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A system consisting of two coupled subsystems 8,and 
·L contained in a volume ·v is investigated. The space of 
states ){ of such a system is tensor product of the corres
ponding separable Hilbert spaces: ){ = ){ 11 0 ){I.. Consi
der the case when B is a free boson field with M modes 
having energies wk;:: w0>()(k=l,2, ... ,M) and the N -particle 
subsystem L is described by a Hamiltonian III. ,N which 
obeys the following conditions: 

_!_1111 II <c , 1-1-l'nTr){ expl-{ill II< c 2 . (1) 
N l.,N - I f1N t. !.,N -

Here the trace is over the Hilbert space H ( N) for 
the N particles. L 

In the present note we confine our attention to a class 
of models described on H( M, N) = ){ (M) 0 H ( N) by a 
Hamiltonian II N = T + U with 8 t. 

M + 
T = L w kbk b 0 I 

k =I k 

1M + + ·1011 
(2) 

U=-=. L 1\k [bk0 Lk + bk0 Lkl · L,N 
y'N k =I 

Theorem . If a system is described by a Hamiltonian 
of the form (2) satisfying conditions (1) and if 

1 1 
NIIWL,N'Lk :IIJ{l.(N):Sc 3 , NIILkii){L(Nfc 4 , (3) 
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then (i) fN[IINI ~- - 1-rnTrexp I-{1IINI 
flN 

exists and is 

bounded uniformly in N , 

(ii) I f N [ II N J -min r N[ II 0 N( ~) II ::: max i A k I· M · < N, 
(T}) ' (k) 

where , ~ 0 
N 

Ho ,N 

N~oo 

M + 
(~)~ l <uk(bk+ 

k ~1 

Ak - A k -
--yiN~*) (b +--yiN~ ) 

w k k k "'k k 
0 I-

- I 
M A~ + + 

0 l -L (Lk ~ k + L k ~ k) + 
k ~ 1 "'k 

0 II L N+ I 
' 

0 ~ 
k~l 

(4) 
A~ 

N -;;;"-h/ . 
k 

We shall present here the main points of the proof. 
Short arguments for the validity of the first part of our 
statement have been given by Hepp and Lieb in Ref. I I I . 

(i) One can easily verify that the densely defined self
adjoint operators T > 0 and U satisfy the conditions 
of the Kato-Rellich th-eoreml21 , i.e., D( T) c D( U) and 
U is a T -bounded operator 

I u .PI::: •I .PI+ hi HI. o,U~D( T), (5) 

with b < 1 if 
A~ 

a > 4 c ~ __ID..!!_l 
4 w 

0 

~ - -
NM+yi2(c A JN·M+c

1
N). 

.;& max 

Thus operator II N 
below on the domain 
fiN ~ II 0 + V 1 where 

is self-adjoint and bounded from 
D( T) . Put II N in the form 

flo 
3 M + 
- l eukbkbk0 I+ I 0 fiLN' 
4 k ~ 1 • 
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\f 
\ 

\1 
·\ 

1 M· + 4 ~ I0L+)x V~-Yw(b01+ 
1 4 k~l k k k 

"'k yiN ' (6) 
2 4Ak M 4Ak + 

x(bk 0l + ----=-1 0Lk)- l --I 0 LkLk. 
wkyiN k~l Nwk 

Since D (H (} ~ D( V 1) ~ D( T) the self-adjoint opera
tor H N is represented as a sum of two self-adjoint ope-
rators bounded from below: 110 :::- c 1 N, V1 ?: 
> - 4max At • :w 01 

• c4 • M · N = -A · N . Thus II N ~ 11 0 + V 1 - ( k) 

defined on D( T) , obeys the conditions of a theorem 
proved by Ruskai IJI and having in mind that exp 1 -131! 1 
is a trace-class operator we can make use of the Golde8-
Thompson inequality 

Trexp l-flllNI:::Trlexp[-flll
0
Jexp[-flVll < 

::: exp [ fl ( A + c 2 ) N J. [ 1 - exp ( - ! fl w 0 r M. 

This completes the proof of the first part of the theorem, 
(li) Let us write now ll N in the form ll N~llo N(~) +IlL""'~) 
where II O,N( ~) (see (4)) is bounded from below, 

D( H 0 ,N(~)) CD( Hl,N ( ~) ), 

and 

M Ak Ak - + 
11 1 N(ry) ~ l =( bk + --yiN ~k) 0 (Lk- yl N ~k)+ h.c. (7) 

• k~l yiN "'k 

Using the explicit form of the symmetric operator 11 1 r/.~) 
one can easily prove that it is II 0 ""'~)-bounded 
(see (5)) with b < 1 and a> ron st. N . 'Therefore, by 
the Kato-Rellich theorem 121 for all 1 tl < b -l 
liN( t) ~II 0 N ( ~) + til 1 N ( ~) is self-adjoint bound-
ed from below operator defined on D( HN( t)) ~D( II 0 N( ~)) • 

• 
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Further, operator liN ( t) satisfies the conditions of the 
Maison theorem /4/. Hence for 1 ti < b -I, elljl [- {3 H ( t) J 
is a trace-class operator since eJ<P[-[311 0 N{ry) 1 is tr~ce
class. Furthermore, Z{:J(t) ~ Trexpl-{3111 0 l'l(>/)+ll!1 N(ry}ll is an 
analytic function of t in the domain'ljt[<b-1 'ixi{:J > 0 I . 
This makes it possible to prove the Bogolubov i~e?uality 
by direct differentiation with respect to t ~ [0, 1' 5 : 

_l_,ll lq) > <f [II i-f [II (ry) i<~<ll (ry)> .(8) 
N 1.N t~ 1- N N N o,N - N ~N t~o 

Using inequality (8) and the results of a previous work 
of the authors /6/ we obtain the estimate (ii) which pro
ves U1e thermodynamic equivalence of the Hamiltonians 

II N and ll o N ( 'I) . 
Note that in liie cases when the limit fim min f N[ II 0 ,N( 'I) I 

N-ooo(ry) 

exists / 6
' 

7 I inequality (ii) implies the existence of the 
thermodynamic limit for the free energy density of the 
original Hamiltonian (2). 
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