset \mathrm{D}(\mathrm{U})$ and U is a T -bounded operator

$$
\begin{equation*}
|\mathrm{U} \psi| \leq \mathrm{a}|\psi|+\mathrm{b}|\mathrm{~T} \psi|, \quad \psi \in \mathrm{D}(\mathrm{~T}) \tag{5}
\end{equation*}
$$

with $b<1$ if

$$
a>4 c_{4}^{2} \frac{\lambda_{\max }^{2}}{\omega_{0}} N M^{2}+\sqrt{2}\left(c_{4} \lambda \max \overline{\left.\sqrt{N} \cdot M+c_{1} N\right) .}\right.
$$

Thus operator H_{N} is self-adjoint and bounded from below on the domain $\mathrm{D}(\mathrm{T})$. Put H_{N} in the form $\mathrm{H}_{\mathrm{N}}=\mathrm{H}_{0}+\mathrm{V}_{1}$ where

$$
H_{0}=\frac{3}{4} \sum_{k=1}^{M} \omega_{k} b_{k}^{+} b_{k} \otimes 1+1 \otimes H_{L, N}
$$

$$
\begin{align*}
& V_{1}=\frac{1}{4} \sum_{k=1}^{M} \omega_{k}\left(b_{k}^{+} \otimes 1+\frac{4 \lambda_{k}}{\omega_{k} \sqrt{N}} 1 \otimes L_{k}^{+}\right) \times \tag{6}\\
& \times\left(b_{k} \otimes 1+\frac{4 \lambda_{k}}{\omega_{k} \sqrt{N}} 1 \otimes L_{k}\right)-\sum_{k=1}^{M} \frac{4 \lambda_{k}^{2}}{N \omega_{k}} 1 \otimes L_{k}^{+} L_{k}
\end{align*}
$$

Since $D\left(H_{0}\right)=D\left(V_{1}\right)=D(T)$ the self-adjoint operator H_{N} is represented as a sum of two self-adjoint operators bounded from below: $H_{0} \geq-c_{1} N, \quad V_{1} \geq$ $\geq-4 \max _{(k)} \lambda_{k}^{2} \cdot i \omega_{0}^{-1} \cdot \mathbf{c}_{4} \cdot M \cdot N \equiv-A \cdot N$. Thus $H_{N}=H_{0}+V_{1}$ defined on $D(T)$, obeys the conditions of a theorem proved by Ruskai/3/ and having in mind that $\exp \left\{-\beta \mathrm{H}_{0}\right\}$ is a trace-class operator we can make use of the GoldenThompson inequality

$$
\begin{aligned}
& \operatorname{Tr} \exp \left\{-\beta \mathrm{H}_{\mathbf{N}}\right\} \leq \operatorname{Tr}\left\{\exp \left[-\beta \mathrm{H}_{0}\right] \exp [-\beta \mathrm{V}\}\right] \leq \\
& \leq \exp \left[\beta\left(\mathrm{A}+\mathrm{c}_{2}\right) \mathrm{N}\right] \cdot\left[1-\exp \left(-\frac{3}{4} \beta \omega_{0}\right)\right]_{0}^{\mathrm{M}} .
\end{aligned}
$$

This completes the proof of the first part of the theorem. (ii) Let us write now H_{N} in the form $H_{N}=H_{0, N}(\eta)+H_{1}(\eta)$ where $H_{0, N}(\eta)$ (see (4)) is bounded from below,

$$
\mathrm{D}\left(\mathrm{H}_{\mathbf{0}, \mathbf{N}}(\eta)\right) \subset \mathrm{D}\left(\mathrm{H}_{1, \mathbf{N}}(\eta)\right)
$$

and

$$
\begin{equation*}
H_{1, N}(\eta)=\sum_{k=1}^{M} \frac{\lambda_{k}}{\sqrt{N}}\left(b_{k}+\frac{\lambda_{k}}{\omega_{k}} \sqrt{N} \eta_{k}\right) \otimes\left(L_{k}^{+}-\sqrt{N} \eta_{k}^{*}\right)+\text { h.c. } \tag{7}
\end{equation*}
$$

Using the explicit form of the symmetric operator $\mathrm{H}_{1, \mathrm{~N}}(\eta)$ one can easily prove that it is $\mathrm{H}_{0, \mathrm{~N}}(\eta)$-bounded (see (5)) with $b<1$ and $a>$ const. N . Therefore, by the Kato-Rellich theorem/z/ for all $|t|<b^{-1}$ $\mathrm{H}_{\mathbf{N}}(\mathrm{t})=\mathrm{H}_{\mathbf{0}, \mathbf{N}}(\eta)+\mathrm{tH}{ }_{1, \mathbf{N}}(\eta) \quad$ is self-adjoint bounded from below operator defined on $D\left(H_{\mathbf{N}}(t)\right)=D\left(H_{0, N}(\eta)\right)$.

Further, operator $H_{N}(t)$ satisfies the conditions of the Maison theorem/4/. Hence for $|t|<b^{-1}, \exp \left[-\beta H_{N}(t)\right]$ is a trace-class operator since $\exp \left[-\beta \mathrm{H}_{0, \mathrm{~N}}(\eta) \mid\right.$ is traceclass. Furthermore, $Z_{\beta}(t)=T r e x p\left\{-\beta\left\{H_{0, N}(\eta)+t H_{1}, N(\eta)\right]\right\}$ is an analytic function of t in the domain $\left\{|\mathrm{t}|<\mathrm{b}^{-1}, \mid \times\{\beta>0\}\right.$. This makes it possible to prove the Bogolubov inequality by direct differentiation with respect to $t \in\left[0,1^{!/ 5}\right.$:

$$
\left.\frac{1}{N}<H_{1 . N}(\eta)\right\rangle_{t=1} \leq f_{N}\left[H_{N}\right]-f_{N}\left[H_{0, N}(\eta) j \leq \frac{1}{N}\left\langle H_{1, N}(\eta)\right\rangle_{t=0}(8)\right.
$$

Using inequality (8) and the results of a previous work of the authors $/ 6 /$ we obtain the estimate (ii) which proves the thermodynamic equivalence of the Hamiltonians I^{N} and $H_{0, N}(\eta)$.

Note that in the cases when the limit $\lim _{\mathrm{N} \rightarrow \infty} \min \mathrm{f}_{\mathrm{N}}\left[\|_{0, N}(\eta)\right]$

$$
N \rightarrow \infty(\eta)
$$

exists $/ 6,7 /$ inequality (ii) implies the existence of the thermodynamic limit for the free energy density of the original Hamiltonian (2).

References

1. K.Hepp and E.H.Lieb. Phys.Rev., A8, 2517 (1973).
2. T.Kato. Perturbation Theory for Linear Operators. (Berlin, Heidelberg, New York, Springer, 1966).
3. M.B.Ruskai. Commun. Math. Phys., 26, 280 (1972).
4. H.D.Maison. Commun. Math. Phys., 22, 166 (1971).
5. N.N.Bogolubov (Jr.). A Method for Studying Model Hamiltonians (Pergamon Press, Oxford, 1972).
6. I.G.Brankov, V.A.Zagrebnov and N.S.Tonchev. Teor. i Mat. Fiz., 22, 20 (1975).
7. I.G.Brankov, V.A.Zagrebnov and N.S. Tonchev. Preprint JINR, P4-7917, Dubna, 1974 (to be published in Physica).

Received by Publishing Department on April 21, 1975.

