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1.	 Introduction 

Nowadays a quite complete experimental information concerning 
iSdscalar quadrupole and monopole resonances exists /1-3/. Similar 
information about isovector resonances is rapidly accwllulating,too 
/4-8/. Numerous theoretical investigations are devoted to the same 
Bubject. These are different microscopic models using RPA /9~131 or 
macrosc:>pic calculations, based on the energy density functional 
and the phase space method with "scaling" /14-19/, as well as pheno
menological models /20,21/. 

In present work to describe quadrupole and monopole excitations 
(both isosealar and isovector) in rotating nuc~ei we use the method 
of maments, developed in refs. /22-24/. This approach, based on the 

phase space method, enable us to describe by the swne equations the 
excited states of the nucleus and its equilibrium shape, which is 
important in rotating nucle i. In previous works /22-24/ the basic 

equations have been derived in the approximation of a local 
nucleon-nucleon interaction. Now the possibilities of the method are 
inv~stigated in the case of nonlocal interaction. 

2.	 Formalism 

The starting point for the method of moments /24/ iB the time
.<\	 -dependent Hartree-Fock equations for the density matrices f,D (t , _ f 

Z.z., t ) : 

(1)i ti 0.;01 = [H, )J~] J f=n)f,'}t... 
where II, is the self-consistent single-particle Hamiltonian; the 
label n , p stands for neutrons and ·protons, respectively. A Skyr
me-type effective interaction called. the "modified SkYl"lll8 force" or 
SKM* /25/ is used for the nucleon-nucleon interaction. A self-con

sistent potential witL such forces is derived as usual /26/ and it 

can be round in detail in ref. /18/. 

Following the prescriptions of ref./24/ we transform equations 
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(,) ~(J tho lHlua b10rlfl fot' tho Vligner functions ~(ill t) 
f_ I · ,'p.tIA .. £ ~ 1. ) _"(iIiJf/ e .Ii (tt ~ t J t 1: I t L, j :M 

H, • J--. W1{4(~", ~I • ~~~/)J H I)t A ~,p,... wt; (2 ) 

with Hw((p) =le-~"'IJ (t +;,J", JHJi - 1/;..) tif 

and t = (if + t:~)I,2-) 1":;'; - f" . 

Then, integrating (2) over f we obtain dynamical equations 
for the densities, which are just the continuity equations /26/ 

;;1 + rivv-- (n, it,) =? iiAF n, n,'(u" - il,) (3 ) 

with n,J~t) =/~(~~t)otf being the nucleon density, ~(i;t)= 
=II,.(~f;t)1'-'l'/n,m is the mean velocity of nucleons; rn 
the nucleon mass;? =tnt+ /2t:L , t, =tf +tz.} t, and t2, are para
meters of the Skyrme force (the coefficients before the nonlocal 

terms); t': P if 1 = n and vice versa. 
Note, that only the first term of the power expansion for the 

sine function in eqs. (2) appears in equations (3), the other terms 

drop out due to integra~ion. 

The next step is to integrate (2) ~ver P with the weight ~ 

to find dynamipal equations for the new quantities involved in eqs. 
0), namely, for the velocities iZ, : ~ ... 

J 3 3 

n" ,it (,/,':1' -:;, ~n1-~ e~/(J U K1- - 2-.}l,? n,. n,'~ CiH3 (UN; -U1CI ,) 

-.fl,2.(1-I)x.n +!!.,. '"all, -t (J; +mn, u;)d C,. + (4 ) 
,3 j,." m ~Xi ~z.: 

3 - ~ +L .L [(11m +.2C,JRu] + n,u'l')';C,B,.. + 
/tEf ,x-/t r r ". r i= 1,3-, 3 

-. -)- ~:L~ C f'"JC ~) 
+tn,n ( tt,-u" .r;ui, - 2m (V~· r ;~,: 1 + I 'dx: ? n, = 0 . 

" 

\: 

In equations (4) other collective variables, the pressure ten-

sore Rj,Jt,t) =m-1(fi. -ma.,)(p; -mu,j,)("(~f, t ) "'1 
appear and nBed also dynamical equations to be defined. Here 

.Pi =.L + 1. U,,-, L ,E.i,'/C is the Levi-Civi ta tensor,
it , t 1(=1 r,X/r • ~ , 

P == i ~kq; p=e+~ , c = lf~"i (t, n - ~ n,) ) 'I r J .bf 

- _ m O( ....... t_ . - )
t=t.,-t2,? n=n,,+n ) B'--,th~ t+nu- ~n,u,)h 

nil = n,u, +h"il", lJ, = ~[(1+tl),)n -(!o+1!:L)n,] + 

1 
+ ;6' (3 tl- -st,) V~ + 3:1, (3 i, + st.; f/2.n, + tt [p + tn(fJ, u/ +n"tl;~)j - . 

-~!- (~ + tnn,u;) + :11 t, n cr-1{ n2,[(1_f,)~ + 1-(t+j,)] .. 

- tn,"<r(1+J,h) + 1nn,(~-1)(1+tj,)} + {, U" ; 

IT to e, /0 j
) , ) ) J _ are Skyrme force parameters 

and ~ =/nf{i,) el'''-/(i-i'1 ctt' is the direct part of the Coulomb 

Ln te r-ac t i on, Equations (4) are wri tten in a frame of' reference rota

ting wi th anguLar veloci ty Jt(0) o,.ft) • 
It is interesting to note that due to th~ nonlocality of the 

interaction we use, already two terms of the power expansion of the 

sine function (2) contribute to. equations (4) - a term propor
tional to ~1 has appeared. 

As is well known (see,e.g.,ref./27/) equations (2) reduce 
to Vlasov equations in the limi t h..... () • Thus, in our method we are 
able to study quantum corrections to the Vlssov equations. 

2 3 



li'1na11y, 10 t us wri te down the dynamical equations for the pres

sure tenDoro ~i' . Wo ne ed f'o,r that to .integrate (2) over f wi t h 

weightn f'f;' : 

~R;, + It., Mi, + ?e&ir[n,'4/u, -fl,,)] + 

, -() (m" p) J {p (h7~ '0 ++ - + - {t.
 
il<'f
t;f oX" m" ~·K',. ~: '" oX-/< ;/1 

+ t mit ~e'j3lC + tmU/(4'- ~ C + L B ) + 
m	 r ()~." ()Xi 1<1 . 

l d C~. D t. A:Ln hUe-I- ~~C, + E "/C1-)_+ In -y IiJ<1<1 
~X.i ;l. ., ( ~XIC ~~~ ~~. .n i31< ~Xj( dX;' 

_i ~ ~.1.f, ( ~ Uil 'Jn, + 1. n ~'-tlif + Jl, C'JI< (J n1 ) ) +
 
:1- 'dX' 'dX IC ~XIC Z. f 'dX~ ~x.1<


'd 

+ 
/cz1 
i	 { i ++jJ = 0 

" ..( 5 ) 

Here	 the notationsm*= m(1+ ~mC,,)-1 and 

4'K,(i, t) = m-j(f" -mfN';1)(f;' -mU;;i-)(p" -tnU/(I)~ (~~ t) rtf 
are introduced. 

According to refs./22-24/ one needs now to integrate 'equations 

(4) and (5) over an infinite volume with weights X; and 1 respec

tively. In the case of a local interaction all integrals including 

third-rank tensors Ri le 1- vanish and thus one obtains "closed" .• 
system of coupled equations for the tensors of inertia JiJ1:=mJn,:t~~·,t't 
and the integral pressure tensors ni.jJ. =fP~·,. d ~ /24/. The si 
tuation turns out to be much more complicated when one uses nonlocal 

interaction. In that case the integral rna-!~C /'J'X.. f R ri~ re
"1 d J(-.:< &/</(1

suIting from eqs. (5) is nonzero and to decouple anyhow the infinite 

chain of equations for the tensors 14·... 1<1 o(:t it has to be neg
lected. Fortunately, we are able to appreciate numerically the accu
racy of such an approximation and it will be shown later that the 

resulting inaccuracy is very small. 

The equations we obtain after integrating (4) and (5) over the 

space are obvious and we don't quote them. In the following they are 

denoted 4, and fs., , respec tively. 

3.	 Shape of rotating nuclei 

As has been shown in refs./22,23/ the shape of rotating nuc

lei may be determined using the stationary solution of equations 41 
and 1s

1 
which describes the secular equilibrium of r-ot a t Lng nucleus. 

In present paper we consider the simplest case of secular equilibrium 

when iZ,=O. We also suppose that at ,JL=O the nucleus is spherical 
and due to rotation it becomes an oblate spheroid. With these assump

tions eqa , 4, read 

-In /	 ~ri n1- d!J; /tJ'Xi di;/~ ~ ~ C,. /s », otr: 
(6 ) 

!J~! (- - 'a C ( ~ C )-,2. / ---- x· vn·V-' +I-'vn~ ov~-
J,tn (/ ., ~ X.: 'OX.i r 

-.a"(1-!l,)!X.~'n" r£7i -/(fn + J- C')~1 ~i =o. 

It is easily seen that in the case of three-planar symmetry of the 
integration volume the first four integrals are nonzero only if 

i =.) • Hence, the last integral does not vanish only if i =i ' i.e. 

one can put 4" =J;, f1. • In su~h a case equations 1S'1 yield
1 

/1 (D D) 1.. t:L /;. ()2.c, ~LC
~c.i.3J' { zmJ mit f", -'Ji'! ()(, t + P... j t h, -ax.} - n, ~x.r + 

+ ~1- d n . ~CF WI)rti} =,	 0, 
7J~'	 7J':Ci ?~&. ?::Ci. 

the second integral being zero due to three-planar symmetry. 

Apparently, i'#i-:i:3 and it is possible to assume p"J=e2.,=J;i,=e,. . 
In the followingR is approximated by the well-known Thomas-Fermi 

expression e,.=~'n;/J with r,,=/:n(~ll"i.~)43=t(~)'-IJ . Assuming 

4	 5 



the same equilibrium shapes for proton and neutron di~tributions, we 

put n1- :=nl,:IA with A=l.n+2p (lntl p) being the number -of ne
utrons (protons» and swn up eq.(6) for protons with that for neut

rons. Subtracting the sum for i =j = 1 from the analogous sum with 

L=j= 3 one obtains 

JI,~}" =1~ [2(t, + 2() - Z~: Z:(tl. +t_>»« ~:;e, - X-, ;-:e,) vn J.,i 
til 

_1. (t _ 1/"-+ Z: t ). rf/1!!. )02._ ('d17 )2.] /~ _ (7 )
3 + l.A2. - 'jL{~X3 ?X, o(.-~ 

-t/n(x 3 ;z) -X, ;7i,) TIe clli , 

where ~i = ~'n ... l~., 
In the analogous 

2 3/formula of refs./22- the ef

fect of the nucl~ar forces has 

been approximated by the surface 

tension. Our calculations with 
more realistic forces (SKM*) 

show that this approximation 

works well. 

" ~ 

Fig. 1. 
, 2./.t 

Rotational parameterY=r) ;10 

as a func tion 01'(, the deforma
t ion parame tel' " 2 for diffe
rent z, and A (10 =J,fmAK"/St;, 
g =17 MeV, to =1.2 fLl). The full 
curve shows the results of our 
calculations w~th SKM*, the 
dashed curve those obtained in 
ref. /22/ with surface tension. 
, is angular momentum. 

6 

This is not suprising since the Skyrme parameters are chosen to re

produce the Weizsalcer mass formula and particularly the surface term 

I A2./3 
• The dependence of Jl,z on the deformation of the nucleus 

calculated in both cases with SKM* force and with surface tension, 

is shown in fig. 1. The details of the calculations and the precise 
2

expression for ~ can be found in Appendix A. 

4. Small deviations from the equilibrium 

Analyzing the reaction of the system to an infinitesimal pertur
bation one can determine its eigenfrequencies. A small deviation from 

the state of equilibrium of the system is described by taking the va

riations of equations 4 ,I~1
1 

Before going on with variations, let us stress out some new 

points arising here. 
2 3/Firstly, in refs./2 2- the volume of integration was finite 

and one dealt wi th the Lagrange variations sn and lJB. . In this 
work we formally integrate over an infinite volume, hence~ only the 

Euler variations /17 and I~. survive (see,e.g.,the rules of varia
tion in ref. /28/). 

2 J /Secondly, the nuclear matter in refs./22 - was understood to 

be incompressible and the whole effect of the nuclear forces was re

duced to the surface tension. In this paper we use particular realis
tic nucleon-nucleon interaction and we are' able, moreover, we are 

obliged to describe also compression modes of excitation (monopole 
resonances) • 

The expression for the Euler variations of neutron and proton 
densities may be easily derived from the continuity equations (3). 
~ul tiplying eqs. (J )by,it and defining the infini tesimal displa
ceillents of the elements of the neutron and proton liquids 

~ 

~(~ o = ~ (i; t)·t£t (8) 

one obtains 

(9)In, =-oLvt/(n1~) -I k/(n,n" ({-~,)) 

The presence of a term proportional to? which is responsible for 
the exchange effects /26/ makes the last expression different from 

the c188sical/2U/ on8. Obviously the Euler variation of the total 

de na ity In does not con t a Ln any exchange effects. 
Lagrange variation of the mean velocities/2 U/ can be obtained 

by calculating the differentials of equations (8): 

7 



!l u,{~t) = ot ~ (:so. (10)
ott _f1

are derived 
/2'0/ (l 3 ';, 

Tile expressions for their Euler variations d tt;. (t.- , t) 
by using the rela t i on : t1 = (j + t-f).· ~'Xt • 

Now ,we are ready to t ake varia t i ons- of e qs , 4" and 1;., wi t,h 
respect to the equilibrium state with given ~ • Keeping the terms 

linear in variutions, one gets 

~Ji 1 = ~ ~)~ - ~ ~l + ~ ""., + 

( 11 ) 

+{.(~V, -i~, +t.~ ~ q, + ~ '!1 + ~ n;) + 

.
 
+ 2JL t, tiIC3 (~, ~,j1 ~(Ki" ) 

-{,~. t. AKL(~: k'~, - ~3ltK1) , 

lT~." = - i 4 (~j 1 / ~.I- tV.
JJL' 

/ii~) + 
l 

~(l?q;I/a~ V· IIii:) t 
IJ r d 

t 
'IlL 1 

, .. 
- 1~~3 ~ (e/31< lTil(1 + e.; 1!j1<')' 

Here and in the following we use the notations: 

J'l.,j' = rnin, I,,. Xi ot i ) ~'1 ~ U;;, + ~i, 

~ 3 TI 
,...., J l' 

Tf."(l =/n..\[ =2. ~" ) ~ =2~' ) 
, K=f s; ';/r 'I"" Ie=f - 2, Cl-. 

8 

AIeL · are the so-called index symbols,, defined in refs./22,28/; 

a,. = (l,. /f( wi t r, Q" (£=1 ,2,3) being the semi-axes of the nuclear 
L l!' "I * 

spheroid. The coefficients ~h and tX-" depend on the SKM parameters 

and on the indices iii!" and can be found in Appendix B. 
Deriving equations (11) some natural assumptions have been made. 

(i) The integrals containing Coulqrnb interaction have been colculated' 
in the approximation of a sharp suface of the nucleus in which case 
one can use some formulae from ref. /28/. (ii) Following the prescrip
tions of ref. /24/ we try to find solutions for dLapLacernen t s and 
variations of the pressu:r:e tensors in the form: 

}. (~-I;) =i..« + 2:. 
J 

L;. /(L (fJ 'A!." + L 
:3 

Li, lC e, x, Xi )
"f- r #(11:1 I r /(,&=( (12) 

lB.j1{~t) = n!J('tJ[IJijf{t) + t; Di.J~K'f{t)X.K] • 

A natural question arises here: are there solutions more complicated 
than (12)? What will happen if, in particular, one adds in (12) 
terms with higher, powers of coordinates? This problem has been dis
cuss~d in'ref./24/ and it turns out that such solutions may be const

ructed; bvt to do this, the system of equations I~, ' J~f must be 
supplemented wi,th equations for higher-rank tensors I,,·... K" and 

lD,.. ~ , a strict correspondence eXisting between the number of
LJ ... lCr 

the terms in equations (12) and the number of the equations for the
 
moments.
 

Inserting expressions (12) into the definitions of the ~i1
 
and 1T~'1 we find relation between l{i~ and
 Li,i 1 : 

[l,il = l(1Tm3~.t,' ii/ u'11 ~; =
" 
bvn(,)J,/ 

and between ~., and Dl,j'f 

~., = z, })f1, . 
Due to three-planar symmetry all the integrals containing L ,i , 

Li,)l<tl or J)~'I"J vanish. 
We may rearrange equations (11) to obtain equations for the 

irreduc~ble tensors of ranks ~ =2,1,0. These tensors occur to be just 

the variations of the quadrupole moment OJ-1f1 =/n, 'tot ~.I" ol't , angular 

momentum It,. ::: I" {[i)(iZ,h ... ts-tx- i]J~ Jit , trace of the 
inertia tensor 0001 =In" tot. ~(I J,~ ( i.e. the mean square ra
dius) and similar combinations of the components of the H~~ 

tensors. In the present work the relation between the variations 

/()'-/I1- ' "». and the tensors ~)i' is quite more complicated 
than in ref. 1 3/ (due to exchange effects). 

9 



Inserting the expressions (9) into the formula
 

/0 ==!tl,X In. oti ' one obtains
 
'-Jl1 ,l.~ 1

J'Qt, .., = v~ v~l(i +f f')(v", -It,., ±Zi v,.,) -! l'(v,;,. -\(." ±.u 11,.,.)},
 

!Qt,t', = ., ;",Vlf({I +11')(v", ! i v,:,,) -f f'{v" ,,! i 1{,,)) ,
 

!fl.", = - v~ Vi {(iT!1")(v", TV.., -'-V",) -;i'(v",,+!h,' -1-v",)} '.
 

and by analogy for the angular momentwn variation: 

J'l, = I{n,['t./ql, dn, ['i.[.,it. flJ.],if ,
 

I~, = ti,l t , -·:~J1-.ft{(1-fJ f")\!,31 - f *'\{31' J,
 

14, = ~J' -~fl - Jl, {(1 +f ~,') VH1 - f f1 t{31' J, 

11" = V.",-~" +.fl, ({t+r!')(l{" +~.,) - f %'(~" + v.."V.· 

For the varia t Lor, /'()~, one nas s 

J. - 1+ - - -~ JIf!_ JI _ ~{l-1 ') 3 - l JJ'~Q()" - Viii z n, ot t - ~mv1f ( 1A ' It ~it: ?A It ~i1' 

The expressions for t~.JC1 can be found from those for !fl".!',
 
replacing ~1 by ffi.if and in a similar way l{l,o" is found
 

from 1(4"1· i- = !.(,~ /.t./
 

iO 

5. Eigenfreguencies and transiticn probabilities 

Because of the axial symm~try of the nucleus, the multipole mo
ment projection on the axis of rotation is a good quantum number and 

the set of equations (11) split into five groups of equations corres
ponding to Jf = t 2 I;! 1 and O. 

The ./"=2 gr-oup of equations reads: 

14,01-' = t, 1~+J1 +tl, 14,02-1: + tJ Iqoz,. + tv 1~+ll' + tJ" I~+)" + .t6/~011 

liI","J.1 = Z1 101/2-, +"(,I/~/+2,'" + t, 117~.2.' . (13)
 

The ..,M ~ f group is
 

!~~~f1 = 1./4,+{, .,. jL j'~2"HII":J; !(J~+f' + 'JvIq"" + 1r/~, + 16 1{" + :J,1f{'1' 

I~,;::: 'J!J'~,+(,. .,.j,/~,,+{,1 +j(,!a"+f' +j,,/(),.,01(+jfJ,dI;,+1f3d{,., (14) 

t~,+('1 = ~./4+{1 .,. jfs Jdt,+fl ' of- j1'I/~+(, f:11i I~I 1f,1 + j1114, + 111 J{,. ~ j)ot~+f" 
Here !~" = Ii (fir" «i /4,) . 

Similar equations with -~ in place of ~ in the coefficients 
Zn and::)n correspond to.l"=-:J. and j'4=-t. The coefficients 'Z:17 
a~d 1n are obvious Li.n-sar- combinations of the coefficients I" and 
J" listed in Appendix B.
 

The most cumbersome group of e qua t Lor.a is that f'o r ,.,M =O. :
 

I~~p, = t( ff{p, + tJ./~p,,'" t} l(lqp, .,. t, J()~I'J' + ts 14, + tl/~" .. t, t~" 

~'I = t( d~Cl .,. t.9i'~p,' +tfC I~p, + t,.,It?zI"" +t,1. 11;, + t'J/~" +tf'lI4PI+~$,)~" 

Ii; = t; J'a;Q' + t,~ !{)VI' + ~'!()~QI T if' /'d"'I' 
(15 ) 

tilL", = t; trJ,01 + t1.{ 1~(Jll + tu /4" + tl.) 14", 

!il~PI = tl.If I~", + t/.~ /~""11 + tJ.' /~DI .,. t., /j~o,' 
with tIl being evident combinations of the coefficients ~ and ti" 

II 



Obviously, ay e t eu (15) oo n t a-ine three integrals of motion, hence 

it can be simplified by rewri t.i ng I~ , t~,o and I!!"o in terms of 

If)). Q and !tlP,(). unci- of these integrals of motion allows a simple phy

sic~l interpr~tation,name'lY /hp+J'13n=~ means that the projec

tion of the variation '01' trw total angular momentum on the axis of 

rotation is 'conserved. Actually, system (14) also contains tWG integ

'rals of motion!1 and!12. , bu t these .p;L~ojections are cons tan ts 
1
 

only in a laboratory frame, of reference. In a r-ot a t i ng frame they
 

rotate wi th angular veloci ty ~ • It is easy to obtain from equations 

(14 ) /j
+ 
~-iJl,/J+ 

dI = wrvd e-iJl,t
and conseq~ently + •
 

The reduced probabili ties for electromagnetic transitions may
 

be calculated applyinC the theory of linear response of a systeo to 

an external field perturbation. 

(16 )0(0 = Oe-iwt-t Ofer", 
In the case of quadrupole and monopole electric transitions we have
 

0=e ;;', z,.2-X.I' or ()= efJ {, '0-.tXo respectively, and for n.agne tic
 
p 

dipole 'transi tions . 
e s -+ [- (-. -)] o - /10= - i,,tine. V(tY!J4)' t)( Vz' +~]'~ l7p ~H = v1 • 

29/.
A convenient form of the linear response theory is given by Lane/ 

The matrix elements of an operator 0 obey the relationship 

(17 )I<'fa, f 0lifo> 1,1, = tim t (eJ-tJ(t,) (Y;'I 0e-i wt 1fol> J 
c.J-WI(, 

where ~ and r: are the unperturbed wavefunc tiona of the s ta tio

nary states; ~I is the perturbed ground state wavefuDction, 

Wet.=(£a,-E ) / /, are the normal frequencies of the system. The Qar means 
o

averaging over a time interval much greater than f/W , ~ being the 

frequency of the ex ternal field Oft) • 
Let us consider in more detail the' case of quadrupole operator. 

Its matrix elemen t may be expressed in terms of variables t(.. v.'4r 

rv ll e I. 2.1.' Iw'> e-iwt r. I .. (l z. -+ -,,'(.J{<To P 1,' t f.l' To =e"Jn'(tlt)~", t ~et~ e = (18) 

= e, /n,{t,; t,2.t J,r, e-~tA + e,lin,(~tJ t.t>y, rJi e:" = 

=ep !~.Jl f (t) er", 

12 

To find the absolute value of 1(}~Jl1- (t) we ne e c to add poten

tial (16) to the Har.nLton i an in equations (1). The right-hand side 

(r.h.s) of equations (2) are then modified by the terms 

), '/ t (-0 -I -c -I)\l{o. .. - -t'fAJt 11* .. - itAl, -<> -t)t:'W1 s: V7t,.~ - v, ~)' w{'t)p)e + vw(~f)e Jr,{r;~ . (19) 

Proceeding in the same way as before, one obtains equations for 

all the moments of the Wig~er function needed to calculate J'fI.z.l'1JO. 
The only new element now is the presence of the terms (19) that make 

the equations for the moments inhomogeneous. Thus, the perturbation 

by a field pr-o po r-t Loria I to ~2.. does not affect equations (14) and 

(15), but makes the first eq~ation of the system (13) (for protons 

only) inhomogeneous: 
.. e l" t'wt i! 

(If) = ... _ t{} ':::..£!::.1~ a,.2. e .(1+ ~-!!) 
d 1.(2,.tr tn A f 1 (A- . 

The perturbation with a field proportional to ~1 makes inhomogeneous 

the first proton equation of system (14): I 

" e, s, ¥' f (- t - .t.) L' (.J t( Z ) !r; =·.. -f{} -,t - It +a e 1+f-.!!
).,1p mA f J, 'J . (A' 

l"inally, the perturbation wi th a field proportional to ){ 0 makes in-
I 

homogeneous the first equation (for protons) of system (15): 

r;; e,l.r If f ( - z. - 2-) t l )
(J "2-/}f = ... - fO rnA ~f J ttl -s a; e()jt.J '(1+17: . 

According to the time dependence of the inhomogeneity we suppose 

tna t the variations /(1;,14(1. ,lfi2,Ng., etc. must depend on time like 
L']L<.Jt t . Y IV'y t . 
~ ,cos(.,) or sJ-nwt • For such type of -dependence equabons 

(13)-(15) become a system of linear algebraic equations and the prob

l~m of calculating 1~~1 reduces to the calculation of determinants. 

The characteristic equation of the hom~geneous Bet of equations 

yields the eigenfrequencies tJ" . 
A formula analogous to (18) is derived for the matrix element 

of the operator responsible for monopole excitations 

<'/1..'1 e J. t.t.X 1~'> e':' - e f1() (t}e- i wt 
II p 'If q" D - f a I ~of . 

13 
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The pe r-t urba t Lon WI th a field 0 == ep dl, t.t~o· ·affects the second 

equation of system (15) (:':"01' 1=f ): 

I~()f = ," + 8 ~Alp c;/,/ J(a-J2.+j.a,~)(1+ 1~fI) WjCJJt. 

POl' the matrix e Lernen t of the magne tic dipole o.pe r a to i: one. ge ts 

i tM t<If;'t Of I~'> e-L'wt = Im~j4p e-

with !!Tl being the va r i a t Lon of the proton magnetic' dipole moment 
1 M 
Irf 

. In = ep fn p f(?;X M)'[f.x(il+(ji)(~J)1 J,Z.
~14 f zc J I ',,' P j 

Obviously, the compone n t s. of m.,,~ are proportional to the angular 

momen ta componen ts, i. e • ntH) = ep I~" I
.J 

, III = - p 1!.I I , s.c. YIji; ~(,2.c.,e ytjit + .
 
The perturbation wi th a field 01 makes inhomogeneous the
 

second equation of system (14) with r;=f
 

('I!' ='"	 -.i ()IIP:. €p~frJ.lf(ci.t+ii2.)eiwt 
(j +f tic.. vr c A 1 f J • 

Thus, we have constructed everything we need to calculate the
 

energies and t r-ans i t i cn probabilities. of 2+,1+ and CJ+ states.
 

G. Numerical results 

G.1.	 Jl, =0 case 

In figs. 2-5, the calculated 'Jit;enfrequencies of.J3 -stable non

rotating nuclei are compared with the empirical data. 

Por~ =0 equations (13-1~) yield two five-fold degenerated 2+ 

states (isoscalar (IS) and isovect,)r (IV) ones) and two 0+ states 

(IJ and IV respec tl vely ). Having in mind the physical meaning, Q,f the 

dY::1a:nical variables (in these equations), it is natural to identify 

the above states with the 8iant quadrupole an~mono~ole resonances 

of	 both types. 
The calculations have been performed with ~wo parametrizations

/ JOI 
(see Appendix A) of the e qu i Li b r-Lum density n : of B.ernste in and 

of Bohr and Mo t{~elson/3'1 1 (Blvi). Besides we c he c k the accuracy of the 

widely used approximation in which protons alid neutrons vibrate in 

or out of phase with V, !z = t 1L. 1":7'"JtI n V.,f .L:, 
The resul t',3 presented in figs.2 ,3demons-tra te that the energies 

of the isoscalar q nad r upo Le resonance CISaR)' in mediwn-mass and heavy 

nuclei are closer to th~ data when calculated with pararnetri~ation 

of Bernstein but in light nuclei the parameters of BM are to be pre-

ExMeV 

f IVQ'R 

L1
 
\.

30 "."",, 
<, 

~:-,...... .... 

"<-.:::~............
 

1 
15	 -

20, I ! • 

100 200 300 A 

Fig. 2.	 The energies of the isovector quadrupole resonance calcu
la ted wi th the equilibrium density parame tel'S by Berns tein 
1301 (full curve), by.BM 1311 (dashed-dotted curve) and in 
the approximation (see text) of equal neutron and proton 
amplitudes (dashed line). The experimental data are fronl 
ref. /4/ . 
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ce. 

same as in fi!~. 2 for 
The e x pe r Lmen t a L data 

the isoscalar quadrupole 
are from. ref. /1/ . 
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ferred. The solution with V· /Z = \l.p/Zp for the. isoscalar
'In"	 .J 

quadrupole resonance (ISQR) practically coincides with the exact one. 
The approximate solution for the IVQR ( '4" / i'll =-U Is,

j f 
deviates significantly both from the data and the exact result. 

Comparing the enerGies of the IS~R plotted in fig. J with the 
analogous results of refs. / 15 , 221 one sees that in the region of 

light nuclei our more realistic calculations describe the experimen
tal data worse than the simplified calculations with a sharp shape ,:{ 
of the nuclear density and Fermi-step approximation for the momentum 
distribution. Obviously, the Thomas-Fermi approximation underestimates ]
the mean values <pL>~R , which occur to be very important in calcu
lating the giant resonance energies. In heavy nuclei the smoothness 
of the shape is smaller and the above effect is not so prominent. 

In calculating the energies of the monopole resonances 
presented in figs. 4,5 the parametrization of Bernstein seems to 
be preferable. The approximate solution for the ISMR prac·tically 

coincides with the exact one. 

The empirical information on IVMR is very scarce. Strictly speak
ing, there is only one experiment /7,8/ (fig. 5) to compare with. 

Ex Mev 

20 
\ 

" 

" 

ISMR 

. , . , . , , .. 

15 
~ -, 

t~ ...... 

~~~~ 
1 
~. 

40 100 200 300 A 

Fig. 4.	 The same as in fig. 2 for the isoscalar monopole resonance. 
The experimental data are from ref. /3/. 

ExMev IVMR 
401. 

30 n~ml~=====
 
20 

200 A 

The same as in fig. 2 for the isovector monopole resonance. 
100 

Fir;. 5· 
The experimen t a L data are from ref. 1'71. 

The approximate .solution like in the case of IVQR deviates from 
the exact one, the discrepancy being of about 10% in heavy nuclei. 

The E2- and EO- transition probabilities have been calculated 
as well as their contributions to the electro-magnetic energy-weigh

ted sum rL~le 132/: 

S(EZ) == t S- l e1. A-l. ~ t 2> + <nr,t·> fflJ. (t _ 'b. 2p), 7 := 
1(" r r In L~ t!; + J., A j (20 ) 

::: li". 5(£0) . 
J., 

Here A<x.> =Inx. ot ~ • The correction to the classical sum rule 
(the term with t, ) t: ) results from the nonlocal part of Skyrme inte
raction. Our calculations demonstrate that both 2+ excitations give 
nearly the same contribution to the aum rule (20) and completely ex
haust it. The same is true concerning the two 0+ excitations (6ee the 
Table ).It i6 interesting to note that the contribution from the iso
scalar ?-t excitation goes down when the atomic mass increases and the 

contribution from the isovector 2+ excitation decreases. 

]716 



Table.	 Percentage contribution of the different resonances to contains some uncertainty. As to the commutators in the r.h.s. of
 
the enerGY-weighted sum rule. IS-isoscalar, IV-isovector,
 (21), they are calculated withQR and ~lli-quadrupole and Donopole resonances rsos exact Hamiltonian without any ap

proximation. That's why the diffel ---ISQR IVQR ISt'lR IVMR rence between the r.h.s. and the 
,oot -:~ i; -l-l~frl--l-- · 

l~h.s. of	 eq.(21) serves as a cri 40C3 46.9 53 44 56 
teria for the importance of th~ 

144 Sn 40.7 59.2 48.3 51.6 ne gLe c ted terms. 
rVQR 

208p b 37.8 62.1 50 49.9 
1 ! 

1oar
~lmTT--p-n 

Fig. 6. 

As for the 0+ excitations the te~dency is just the opposite. The ex	 ~ Percentage exhaustion of the iso

perimental data are by tradition normalized to the isoscalar or iso
 scalar energy weighted sum rule 

(~~SR) by the IS-quadrupole reso
vector sum rule. The relation between these two sum rules is given nance (upper part) and by the 13J	 I:~~ monopole resonance (lower part).by the formula 132/: 100L~-1 tl- In the middle part - percentage 

exhaustion of the isovector EWSRI . 0·). I by the i50vector quadrupole reso
, 0 '1 t nance. The experimental data areS('{=o) A) = 5(f:=fJ.JAr=OJ ~) ~ :zA a. S(E),) . from ref.	 11-6/.~ i i L· . c,ef 
100 200 

Our calculations show that one of the two 2+ excitations approxima
Our calculations show that for all nuclei the proportion 1.h.s.1tely exuaus t s the isoscalar EWSR and the other the isovector EWSR. 

The same is true for the corresponding 0+ excitations. The results Ir. h s s , is more than 99,9%, Le. the role of !t'/Cf t e rrns ia insiG
nificant when describing excitations up to quadrupole.of our calculations along the data are shown in fi[;. b. 

The overexhausting of the isovector EWSR for IVQR results just 
from the impossibility to decouple exactly the is~scalar and isovector 
modes. 

The large diBcrepancy between the theoretical and exper~~ental 

results for IS~ffi in light nuclei is probably connected with the in 6.2. ~ ~ 0 case 

correct treating of the empirical data. Ii 
I In fiE. 7 we show calculated energies of 2+ and 0+ excitations 

In calculating tlle sum rule we can answer the question abor.t 'I in 154 Er as a function of the velocity of rotation (or more precise
'the, significance of the integrals including tLe third-rank tensors ly of the eccentricity e},=f-,a:laf~ and the angular momentum I reHi'" we have neglected in our equations. Indeed, the equations of :~' lated one-to-one with Ji ). Due to deformation of the nucleus and 
motion are written directly in terms of multipole r.Joments and there the Corio lis forces each of the two 2+ states (ISQR anc IVQR) split 
fore the described excitations must exhaust the corresponding multi  into five ,branches corresponding to .)-f=±Z (the so-called (-mode),
pole sum rule. All the energies and probabilities are calculated neg jI =±f (de no ted as ~ -mode) and ."M = 0 (j3 -mode). The two j3 -modes
 
lecting ~,~, terms and hence the Lvh se , of the sum rule
 are always coupled with the volume (monopole) excitations. The pic

Jure of the ISQR spli tting is very similar to that obtained in ref. 
(21)	 22/wi t h an average field on the nuclear surface approximated by a~ (E" -~) {<il F/0>/1 =i <ol[~ [HJ Fl]10) 

L	 surface tension. 

18 19 
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1"ig. (j.Fig. 7. 
Energies of the low lyinG exciEnergies of the Q+, 1+ and 2+ ex tations as a function of the

citations as a function of the eccentricity e and the angular35 eccentricity e and the ancular mo momen tum 1. The legend is the 
mentum J. The levels are numbered 

S3Dle as in fit;. 7. as follows:
 
isoscalar - 1(0),2(0), 5(-2),
 
7(+2), 8(-2), 13(-1), 14(+1 ),15(-1);
 >	 

e

Q

015

0.1 
30 In fac t, as has been shown 

9(+2),10(-2),16(+1),17(-1). ~ 
isovector - 3(0), 4(0), 6(-2), QJ 

in ref./ 22/ the isoscalar analo
The corresponding mUltipole moment w 
projections on the axis of rotation gue of !Ilod~ Ng11, i.e. the mode 

25 are indicated in the brackets. Tne N~12,is similar to preceEsion
isoscalar level Ng 12 and the iso

vector level Ng j1 correspond to
 mode. Hence, the corresponding 
the projection,#=-1 before the isovector mode (N~11) should
point in which their energies are 

describe the "precession" of the> 20 zero andjH =+1 after this point. 
QJ proton matter with respect toZ 

the neutron one.
 
15t . - des appear (figs. 7,(j). Two of
 

W When .n, ';0 five low-lying mo
If one forgets for a moment

19 25 52 !lh 
them, the isoscalar (- and 0/., that in present work the nuclei 

modes (modes N!5 and 12) have been may deforme only due to the ro

10	 described in refs. / 22 , 23/ . In ge tation and compare the calculated 1+ ener&y for the same deformation 

neral, their behaviour doesn't J' =0.258 (Le. for e!::0.66, J z 69h in fig. 7) with the experimen

change very much, only the critical tal value 1341E1~= 3.1. MeV in 156Gd, one finds that the theore tical 

5	 angular momenta are slightly shif results ~+ (Ng13) ~ 4.9 MeV, ~+(Ng 11) z 1. 9 MeV seem to be qui te 

ted. So, the bifurcation point reasonable. As for the theoretical H(M1) factors of the above men

goe s down f'r-om I ~ 70h to I ~ 52h tioned two levels they are practically the same (~1.b~~ and agree 

and the spheroidal shape stability nicely with the experimental B(M1)t = 1. J ± 0,2./,: .OJ -==, ~ ,-, 
point from I ~ 190h tol ~ 170h. As It should be noted, that particular calculations are needed for 

-3, I for the point in which the oL -mode nuclei with static deformation. The results of such investigation 

goes to zero, it doesn't change will be presented in a next paper. 
(!-;::25h). In the' present work the- In fig. 9 the angular momentum dependence of the calculated e.	 ,. 
se two isoscalar modes supply with	 B(E2)-factors is shown. For moderate [ the behaviour of the curves 

isovector analogues-the curves Ng6 and 11. The isovector low-lying NN~ 1,5,7,8,12,14 and 15 corresponding to E2-transitions from the 
(-mode has no 'any peculiari ties, but the isovec tor r;L -mode goes to isoscalar excited states to the ground state is similar to that of 
zero at .{~19h. the analogous curves calculated in ref. / 231 with surface tension. 

The fifth low-lying mode (the cur-ve N& 13) corresponds to the Noticeable differences appear at 1 ~ 40h. 
vibration of the proton angular momentum towards the. neu t ro'n one " The following pecularity is nicely seen - the probability for 
(like scissors). This last mode has no isoscalar analogue as the to the transition from isoscalar levels is greater than that from the 
tal (neutron plus proton) angular momentwn is· conserved. Evidently, isovector ones. Only at extremely large I the picture may be just 
it can be classified as an isovector 1+ excitation. In nuclei with the opposite. 
static deforma4ion such a mode is known as a scissors mode or angu As has been noted in Sect. 5, each level can be distinguished 
lar resonance /33/, In ref./J31 another mode corresponding to the rota- by a quantum number .ji (the rnultipole moment projection on the axis 
tion of the proton angular mpmentum with respect to neutron one has of rotation). The levels NN!12 and 11 have the following peculiarity: 
been predicted.The mode N:11 in thefig.7,8 seems to be just this mode. 

20 50 I1h 

21 
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FiC. 10. 
B(EO)-factors for the transi
tions frOIJ! the exci ted to the 
ground state. The curves are 
nwnbered as in fig. 9. 

in the points in which they 
a re zero jA changes from -1 to 
+1. This meens that the corres
pondinl modbS are excit~d withFit;. 9· 
decreasing the spin if"I<Ir:. andB(E2)-factors (in Weisskopf units 

8",) of tPle trans i t i ons f r orn the ex Wl th t nc re as rnj; it if I >le • 
ci ted to the f;round s ta te , The cur The mecr.an i.ca I interpretationves are numbered in correspondence 
with the levels (fig. 7) froQ which of such a behaviour seems to be 
the transitions go. 

also interestinb• As the mode 
Ng12 is the precession mode, one can say that in the point It;. the 
vector of the precession changes its direction. 

In fiCo 10 the cal~ulated B(EO)-factors are shown as a function 
of e and I. As iu seen, in the region e~0.b-0.7 (,j'zO.3) B(EO)
factors for compression mode and for j3 -mode have the same value. This 
is a demonstration of a strong couplint of the monopole and quadru
pole excitations in deformed nuclei. Experimeptally such coupling is 
manifested in the "spli tting" of the giant monopoLe resonance in de

22 

forged nuclei /3/. It is interesting to note that the last result
 
has been obtained in the simple schewatic model /13/
 

'b. Conclusion 

The results obtained in this work qUite convincincly demonstrate 
the virtues of the method of moments. Indeed, isoscalar as isovector 
0+, 1+ and 2+ excitations in rotating nuc18i are described in a 
united approach. Simultaneously with the giant resonances low lying 
modes appear. In spite of the quite complicated interaction the 
calculations are relatively simple: one netds to find roots of poly
noms of order ~8, the coefficients being simple integrals. The non
locality of the interaction doesn't lead to any additional diffi 
culties. 

Of course, the possibilities of the method are not exhausted by 
present work. The area of its applications seems to be very vast, 
but we enumerate only some of the "next day" problems such as inves
tigations o~ nuclei with static deformation, des~ription of the ex
citations with A>2, the inclusion of spin degrees of freedom, etc. 

The authors would like t~ thank Professor I.ll.Mikhailov for
 
fruitful discussions and for his constant interest in our work.
 

Appendix A 

Equidenslty shapes are approximated by ellipsoids and hence
 

the shape wi'th nr£) =117(0) obeys:
 

1.; 2. 1../ L .z. fX, a; of XL a,t + X.I /a3 
l. = 

By changi rn, -the variables 1/' = R%.~t / ct..%' we go to a reference sys tern
 
in which the fo re go i ng shape becomes sphere wi th radius I( ,,;2-=. }I.+
 
~l,"·+JJ2..=I<~. .In this system we assume a Fermi distribution for the'
 
density n(jJ) '= n,,[1+ B/Xf((t-{<)/a,)J-1 with Q. being the diffu
seness parameter.
 

Integrating by parts 

Jnx, ;~ V~ J,,-r =I(;~J~J~ + f/(rn)2.J, :{ 

and iserting into eq.(7) we finally obtain 
':,:., 

1. z t S2. l)r at. )
L_ m(t. if -t1" _ t)!. /~ -1..1.) ~ -. J.7Ttn!7.(ep A --lA 

.ft - 'I 1.. AZ. - a,; (a;. 'f.-J ut," A / 
f 

' a:, 3 ) 

where A, are the index symbols of ref. /28/, e - the proton charge,p 

.t r ~(~h)2.. I 0/.-," = /;f'ft/,j' .51. =if ;./ t£./ ) e 
o 
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The deformation parameter ~ is defined as previously in ref./22/ , 

.t. .L .2 ( 1- P') ot ott'. tt/'Ia, ::; ttL = £:to 1+ 3d , ctj = a"(1- '3 / and a. is fixed by the
 

K3
 
conae r-va ti.on cf the nuclear volume Q.,f Gt,a. e:tJ ~ • We use two sets
 
of parameters of the Fermi distribution. The former is from the
 
Bernstein's work /30/: R = 1.115l'J - O.53l"'3 fm, a=O.568 fm
 
for all nuclei with A~20. The latter is from the book of Bohr and
 

/32/ 0 Afl3 .. -f/3Mottelson :n = 1.12 - O.e6 A fm,~20.54 fm. In both cases
 
the third parameter n. is fixed by the condition lilT/;(1) p2.otP = A
 

o ./ 0/ 

Appendix B 

a 2- (7 -, ;;.',It It C, '(J , B 
Dol =J& (1-rY,:3)(1+ ~ z') + ~ + -;-.y-!L + dill '1(1+(nO :l)).. il + 

f (met, tt,' 'It ~, cx,c.: rl a 

tlTmet;~ 7;" + Z Ie ) ~ = t + t!l A (t; - zt /J,) ) + -~(j}' 
IX,' i 

IJ .t (J - z.it (t. t" o B 
D. =oft (1-0j,?)?~ + ----V=-.t- -t f ,,- If -,t. + o,,! '1jJn/J-,!,. ~. «z»/I )
:t. mc, a..l '117 ti a..

f 

~ =hJ::{2'.2,'" tto~).l[(f,,+ t)z -(-t/~J-2F) + f~ot/(~'~ +2,) + 

1S"J':l[t 1 ) s: 2. I] IV+/ 
3 -.!... 1::...)'

+ t~:'"I.,v j"tI.'IJ a» -t+ + t'-- trL-'ff/3 Z +:1..1'1 (l,a:+ a,~ I" ) 

, ," 

~ = :,1.: (J3, +F) + lt~~f~(C' + t+!t
llJ 

+ ~ t+~;J + ;;(tZut,~) +:zK J 

IJ m ",LA. /Y t~ ;: l Z'(1, + 7;.,)-+ ~ T;, , ~ = t:l(T; + 7;,) 
. .t 

} C.. = ---:t:iI ~ t J ., 11i n 

o = mrr.t.trt (1- .i.) - (l, t_'J ' 
~, hotA [1+ ~ J}.. ~, =1+12 ' ! ~ = fZ J 

IJ .t.( 0 I 31 I z, S" '2.)I 2.'h = 'ffl,~ {+,no 2) J ~ 'fa" In.:l) "'1 = mot.,1i (~~ + 8 j :t.tf/3 J.6{] 

.t 

f5" ~ 4'3 ) ct. =' 1 + !:!If. In C otr:01,/4, ="7d?:J. tlI,t.: J A /' 'I . 

Here the following notations are used 

' / / "/If '! = TIll" ~f2, ff,.Z = Zi /A J a = Z,,/:4) ?::::; g£2 I ~, ) 
In A J 

.It:; ~ (1+ f)(S~Y +:ljJiJ + /;'0 ((6+1)[6(1-j3) + Z(:l+/3) ] + 

. 'J(0a" Y).~+1) ...t(T(~-1)(1+2f3)Z~ . .li +J).l? v » 

)3, =.It - ;)!(c1+1)[(<1+),)(1-}3)+.~(1 +.tj3)(Z '-az)J+ 

+ '- (1+~j3) lr{36+1)ZZ)-( ~:~~ +?:~~J) + ?tocLJ~ 11.(/0+ f) -1- f} ) 

@ ('i.l.fJ JS'/J \ G, =x It +till J J e, =Ifffq/,f~J (f Z - t+J .,. tt+ !i s
/ ] J 

~ _ ItS- l. (t__t ) t '1'1)1-/3 _ 1(5" .L)(lU, - sZ"!'1!J 2, t + +.z (.1& <f ~,fl; ) 

G= a,!~ [7;(~~ + :~ + i 1~) + ::L T"v.]' K:: (7; + 7;q;)(;~ + ~ ~L)' 
.. ,. i «:, k (X,j r r '1<~1" 

f = t J ((J+11'f(~+~)(1_h)'" t(1+J.h) 2(1+ «z)] ot~2- )
8 r1'+" L( 

l. 

~ = I(;~f~ :~[IIS.t.t +S~ + ~j("(}L + C4 - !J 53)] ) 

.1

7: - ~ -s:~ (z t ... t) 7;1 = 't~~f~ /J(Z i+ -t_)(()~ + 1) )J1- - 8In '-: J., - - )
 

v t..!' '1/
"'... =/ 
00 

n (I)J' of.,.1 , Jt"'" /~rt)/(;;f.t/ )
(I () 
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p
 

.... 00s; =!f~( ;)2-ot/ ) 53 ==ljJ3(~;)3 0/,/ ) S - t 'f/~~tl. ).2.tt 
()	 

~ -;f> (?.J2j ~ J 

..,
 

O~ = jn(f)/L(:))\t/ ) ()t =inrJ)/r{)t.&.t .
 
- the index symbols defined in /22,28/.Bi 
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