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1. Introduction

Nowadays a quite complete experimental information concerning

=3/

isoscalar quadrupole and monopole resonances exists . Similar

information ahout isovector resonances is rapidly accumulating,too

/4-8/

. Numerous theoretical investigations are devoted to the same
subject. These are different microscopic models using RPA /9713/ or

macroscopic calculations, based on the energy density functional

and the phase space method with "scaling" /14"19/, as well as pheno-

menologicel models 120,21/
In present work to describe quadrupole and monopole excitations
(both isoscalar and isovector) in rotating nuclei we use the method
of moments, developed in refs. /22-24/. This approach, based on the
phase space method, enabtle us to describe by the same equations the
excited states of the nucleus and its equilibrium shape, which is
important in rotating nuclei. In previous works /22-24/ the basic
equations have been derived in the approximation of a local
nucleon-nucleon interaction. Now the possibilities of the method are

investigated in the case of nonlocal interaction.

2. Formalism

/24/

—dependent Hartree-Fock equations for the density matrices Jp (2 o 3

)

The starting point for the method of moments is the tlme-

) i ;i{’ =[h‘;;/f;} P) J="pP ()

where f/ ig the self-consistent single-particle Hémiltonian; the
label #~, P stands for neutrons and protons, respectively. A Skyr-
me~type effective interaction called the "modified Skyrme force" or
SKM‘ /25/ is used for the nucleon-nucleon interaction. A self-con-
sistent potential witk such forces is derived as usual /26/ and it

£, /18/.

Following the prescriptions of ref./24/ we transform equations

can be found in detail in re




(1) Lo the nquahimm for the Wigner functions
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with  H(F, F) =/e (E s H|E-3/)dF
and €=(E,+'Zz)/,?,) d= 'Z,-’Z, .

Then, integrating (2) over F we obtain dynamical equations

for the densities, which are just the continuity equations /26/
2 - —
__i . > _ ; _
+ dov(nydy) =4 dov 1y (& - &) 3)

with R (Z t) = // (t,/?/ 'é)"é/g being the nucleon density, %('Z/ﬁ:
=/f(»f EUF aép/ﬂ;m is  the mean velocity of nucleons; /7
the nucleon mass; b =m +/2ﬁ2' , t*=t,+tz s f, and tz are para-
meters of the Skyrme force (the coefficients before the nonlocal
terms))' 7l=P if g:n and vice versa.

Note, that only the first term of the power expansion for the
gine function in eqs. (2) appears in equations (3), the other terms
drop out due to integration.

The next step is to integrate (2) over ,5 with the weight A
to find dynamical equations for the new quantities involved in eqgs.
(3), namely, for the velocities L-(; : .

PA 2 > -
T “’:; - 2'/?/’7;‘{—’ Eixs fo; - -ZJLf” ”;’g eixs(“x; “k;l)—

T ut

-Ra-d) %,y + B 2 _; +(E +mnu,)—p + 4)
+Z’. fi,[(’/m*zcz)&;] +n}tZ;-;—x£B; ¥ i=1,2 3
+phyy (B =) Tk - fm(V”; PRl i 3‘% '7;”;) =0
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In equations (4) other collective variables, the pressure ten-

sors P ('l i) = m'f/(ﬂ -mitlg ) (F; - ;)/;({Pjt)ﬂl,‘-”

appear and need also dynamical equations to be defined. Here

i:l-}i _3_. ,E

2t of LLK; = ‘:J"‘ is the Levi-Civita tensor,
*=t * ’
3
= Z. t-
B-3R, , P-ReR, G-daltn-g1),
‘ 3 L
t=t-t,, n=n+n, B;- M,(f ne - n,w,)

U, = t[(1+hn - (for12)n, | +

ni = n,&, + 1, &,

L (3tst)Vn v (38, +5L) 0+ £5[P e minaten ]

—;’;f'(}; +m/7,b(;) +

" fe-p)s e 2(205)] -

-2n,zc(4+zf,) + znn,(cr-f)(ﬂzﬁ)} +

2

7 to / & ’ o 4 5 - are Skyrme force parameters
-ty AL =
and Vc =//'7r(7,) e,,//t-?:i oAL% is the direct part of the Coulomb
interaction. Equations (4) are written in a frame of reference rota-
ting with angular velocity f?:(o, o,R).

It is intereating to note that due to the nonlocality of the
interaction we use, already two terms of the power expansion of the
sine function (2) contribute to. equations (4) - a term propor-
tional to ﬁz has appeared.

.is well known (see,e.g.,ref. /2 7/) equations (2) reduce
to Vlasov equationsin the 1limit ﬁ" « Thus, in our method we are
able to study quantum corrections to the Vlasov equations.



Finolly, lot us write down the dynamical ecquations for the pres-

sure tensoro [y . We need for that to integrate (2) over F with
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Here the notations m*=M(1+2mCP) and Y

Py (B4 = 0 f(pi-miy) -mtiy -t G E O 4P ‘
are introduced.

.
/22-24/ one needs now to integrate -equations [

According to refs.
(4) and (5) over an infinite volume with weights 2%; and 1 respec-

tively. In the case of a local interaction all integrals including

third-rank tensors R},(; vanish and thus one obtalns "closed"
system of coupled equations for the tensors of inertia 21{/ —m/nz::g.'(z
and the integral pressure tensors ”.,; /P‘Jf d?; . The si-

tuation turns out to be much more compllcated when one uses nonlocal

interaction. In that case the integral m“’fgc /gx Z ‘D“ PAA re~
sulting from eqs. (5) is nonzero and to decouple anyhow the infinite
chain of equations for the tensors /EJK; ol\”L it has to be neg-
lected. Fortunately, we are able to appreciate numerically the accu-
racy of such an approximation and it will be shown later that the
resulting inaccuracy is very small.

The equations we obtain after integrating (4) and (5) over the
gpace are obvious and we don't quote them. In the following they are
denoted vy and sg respectively.

3. Shape of rotating nuclei

As  has been shown in refs./22’23/ the shape of rotating nuc-
lei may be determined using the stationary solution of equations Lﬂ
and ]5’ which describes the secular equilibrium of rotating nucleus.
In present paper we consider the simplest case of secular equilibrium
when t_(:’=0 « We also suppose that at JL.=0 the nucleus is spherical
and due to rotation it becomes an oblate spheroid., With these assump-
tions egs. f read

42
/aa 1, /ax-a(z+ xP 30, /2, AT -

(6)

_ﬁf‘."."a_cy
zmva'

-2 (1-d; )/2: Xy T - /(m 16)7; =0.

It is easily seen that in the case of three-planar symmetry of the
integration volume the first four integrals are nonzero only if
—j . Hence, the last integral does not vanish only if L“J , i.e.

one can put P; ‘f P";

q

REuy sz,,,.(v Fig)d% + //} %1- 2

7 o}

. In such a case equations _[_,-} yield

£ 26 20 _ 26 ?;’_7;)0&2’} =
22y T Ty Py

the second integral being zero due to three-planar symmetry.
Apparently, ¢#/#3  and it is possible to assume E,,=E”=E,’=E’ .
In the followingR is approximated by the well-~known Thomas-Fermi

. - 7 . L _ B /am\ AN .
expression E; -J’f hn with J;‘;m z3, =J/('Z_,,) . Assuming




the same equilibrium shapes for proton and neutron distributions, we
put A, =hnZ /A with A=Z +2Z, (Z,(2) being the number of ne-
utrons (protons)) and sum up eq.(6) for protons with that for neut-
rons. Subtracting the sum for L—#-j from the analogous sum with

L=J:3one obtains

21, = L[, oty BBy ) Jn2, 2,7 % 5 JTh dE -

L(4,-

9% 92)]4% - e
B fﬁj/k(énsé%i;- s éﬁi;)L{ Oéér ?
where ;*J :%;,, + Jg‘f .

In the analogous

formula of refs./22—23/ the ef-

fect of the nuclear forces has
been approximated by the surface
tension. Our calculations with
more realistic forces (SKN' )
show that this approximation
works well.

prolate
o> oblate

Fig. 1.

2
U
Rotational parametery”'l/q
ag a function of_ the deforma-
* tion parameter for diffe-

rent 2z, and A (1*=26mAR/ST.

€ =17 Mev, % =1.2 fu). The full
curve shows the results of our
calculations with SKN*, the
dashed curve those obtalned in
ref. /22/ with surface tension.
AJ [ is angular momentum.

e

This is not suprising since the Skyrme parameters are chosen to re-
produce the Weizsaker mass formuls and particularly the surface term
fAzls . The dependernce of JZ,’ on the deformation of the nucleus
calculated in both cases with SKM* force and with surface tension,
ig shown in fig. 1. The details of the calculations and the precise
expregsion for JZz can be found in Appendix A.

4. Small deviations from the equilibrium

Analyzing the reaction of the system to an infinitesimal pertur-
bation one can determine its eigenfrequencies. A small deviation from
the gstate of equilibrium of the system is described by taking the va-
riations of equations J;} s ]_;; .

Before going on with variations, let us stress out some new
points arising here.

Firstly, in refs. /22-23/ the volume of integration was finite
and one dealt with the Lagrange variations Af7 and Aje. . In this
work we formally integrate over an infinite volume, hence only the
Euler variations d# and JT¢ survive (see,e.g., the rules of varia-
tion in ref. /28/). /

Secondly, the nuclear matter in refs./22—23/ was understood to
be incompressible and the whole effect of the nuclear forces was re-
duced to the surface tension. In this paper we use particular realis-
tic nucleon-nucleon interaction and we are able, moreover, we are

obliged to describe also coumpression modes of excitation (monopole
resonances ).

The expression for the Euler variations of neutron and proton
densities may be easily derived from the continuity equations (3).
Multiplying egs. (3)by Jf and defining the infinitesimal displa-
cements of the elements of the neutron and proton liquids

};(5:{) =[4;('2:é)-aéé (a)'.
one obtains
dn, =-dv(n, 3 ) -pdr(rn.(3-3) (9)

The presence of a term proportional to

which is responsible for
the exchange effects /26/

makes the last expression different from
the classical/2a/ one. Cbviously the Euler variation of the total
density JIn  does not contain any exchange effects.

Lagrange variation of the mean velocities/28/
by calculating the differentials of equations (8):

can be obtained



= aé}‘;(”cjt)_ (10)
At

The expressions for their Buler varlatlons d ('5 t) are derived

by using the relation /2v/ A= 0’7+Z}’ 3% 7 .
Now we are ready to take vari atlons of eqs. ];i and 5y with

respect to the equilibrium state with given J?, . Keeping the terms

linear in variations, one gets

Vg = Vg ~A Wiy + 475 -

~ A (11)
+Jy’({% A 4 +£[é _tf;, +,€77; +[j7,},)+
282 b (bW - G Vyy) -
_ng"g gAxt(gzl{ki -53 xx;'
”9'7 _"t'(‘,jr/% *L/-,z; 0’7.) ¥
*“l(v,'j;’/dy *IJ/L;//‘Y&) -

3
- 2-./2,0‘3 gf (ajak 77431(;' + 553" Z‘K;)-

Here and in the following we use the notations:

VW ='"/’1‘ Sip % Lt %/7 = V‘W * l{‘,if )

~ 3 ~ 3 VK _ )
V=22, Y235 o %=y
8

Ai; are the so-called index symbols, defined in refs./22’28/;

071; =-a,‘-/,€ wite @&, (L'=1,2,3) being the semi-axes of ihe nuclear
spheroid. The coefficients 6, and of, depend on the SKMI parameters
and on the indices ll,{‘,} and can be found in Appendix B.

Deriving equations (11) some natural assumptions have been made.
(i) The integrals containing Coulomb interaction have been calculated-
in the approximation of a sharp suface of the nucleus in which case
one can use some formulae from ref. /2&/.

(ii) Following the prescrip-
tions of ref./24/ we

try to find solutions for displacements and
variations of the pressure tensors in the form:

3
?‘;}('%;'é)=[;7(f) + KZS' Z.,;,K; (*)xk + Z Zi}kt’; Ly Xy »

K e=¢
IRy 88 = m(®)[ Dy, + & Dy W, ]

A natural question arises here: are there solutions more complicated
than (12)? What will happen if, in particular, one adds in (12)

terms with higher powers of coordinates? This problem has been dis-—
cussed in ref. /24/ and it turns out that such solutions may be const-
ructed; but to do this, the system of equations ]. , 1}, must be
supplemented with equations for higher-rank tensors é&‘”.K; and

(12)

}%‘.n y & strict correspondence existing between the number of
the terms in equations (12) and the number of the equations for the
moments.

Inserting expressions (12) into the definitions of the I{}}
),
and /7., we find relation between o and A
Py LZJ; ' 15/}

___ 3 ey
L"'/" " yrm ) it Vc,/; >y % =o/.'/° Hp ok p
and between /75/7 and De‘j} f

r =& Dyy .

Due to three- planar symmetry all the integrals containing L,
[,,},‘Z’ oT Uik g vanish, v

We may rearrange equations (11) to obtain equations for the
irreducible tensors of ranks A-2 1,0. These tensors occur to be just
the variations of the quadrupole moment 02/4; —/ﬂ; * )ﬁﬂ AT, angular
momentum]; /}7 [[qu;] +['b*[&x'b]] } , trace of the
inertia tensor 0”; fnp'(, Y, d%
dius) and similar combinations of the components of the /7,
tensors. In the present work the relation between the variations
qpﬁz/u N fl" and the tensors V‘J is quite more complicated
than in ref. (due to exchange effects).

L;!

( i.e. the mean square ra-



Inserting the expressions (9) into the formula

7 , one obtains
Loy /t fn, AT

Drl?x/:z; t//n 15_{(1 ;A )(Wf; ) /—/TZ( .-,ZLV )}

J’()L,n; = ¥§n’V,LZ§{(“;ZZV)(%; tilly) -4 f;(%;, té%,;)} ?

JW‘/”’ Z,_,'n {(“7A;){V”} 229 '2‘/33}) /A (u; 12 ,-Z%;.)}

and by analogy for the angular momentumn variation:

Sy = [{r,(EdR], + I, [T} fd7
J’]f; = Va,z; -TZ,J; ’JL[(“;_,%I)V,,; 7_{ }

Iy = V-1, {15 55)Voy =5 3 Vi

J1, =V, Vg #2407 BNy +Vag) = 5V Vi)

2

For the variation f&,,’ one has:
3
1 - ’ —Z _ }
me’ =|[’Z,r/t'zdf}7;9éz =2—mﬁ{(4+ /1 )l tig ;A %

The expressions for 0()/72 p can be found from those for D(W,z/u;
replacing Vi by 7: g and in a similar way fﬂm’ is found
q

Foptire

from 0”; .

10

e
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5. Eigenfrequencies and transiticn probabilities

Because of the axial symmetry of the nucleus, the multipole mo-
nent projection on the axis of rotation is a good quantum number and
the set of equations (11) split into five groups of equations corres-
ponding to M=*2 *{ and O.

The /4:2 group of equations reads:

opp;,o),y = zl f@.}}; +’51_ ‘7(’02,'2;' + t.u Jvzﬁz'q * Zy /ﬂz'u; t J/Z“.*J.; + ‘ts //Iz,ez;
J,ﬂz)u.; = Zp /02,017 + fﬁ,zlo),;’ + Z’ fﬂz[w; . (13)

The m=f group is

Jﬂa‘;’ﬂi = 5,0[’0;’41’ + j;&f&z'tf;'*.’fioﬁaz?”; *jv 0{)4;,1,' *d D{)[ '*.'j f[ ’ *j 7/7/]

2«1;
aﬂ/:; =3, l/wz,ﬂ; t5, faz,q}' +3, J’017+1; +3, J’OL,M;’ *+3,, 0/)[,,’513 'f[,.;' (14)

J’/Z,"p[;: w/”zof; j "m.zoi; jﬂ faz,ﬂ; *'jﬁ l’ppz,ff;' +J1‘J7[f; +j11 sz“jzoy/;/q,
Here f (/[’ +¢J’[ )

Slmllar equat ons w1th - in place of R in the coefficients
2, and 3, correspond to M=-2 and M=-7 . The coefficients ¢,
afld 3n are obvious lin=ar combinations of the coefficients 3,, and
d, 1listed in Appendix B.

The most cumbersome group of equations is that for M=0
ﬂ/)az'p’ = t f@p;+t Jvzp;"'t 4{)

+t, Jﬂ,,;'*t,f],. *t; g’ +t 4’(7/72.1;

9op

J,’vw; —t J@;o; *tﬁdnpt;p;'*tm J)ﬂzlv;*iﬂ f&p;'*tuf/;, ot,,af], +f f/],,’ft o'//

J'j;; =ty J’d,),, +ls Mw’ Ly dllog + ‘M""' (15)

| Upﬂz g = to "Pai,a; + tu ‘J’ 30p0 * bis f@;p} + by J’ﬂ;,’,

‘fﬂop; t:,v /ﬂz L g + tzrfgl,p; + t“ 0{703,; + fz; qug;

with t,, being evident combinations of the coefficients f,, and p‘h .

11



Obviously, systen (15) contains three integrals of motion, hence
it can be simplified by rewriting f]; , o(‘/Z” and J)ﬂ,a in terms of
JZ& p and /Z&,. Uné of these integrals of motion allows a simple phy-
sic;l interpretation, name]y Jugp'*dugn const means that the projec-—
tion of the variation ‘of the total angular momentum on the axis of
retation is conserved. Actually, system (14) also contains twc integ-
‘rals of motion JY and Jyk , but these projectlons are constants
a laboratory frame of reference. In a rotating frame they
It is easy to obtain from equations

only in
rotate with angular velocity J& .

(14) fj; =—ILJL0(’]+

-liJ?«t
and consequently JY- = const €

The reduced probabilities for electromagnetlc transitions may
be calculated applying the theory of linear response ol a systen to
an external field perturbation.

o) = 0e™ e 0T et (16)

In the case of quadrupole and monopole electric transitions we have

2 s - oy (3 i
0 8,,0[7 (A )i/, or 0= epog,, (4 /Va., respectively, and for magnetic
dipole transltlons

0=-c 2L (e ) [T emr )] 4, =0 .

A convenient form of the linear response theory is given by Lane
obey the relationship

129/

The matrix elements of an operator 0
<9 (01,5 = bm F(w-n) (K0S @
W Wq,

where Y’ and V’ are the unperturbed wavefunctions of the statio-

nary states; yV/ is the perturbed ground state wavefuanction,

W= (€ E’)/é are the normal frequencies of the system. The bar means

averaging over a time interval much greater than f/w , W being the

frequency of the external field oK) .
Let us consider in more detail

Its matrix element may be expregsed in terms of variables LéJ}

the” case of quadrupole operator.

’ -Cwt o -C
Hled, At > € <6 [nrng, v Y, 4F € we_

(18)

‘ ¢ t
=, [n@),dE € “ e [dnEn v dE e

-Lwt
, G, ) €

12

-
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To find the absolute value of Jn@y~g(*) we neec to add poten-
tial (16) to the Hamiltonian in equations (1). The right-hand side
(r.h.s) of equations (2) are then modified by the terms

Loinf £ (7 - PR 0,EPE"5 Qape’ j/(i’gt)_ 19)

Proceeding in the same way as before, one obtains equations for
all the moments of the Wigner function needed to calculate JZQﬂ .
The only new element now is the presence of the terms (19) that make
the equations for the momentis inhomogeneous. Thus, the perturbation
by a field proportioral to )iz does not affect equations (14) and
(15), but makes the first equation of the system (13) (for protons
only) inhomogeneous:

. are 2
J Qo= =10 _Lp’é (“7 ).

The perturbation with a field proportional to }L, makes inhomogeneous
the first proton equation of system (14):

T . e,,Z, 1 41 = ‘wt,  _ g
0(’0111/:_“ oy Z(¢,+a;)6‘ {’f#-;/Th

Finally, the perturbation with a field proportional to )ia makes in-
homogeneous the first equation (for protons) of system (15):
b= 10 254,
%0p

e =10 5 mA (Q‘f +Z%) C—O:WZ (1-1-}2’1)

According to the time dependence of the inhomogeneity we suppose

that the variations JZ% JVL , etc. must depend on time like
ef“t, coswl or 51n£dt . For such type of [ -dependence equations

(13)=(15) become a system of linear algebraic equations and the prob-
lem of calculating Jz&ﬂ’ reduces to the calculation of determinants.

The characteristfﬁ equation of the homogeneous set of equations
yields the eigenfrequencies Wa .

A formula analogous to (18) ig derived for the matrix element
of the operator responsible for monopole excitations

<V:,I€, J;p tz)q/v I%'> e-c‘wt= ) 01700 (ﬂe—LUt

13



The perturbation with a field 0=8P ogf ’L"}é,,‘ affects the second
equation of system (15) (Tor zﬁzp ):

f@;a’p =+ & ;PAZPOQ‘/}(@;-f-,ZQ:')(f\t;%)(,oj{z)?f.

For the matrix element of the magnetic dipole operatol one. gets

' ] ~rwl —twt
w01y et = Jdm,,, e
with /ﬁ;wrbeing the variation of the proton magnetic dipole moment
7
m,.,= g/n,, V(z},{,)-[z'x(4§+[jxfj)]oéi’,

1M
Obviously, the components. of AQ%/q are proportional to the angular

i i.C. = €Ep /3 __ € 3.
momenta components, i.e /721’0 j%’;[’ , /]Zﬂ__:zz?l/y; L

The perturbation with a field CL makes inhomogeneous the
second equation of system (14) with ;:f :

S - -l S €

Thus, we have constructed everything we need to calculate the

energies and transition probabilities, of 2+, 1* and ot states.

5. Numerical results

6.1. JL =0 case

In figs. 2-5, the calculated 2igentrequencies of JG ~-gtable non-
rotating nuclei are compared with the empirical data.

For =0 equations (13-15) yield two five-fold degenerated ot
states (isoscalar (IS) and isovector (IV) ones) and two ot states
(I and IV respectively). Having in mind the physical meening\qf the
dynamical variables (in these equations), it is natural to identify
the above states with the giant quadrupole and monopole resonances
of both types. )

The calculations have been performed with two parametrizations

/30/ and

(see Appendix 4) of the equilibriun density n : of Bernstein
of Bohr and Mottelson/BT/ (Bh). Besides we check the accuracy of the
widely used approximation in which protons and neutrons vibrate in
or out of phase with \{}."/2; =thP/Z’ .

The results presented infigs.2,3demonstrate that the energies
of the isoscalar gquadrupole resonance (ISQR) in medium-mass and heavy
nuclei are closer to thé data when calculated with parametrization
of Bernstein but in light nuclei the parameters of BM are to be pre-

14

Ey MeV '

301

250

20

IVQR

100

Pig. 2. The energies of the isovector quadrupole resonance calcu-
lated with the equilibrium density parameters by Bernstedin
/30/ (full curve), by BM /31/ (dashed-dotted ¢urve) and in
the approximation (see text) of equal neutron and proton
amplitudes (dashed line). The experimental data are from
ref./4/ .
E, Mev ' o
200 %
{SQGR 1
.\{
H{
15 \ﬁ‘- |
\.
b .
Mt
L A
ey
o . TR
100 200 300 A
Fig. 3. The same as in fi;;, 2 for the isoscalar quadrupole resonan-

ce. The experimental

data are from ref. /y1/.
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ferred. The solution with Lgh/z; = V&P/KZP for the. isoscalear

quadrupole resonance (ISQR) practically coincides with the exact one.

Th i i A =

de Fpprox%maFe‘solutlon for the IVQR ( \[, /%, = L&P/E; )
eviates significantly both from the data and the exact result.

Comparing the energies of the ISQR plotted in fig. 3 with the
analogous results of refs./15"2/ one sees that in the region of

light nuclei our more realistic calculations describe the experimen-

tal data worse than the simplified calculations with a sharp shape i
of the nuclear density and Fermi-step approximation for the momentum .
distribution. Obviously, the Thomas-Fermi approximation underestimates &

the mean values (pL> ~‘E , Which occur to be very important in calcu-
lating the giant resonance energies. In heavy nuclei the smoothness
of the shape is smaller and the above effect is not so prominent.

In calculating the energies of the - monopole resonances
presented in figs. 4,5 the parametrization of Bernstein seems to
be preferable. The approximate solution for the ISMR practically
coincides with the exact one.

The empirical information on IVMR is very scarce. Strictly speak-

ing, there is only one experiment /7,8/ lfig. 5) to compare with.

20| ISMR

15

10 . . : . A

40 100 ) 200 300 A

Fig. 4. The same as in fig. 2 for the igoscalar monopole resonance.
The experimental data are from ref. /3/.

16

Ey MeV IVMR
40y
) __i133~-‘—::(;:::::Iﬁ_::::t
‘ 20 ’
10 160 260 A

Pig. 5. The same as in fig. 2 for the isovéctpr monopole resonance.
’ The experimental data are from ref. /7.

The approximate.soiution like in the case of IVQR deviates from

the exact one, the discrepancy being of about 10% in heavy nuclel.

The E2- and FO- transition probabilities have been calculated

as well as their contributions to the electro-magnetic energy-weigh-

ted sum rule /32/

I

S(E2)

25 L 4" 2 iy 1 - L g{) =
Wz:ef E[(z>+<nt>2ﬁ,(zi 7 A] 20)

I

25 S (£0)

Here A(:z,) :/n;u A . The correction to the classical sum I.'uie
(the term with %, ,f. ) results from the nonlocal Eart ?f S%yrme %n e-
raction. Our calculations demonstrate that both 27 excitations give
nearly the same contribution to the sum rule (22) and co?pletely ex-
haust it. The same is true concerning the two O° excitations (see 7he
Table ).It is interesting to note that the contribution from the iso-
scalar 2+ excitation goes down when the atomic maess increases and the

+ . .
contribution from the isovector 2 excitation decreases.
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Table, Percentage contribution of the different resonances to
the energy-weighted sum rule. IS-isoscalar, IV-isovector,
QR and MR-quadrupole and rionopole resonances

ISQR IVQR ISMR IVMR

40g4 46.9 53 44 56
Wagn 40.7  see 48.3 51.6
208py, 37.8 62.1 50 49.9

As for the 01 excitations the tendency is just the opposite. The ex-~
perimental data are by tradition normalized to the isoscalar or iso-
vector sum rule., The relation between these two sum rules is given

by the formula /32/:

S(T=0,A) = S(T=1, pe=0,)) = =, S(EX) .

Z ¢

Our calculations show that one of the two 2% excitations approxima-
tely exliausts the isoscalar EWSR and the other the isovector EWSR.
The game is true for the corresponding 0% excitations. The results
of our calculations along the data are shown in fig. 6.

" The overexhausting of the isovector EWSR for IVQR results just
from the impossibility to decouple exactly the isoscalar and isovector
modes.,

The large discrepancy between the theoretical and experimental
results for ISMR in light nuclei is probably connected with the in-
correct treating of the empirical data.

In calculating the sum rule we can answer the question about
‘the significance of the integrals including th.e third~rank tensors
fb,; we have neglected in our equations. Indeed, the equations of
motion are written directly in terms of multipole moments and there-
fore the described excitations must exhaust the corresponding multi-
pole sum rule. All the energies and probabilities are calculated neg-

lecting 1;1} termeg and hence the l.,h.s. of the sum rule

S (E,-£)[<ilFlo* = £<ol[F, [H,F]]10> (21)

18

contains some uncertainty. As to the commutators in the r.h.s. of
(21), they are calculated with

ISaR exact Hamiltonian without any ap-
100 ; _____ proximation. That's why the diffe-
{__ ~ +§ ? 3 — rence between the r.h.s. and the
{ t l.h.s. of eq.(21) gerves as a cri-
} q
}i { teria for the importance of the
neglected terms.
IVGR

=]
o
T
|
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|
1
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I
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'
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Fig. 6.

%% EWSR

Percentage exhaustion of the iso-
) — L scalar energy wéighted sum rule
ISMR (EWSR) by the IS-quadrupole reso-—
nance (upper part) and by the IS-
wol ______ _]_ e
by the isovector quadrupole rego-
nance. The experimental data are
° from ref. /1-6/.

monopole resonance (lower part).
In the middle part - percentage
exhaustion of the isovector EWSR

Our calculations show that for all nuclei the proportion l.h.s./
/r.n.s. is more than 99,9%, i.e. the role of Bg‘x,i terms is insig-—
rnificant when describing excitations up to quadrupole.

6.2, JZ £ O case 4

In fig. 7 we show calculated energies of 2% and o* excitations
in 1 4Er as a function of the velocity of rotation (or more precise-
ly of the eccentricity ez=j—a§/hf and the angular momentum [ re-
lated one-to-one with J& ), Due to deformation of the nucleus and
the Coriolis forces each of the two 2% states (ISQR and IVQR) split
into five branches corresponding to AM=%2 (the so-called { -mode),
M=%1 (denoted as o« -mode) and M=g (8 -mode). The two s -modes
are always coupled with the volume (monopole) excitations. The pic-
}ure of the ISQR splitting is very similar to that obtained in ref,

with an average field on the nuclear surface approximated by a
surface tension.
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Fig. 7.

Energies of the O+, 1* and 2% ex-
citations as a function of the
eccentricity € and the angular mo-
mentum [, The levels are numbered
as follows:

isoscalar - 1(0), 2(0),

35|

300 isovector - 3(0), 4(0), 6(-2),

9(+2), 10(-2), 16{+1), 17(-1).

The corresponding multipole moment
projections on the axis of rotation
are indicated in the brackets. Tne
isoscalar level N2 12 and the iso=-
vector level N& 11 correspond to
the projection M=-1 before the
point in which their energies are

] . zero and,« =+1 after this point.

25

When J £0 five low-lying mo-
des appear (fige. 7,4). Two of
them, the isoscalar ¢- and 4~
modes (modes N5 and 12) have been
desgcribed in refs./22’23/. In ge-

10
neral, their behaviour doesn't
change very much, only the critical
angular momenta are slightly shif-
ted. So, the bifurcation point
goes down from] %X 70 to J = 5on
and the spheroidal shape stability
point from /#190h to/#~170h. As
for the point in which the « -mode
goes to zero, it doesn't change
(LzESh). In the present work the-
se two isoscalar modes supﬁly with
isovector analogues-the curves N£6 and 11. The isovector low-lying
{-mode has no -any peculiarities, but the isovector £ -mode goes to
zero at ];’n‘:19h.

The fifth low-lying mode (the curve N213) corresponds to the
vibration of the proton angular momentum towards the neutron one
(like scissors). This last mode has no isoscalar analogue as the to-
tal (neutron plus proton) angular momentum is-conserved. Evidently,
it can be classified as an isovector 1% excitation. In nuclei with

05

S0

20 50 I/h 170 800

static deformation such a mode is known as a scissors mode or angu-
lar resonance /33/. In ref./33/ another mode corresponding to the rota-

tion of the proton angular mpmentum with respect to neutron one has
been predicted.The mode N¢11 in the £f1g.7,8 seems to be just this mode.

20

: 5(=2),
J 7(+2), 8(-2), 13(-1), 14(+1),15(=1);

Pig, 8.

Energies of the low lying exci-
tations as a function of the
eccentricity € and the angular
momentum I. The legend is the
same as in fig. 7.

0150

01

>

g In fact, as has been shown

Wi in ref./zz/ the isoscalar analo-
003 gue of mode N211, i.e. the mode

N¢12,is similar to preceesion
mode. Hence, the corresponding
isovector mode (N211) should

describe the '"precession" of the
proton matter with respect to
the neutron one.

0 19 25 52 1/h If one forgets for a moment
that in present work the nuclei
may deforme only due to the ro-~

tation and compare the calculated 1t energy for the same deformation

J =0,258 (i.e., for €=0.,66, | = 69h in fig. 7) with the experimen-

tal value /34/£7% 3.1, Mev in '°%Ga, one finds that the theoretical

results E;,(N213) =~ 4.9 MeV, E;jNg11)==1.9 eV seem to be quite
reagonable. As for the theoretical B(M1) factors of the above men-
tioned two levels they are practically the same (= 1.6/%b and agree

nicely with the experimental B(M1)} =132 o_z/«j .

It should be noted, that particular calculations are neededfor
nuclei with static deformation. The results ot such investigation
will be presented in a next paper.

In fig. 9 the angular momentum dependence of the calculated
B(E2 )-factors is shown. For moderate [ the behaviour of the curves
NNZ 1,5,7,8,12,14 and 15 corresponding to E2-transitions from the
isoscalar excited states to the ground state is similar to that of
the analogous curves calculated in ref./23/ with surface tension.
Noticeable differences appear at | = 40h.

The following pecularity is nicely seen - the probability for
the transition from isoscalar levels is greater than that from the
isovector ones. Only at extremely large [ the picture may be just
the opposite.

As has been noted in Sect. 5, each level can be distinguished
by a quantum number JM (the multipole moment projection on the axis
of rotation). The levels NN£12 and 11 have the following peculiarity:
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B(E2)/By,

‘*’g—ﬁ——q
0 20 S0 L V)

Fig. 10.

B(EO)-factors for the transi-
tions from the excited to the
ground state. The curves are
numbered as in fig. 9.

in the points in which they

Zb Sb ]70 ) are ze?o JM changes from -1 to
+1. This meens that the corres-

Fig. 9. pondint.modes are exciyqdlyith
B(E2)-factors (in Weisskopf units decreasing the spin it [< ¢ and

Bw ) of the transitions from the ex- with increasing it if [>}: .
cited to %the ground state. The cur- Th Fanical int t
ves are numbered in correspondence e mecranical interpretation

with the levels (fig. 7) from which  of such a behaviour seems to be
the transitions go. also interesting. As the mode
N£€12 is the precession mode, one can say that in the point 1; the
vector of the precession changes its direction.

In fig. 10 the calculated B(EO)-factors are shown as a function
of € and . As ig seen, in the region € ¥0.6-0.7 (oﬂ=O.3) B(EO)-
factors for compression mode and for /3 —mode have the same value. This
is a demonstration of a strong coupling of the monopole and quadru-
pole excitations in deformed nuclei. Experimentally such coupling is
manifested in the "splitting" of the giant monopole resonance in de-

22

/37

has been obtained in the simple schematic model

forned nuclei It is interesting to note that the last result

113/

‘6., Conclusion

The results obtained in this work quite convincingly demonstrate
the virtues of the method of moments. Indeed, isoscalar as isovector
O+, 1% and 2% excitations in rotating nuclei are described in a
united approach. Simultaneously with the giant resonances low lying
modes appear., In gpite of the quite complicated interaction the
calculations are relatively simple: one needs to find roots of poly-
noms of order £8, the coefficients being simple integrals. The non-
locality of the interaction doesn't lead to any additional diffi-
culties.

Of course, the possibilities of the method are not exhausted by
present work. The area of its applications seems to be very vast,
but we enumerate only some of the "next day" problems such as inves-
tigations of nuclei with static deformation, description of the ex-
citations with A>2, the inclusion of spin degrees of freedom, etc.

The authors would like to thank Professor I.N.Mikhailov for
fruitful discussions and for his constant interest in our work.

Appendix A

Equidensity shapes are approximated by ellipsoids and hence
the shape with f7(% =fhnew) obeys:

x/al + xl/a; + 7ija =1 .
By changing the variables Zf::ﬁﬁz:/a; we go to a reference system
in which the foregoing shape becomes sphere with radius A ,Jaﬁg';ﬁ
&Zf+}f:=ﬁz. -In this system we assume a Fermi distribution for the

density n(p)=n,[1+exp(lp-R)/a)] with @ being the diffu-
seness parameter.
Integrating by parts

2
-2 - T - 7 - 2 -
2 - 2" z _,,_/
/ﬂx; 9%7/7 o&z /9x3>aé 2 (7!7) AT
and iserting into eq.(7) we finally obtain

2 2
£, 242} L’/_f_z Sy e_»é/ . )
ate Bl EE )G ) 3 s (A A

2 4
where A; are the index symbols of ref./Zb/, é; - the proton charge,

GRS
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The deformation parameter 0/7 is defined as previously in ref./22/,

X £ 2_a% y . . <3 .

a,L=a,L=a1,(1+§f) ,a,,—a—,(-;o/’) and &, 1is fixed by the Cy;z 4” B 043:,/_,_ !"—J—W/HC;O&”L .
3

conservation cf the nuclear volume &, x, (L A’ . We use two gets

of parameters of the Fermi dlstr*ﬂbutlon The former is from the Here the following notations are used

Bernstein's work 739/ : R = 1.11582 - 0.53A" tu, @=0.568 fn

for all nuclei with A 220. The latter is from the book of Bohr and

2=2,/4 2, A = e’z
Mottelson’ 32/ R = 1.12 A" - 0.86 £Psm, @=0.54 fm. In Jboth cases yA, 2=2A / /4’/” Y =

7
the third parameter /1, is fixed by the condition l/lr/n{/)f"oéﬂ A
A= 21+ (S 02p8) + G5 {oo) 2tet)] +
Appendix B ' s 20(0-11+2)) 22 }( BT+ 25B77) 5
2/, 2. . st Ey , :
f =R 3)(1*2 z) + @ P + 0;,)[ 5"’(7*/”0‘2)'2—55; + ]3 =/ - {o'+4)[(<f+z)(1-fs)+,1(1+,z/)(;z o’;z)]
27; ) ,Ufm«fz 2
+g__::’ v+ ZG) fj— + (t zzﬁ/’?—) V4 +l(1"2/3)0’(30'*1)2$l}/:::' ;;:;J/) ;tpaz3{alz(fo+_;:)—1- %]}
b= RY1-is)52 + £, 42 EP v psma2By; « 26 st
A :J; /T’p(,vdw;' 741:;6 d" 2P ; (i y + » Z(/rz l;/a 2/-11 ”/’ .:Z-t+)+;.zf+/2 3] 5
£=,,,—;—,{z e 28} 5) -1- Ll ] :zfj %w(z 2,) + D= Lau, (5-t)+ LUB*-E4)
1542 [ 1 2 3 3
o Lap(ti-t)s s ]+ z,(’(ga: )T, @:5[7,(& LesL)e BT]s K=(0T )52 2
o~ . I =7 (3 f] K=1 (3
Z i 2 8 ) * 2
4 = 7:(3},»;) i Z,(C,+t R A ;—ft_;zoz,,/’)w]( , F= %i(a_"_:;l[(o'»‘z)(1-)’,)+z(1+z/,) 2(1+02) ] Ll s
= : /: R : 2 '
b=22(+T, )2l 5 4=22(T+L,) 5 §=2022t =t Efvsie8 c2pa20- £5)] 5

R
.

t e z =7+ ! ' =45 LS: *
orG[t(-4)-2 5]y 4=152, 4= . LeiS(et-t), T =i A ylrtf ) S
li,=fz?(f+/"oz?, b=vaipna, =20 (0 5500y), Lefnprdp, B /’"ﬂf’/ s,
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‘S J/JOJYI ) dép P

/f/ 2dp, S,/

0 /fW/ Wl b=rppr3n)y

B.

y - the index symbols defined in /22'28/,
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Banb6yues E.B., [Tuneposa M.
Komnexrususie 0%, 1' u 2* Bo36yxmeHns
BO BpALLAKILUXCA AApax

E4-88-886

C B3aumozeiictBueM CKupmMa paccuiTaHbl 3Hepruu U B (EA) -daxk-
TOpbl H30CKANAPHBbIX U H30BekTOpHbIX 0" U 2* pe3oHaHcos. [TonyueHo
VIOBJIETBOPHTENLHOE cOrjlacHe ¢ 3KcrnepuMeHToM. [lokasaHo, uro
BO BpAlLAIIUXCA Anpax 2° Bo3OyxHaeHus pacluelUIAITCA Ha 5 BETOK,
a TaK>Ke MOABJAITCA 5 HU3KONEXAlIUX BO30yxaeHui. JIBe HU3KOITE-
Kalllye MOJb! ABJIAKTCA " yriiOBbBIMUY PE30HAHCAMHU™’; TEOPHA IPABHIIb-
HO BOCIIPOU3BOIUT UX mnonoxxeHue ¥ B (MI)-daxropsl [TonrBepxaaer-
cA HabnionaeMoe 3KCIEpHMEHTANBHO ’pacliervieHue’’ TUraHTCKOro
MOHOIIOJIPHOTO pe3oHaHca B Ae()OpMHPOBAHHBIX AZpax.

PaGora BeimonHeHa B JlaGopaTtopuu TeoperidecKoil (U3UKHU
OUsAN.

IMpenpunt O6HheaUHEHHOro HHCTHTYTA SOEPHBIX HecnenoBaHuit. Jly6ua 1988

Balbutsev E,B., Piperova J.
Collective 0%, 1* and 2" Excitations
in Rotating Nuclei

E4-88-886

The energies and B(EX) factors of the isoscalar and isovector 0°
and 2" resonances are calculated with Skyrme-type interaction. A sa-
tisfactory agreement with experimantal data is obtained. It is shown
that in rotating nuclei the 2 excitations split into five branches and
also 5 low lying excitations appear. Two of these low lying modes are
“angular’” resonances and the theory reproduces their energies and
B(M1) factors. The experimentally observed “’splitting” of giant mo-
nopole resonance in deformed nuclei is confirmed.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR. '
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