

обьединенный
 институт ядерных
 исследований
 дубна

3^{-18}
E4-88-886
E.B.Bulbutsov, J.Piperova

COLLECTIVE $0^{+}, 1^{+}$AND 2^{+}EXCITATIONS IN ROTATING NUCLEI

Submitted to "Ядерная физика"

1. Introduction

Nowadays a quite complete experimental information concerning isóscalar quadrupole and monopole resonances exists /1-3/. Similar information about isovector resonances is rapidly accurnulating, too /4-8/. Numerous theoretical investigations are devoted to the same subject. These are different microscopic models using RPA /9-13/ or macroscopic calculations, based on the energy density functional and the phase space method with "scaling" $/ 14-19 /$, as well as phenomenologicel models /20,21/.

In present work to describe quadrupole and monopole excitations (both isoscalar and isovector) in rotating nuclei we use the method of moments, developed in refs. /22-24/. This approach, based on the phase space method, enable us to describe by the same equations the excited states of the nucleus and its equilibrium shape, which is important in rotating nuclei. In previous works $/ 22-24 /$ the basic equations have been derived in the approximation of a local nucleon-nucleon interaction. Now the possibilities of the method are investigated in the case of nonlocal interaction.

2. Formalism

The starting point for the method of moments $/ 24 /$ is the time--dependent Hartree-Fock equations for the density matrices $\hat{\rho}_{q}\left(\vec{r}_{q}\right.$, $\left.\vec{r}_{2}, t\right):$

$$
\begin{equation*}
i \hbar \frac{\partial \hat{\rho}_{z}}{\partial t}=\left[\hat{H}_{q}, \hat{\rho}_{q}\right], \quad q=n, p \tag{1}
\end{equation*}
$$

where \hat{H}_{q} is the self-consistent single-particle Hamiltonian; the label n, p stands for neutrons and protons, respectively. A Skyr-me-type effective interaction called the "modified Skyrme force" or SKI ${ }^{*} / 25 /$ is used for the nucleon-nucleon interaction. A self-consistent potential with. such forces is derived as usual $/ 26 /$ and it can be found in detail in ref. /18/.

Following the prescriptions of ref. $/ 24 /$ we transform equations

(1) Wo tho aquablonim for tho wigner functions $f_{q}(\vec{r}, \vec{p}, t)=$

$$
\begin{equation*}
\frac{\partial f_{B}}{\partial t}=\frac{2}{t} \sin \left\{\frac{\phi}{2}\left(\nabla_{B}^{\prime \prime} \cdot \nabla_{p}^{f}-\nabla_{p}^{H} \cdot \nabla_{u}^{f}\right)\right\} H_{W} f_{B} \tag{2}
\end{equation*}
$$

with $H_{w}(\vec{i}, \vec{p})=\int e^{-i \vec{p} \cdot \bar{t} / \hat{p}}(\vec{r}+\vec{s} / 2 / \hat{H} / \vec{r}-\vec{j} / 2) d \vec{j}$
and $\vec{r}=\left(\vec{r}_{1}+\vec{r}_{2}\right) / 2, \quad \vec{\jmath}=\vec{r}_{1}-\vec{r}_{2}$.
Then, integrating (2) over \vec{P} we obtain dynamical equations for the densities, which are just the continuity equations $/ 26 /$

$$
\begin{equation*}
\frac{\partial n_{q}}{\partial t}+\operatorname{div}\left(n_{q} \vec{u}_{q}\right)=\left\{\operatorname{div} n_{q} n_{q^{\prime}}\left(\vec{u}_{q}-\vec{u}_{q^{\prime}}\right)\right. \tag{3}
\end{equation*}
$$

with $n_{q}(\vec{r}, t)=\int f_{q}(\vec{r}, \vec{p}, t) d \vec{p}$ being the nucleon density, $\overrightarrow{u_{q}}(\vec{r}, t)=$ $=\int f_{y}(\vec{r}, \vec{p}, t) \vec{p} \alpha \vec{p} / n_{y} m$ is the mean velocity of nucleons; m the nucleon mass; $\}=m t_{+} / 2 \hbar^{2}, t_{+}=t_{1}+t_{2}, \quad t_{1}$ and t_{2} are parameters of the skyrme force (the coefficients before the nonlocal terms); $q^{\prime}=p$ if $q=n$ and vice versa.

Note, that only the first term of the power expansion for the sine function in eqs. (2) appears in equations (3), the other terms drop out due to integration.

The next step is to integrate (2) over \vec{p} with the weight p_{i} to find dynamical equations for the new quantities involved in eqs. (3), namely, for the velocities \vec{u}_{q} :

$$
\begin{align*}
& n_{q} \frac{d}{d t} u_{i q}-2 \Omega n_{q} \sum_{k=1}^{3} \varepsilon_{i k 3} u_{k q}-2 \Omega \xi n_{q} n_{q} \sum_{k=1}^{3} \varepsilon_{i k 3}\left(u_{k q}-u_{k q}\right)- \\
& -\Omega^{2}\left(1-\delta_{i 3}\right) x_{i} n_{q}+\frac{n_{q}}{m} \frac{\partial U_{q}}{\partial x_{i}}+\left(P_{q}+m n_{q} u_{q}^{2}\right) \frac{\partial C_{q}}{\partial x_{i}}+ \tag{4}\\
& +\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left[\left(1 / m+2 C_{q}\right) P_{i k q}\right]+n_{q} \vec{u}_{q} \cdot \frac{\partial}{\partial x_{i}} \vec{B}_{q}+ \\
& +\xi n_{q} n_{q}\left(\vec{u}_{q}-\vec{u}_{q}\right) \cdot \vec{\nabla} u_{i q}-\frac{\hbar^{2}}{2 m}\left(\nabla n_{q} \cdot \nabla \frac{\partial}{\partial x_{i}} C_{q}+\frac{1}{2} \frac{\partial C_{q}}{\partial x_{i}} \nabla^{2} n_{q}\right)=0 .
\end{align*}
$$

sore $P_{i j q}(r, t)=m^{-1} \int\left(p_{i}-m u_{i q}\right)\left(p_{j}-m u_{j q}\right) f_{q}(\vec{r}, \vec{p}, t) d \vec{p}$ appear and need also dynamical equations to be defined. Here

$$
\begin{aligned}
& \frac{d}{d t}=\frac{\partial}{\partial t}+\sum_{k=1}^{3} u_{k q} \frac{\partial}{\partial x_{k}} . \quad, \mathcal{E}_{i j k} \quad \text { is the Levi-Civita } t \\
& P_{q}=\sum_{k=1}^{3} P_{k k q}, P=P_{n}+P_{p}, \quad C_{q}=\frac{1}{4 \hbar^{2}}\left(t_{+} n-\frac{t_{-}}{2} n_{q}\right), \\
& t_{-}=t_{1}-t_{2}, \quad n=n_{p}+n_{n}, \quad \vec{B}_{q}=-\frac{m}{2 \hbar^{2}}\left(t_{+} n \vec{u}-\frac{t_{-}}{2} n_{q} \cdot \vec{u}_{q}\right),
\end{aligned}
$$

$$
n \vec{u}=n_{p} \vec{u}_{p}+n_{n} \vec{u}_{n}, \quad U_{q}=t_{0}\left[\left(1+\gamma_{0} / 2\right) n-\left(X_{0}+1 / 2\right) n_{q}\right]+
$$

$$
+\frac{1}{16}\left(3 t_{2}-5 t_{1}\right) \nabla^{2} n+\frac{1}{32}\left(3 t_{2}+5 t_{1}\right) \nabla^{2} n_{q}+\frac{1}{2} q\left[P+m\left(n_{p} u_{q}^{2}+n_{q}, u_{q}^{2}\right)\right]-
$$

$$
-\frac{m t}{8 \hbar^{2}}\left(P_{q}+m n_{f} u_{8}^{2}\right)+\frac{1}{24} t_{3} n^{\sigma-1}\left\{n^{2}\left[\left(1-\gamma_{3}\right) \sigma+2\left(2+\gamma_{3}\right)\right]-\right.
$$

$$
\left.-2 n_{q}^{2} \sigma\left(1+2 r_{3}\right)+2 n n_{y}(\sigma-1)\left(1+2 \gamma_{3}\right)\right\}+\delta_{q, p}^{\prime} V_{c}
$$

$$
\sigma, t_{0}, t_{3}, x_{0}, x_{3}
$$

- are Skyrme force parameters and $V_{c}=\int n_{p}\left(\vec{r}^{\prime}\right) e_{p}^{2} /\left|\vec{r}-\vec{r}^{\prime}\right| \alpha \vec{r}^{\prime} \quad$ is the direct part of the Coulomb interaction. Equations (4) are written in a frame of reference rotating with angular velocity $\vec{\Omega}(0,0, \Omega)$.

It is interesting to note that due to the nonlocality of the interaction we use, already two terms of the power expansion of the sine function (2) contribute to equations (4) - a term propertional to \hbar^{2} has appeared.

As is well known (see, e.g., ref. ${ }^{/ 27 / \text {) equations (2) reduce }}$ to Vlasov equations in the limit $\hbar \rightarrow 0$. Thus, in our method we are able to study quantum corrections to the Vlasov equations.

Finally, lot use write down the dynamical equations for the pressure tenor $P_{i j g}$. We need for that to integrate (2) over \vec{p} with weights $p_{i} p_{j}$:

$$
\begin{align*}
& \frac{d}{d t} P_{i j q}+P_{i j q} \operatorname{div} \vec{u}_{q}+\eta \operatorname{div}\left[n_{q} P_{i j q}\left(\vec{u}_{q}-\vec{u}_{q^{\prime}}\right)\right]+ \\
& +\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(\frac{m^{2}}{m^{*}} P_{i j k q}\right)+\sum_{k=1}^{3}\left\{P _ { i k q } \left(\frac{m}{m^{*}} \frac{\partial}{\partial x_{k}} u_{j q}+\right.\right. \\
& \left.+2 \frac{m}{m^{*}} \Omega \varepsilon_{j 3 k}+2 m u_{k q} \frac{\partial}{\partial x_{j}} C_{q}+\frac{\partial}{\partial x_{j}} B_{k q}\right)+ \\
& +m^{2} \frac{\partial C_{q}}{\partial x_{j}} P_{i k k q}-\frac{1}{2} \hbar^{2} n_{q}\left(\frac{\partial u_{i q}}{\partial x_{k}} \frac{\partial^{2} C_{q}}{\partial x_{k} \partial x_{j}}+\Omega \varepsilon_{i 3 k} \frac{\partial^{2} C_{q}}{\partial x_{k} \partial x_{j}}\right)- \\
& \left.-\frac{1}{2} \hbar^{2} \frac{\partial C_{q}}{\partial x_{j}}\left(\frac{\partial u_{i q}}{\partial x_{k}} \frac{\partial n_{q}}{\partial x_{k}}+\frac{1}{2} n_{q} \frac{\partial^{2} u_{i q}}{\partial x_{k}^{2}}+\Omega \varepsilon_{i 3 k} \frac{\partial n_{q}}{\partial x_{k}}\right)\right\}+ \\
& +\sum_{k=1}^{3}\{i \leftrightarrow j\}=0 . \tag{5}
\end{align*}
$$

Here the notations $m^{*}=m\left(1+2 m C_{q}\right)^{-1}$ and

$$
P_{i j k q}(\vec{r}, t)=m^{-2} \int\left(p_{i}-m u_{i q}\right)\left(p_{j}-m u_{j q}\right)\left(p_{k}-m u_{k q}\right) f_{q}(\vec{r}, \vec{p}, t) d \vec{p}
$$

are introduced.
According to refs. ${ }^{122-24 /}$ one needs now to integrate equations (4) and (5) over an infinite volume with weights x_{j} and 1 respecttively. In the case of a local interaction all integrals including third-rank tensors $P_{i j k g} \quad$ vanish and thus one obtains "closed" system of coupled equations for the tensors of inertia $\mathcal{f}_{i j q}=m / n_{q} x_{i} x_{j} d \vec{z}$ and the integral pressure tensors $\prod_{i j q}=\int P_{i j q} d \vec{r} \quad / 24 /$. The situation turns out to be much more complicated when one uses nonlocal
interaction. In that case the integral $m^{2} \int \partial C_{q} / \partial x_{j} \sum_{k=1}^{3} P_{i \times \kappa q} d \vec{v}$ resuiting from eqs. (5) is nonzero and to decouple any how the infinite chain of equations for the tensors $\int P_{i j \ldots \kappa q} d \vec{r}$ it has to be negelected. Fortunately, we are able to appreciate numerically the accuracy of such an approximation and it will be shown later that the resulting inaccuracy is very small.

The equations we obtain after integrating (4) and (5) over the space are obvious and we don't quote them. In the following they are denoted $I_{4 g}$ and $I_{5 q}$, respectively.
3. Shape of rotating nuclei

As has been shown in refs. ${ }^{22,23 /}$ the shape of rotating nuclei may be determined using the stationary solution of equations $I_{q q}$ and $I_{5 q}$ which describes the secular equilibrium of rotating nucleus. In present paper we consider the simplest case of secular equilibrium when $\vec{u}_{\xi}=0$. We also suppose that at $\Omega=0$ the nucleus is spherical and due to rotation it becomes an oblate spheroid. With these assumplions eqs. $I_{4 q}$ read

$$
\begin{align*}
& \quad \frac{1}{m} \int x_{j} n_{q} \partial U_{q} / \partial x_{i} d \vec{r}+\int x_{j} P_{q} \partial C_{q} / \partial x_{i} d \vec{r}- \\
& - \tag{6}\\
& \frac{\hbar^{2}}{2 m} \int x_{j}\left(\vec{\nabla} n_{q} \cdot \vec{\nabla} \frac{\partial C_{q}}{\partial x_{i}}+\frac{1}{2} \frac{\partial C_{q}}{\partial x_{i}} \vec{\nabla}^{2} n_{q}\right) d \vec{r}- \\
& - \\
& -\Omega^{2}\left(1-\delta_{i j}\right) \int x_{i} x_{j} n_{q} d \vec{r}-\int\left(\frac{1}{m}+2 C_{q}\right) P_{i j q} d \vec{r}=0 .
\end{align*}
$$

It is easily seen that in the case of three-planar symmetry of the integration volume the first four integrals are nonzero only if $i=j$. Hence, the last integral does not vanish only if $i=j$, ie. one can put $P_{i j q}=\delta_{i j} P_{i i q}$. In such a case equations $I_{5 q}$ yield

$$
\begin{aligned}
& \Omega \varepsilon_{i 3 j}\left\{2 m \int \frac{1}{m^{*}}\left(P_{i i q}-P_{j j q}\right) d \vec{r}+\frac{\hbar^{2}}{2} \int\left(n_{q} \frac{\partial^{2} C_{q}}{\partial x_{j}^{2}}-n_{q} \frac{\partial^{2} C_{q}}{\partial x_{i}^{2}}+\right.\right. \\
& \left.\left.\quad+\frac{\partial C_{q}}{\partial x_{j}} \frac{\partial n_{q}}{\partial x_{j}}-\frac{\partial C_{q}}{\partial x_{i}} \frac{\partial n_{q}}{\partial x_{i}}\right) d \vec{r}\right\}=0
\end{aligned}
$$

the second integral being zero due to three-planar symmetry. Apparently, $i \neq j \neq 3$ and it is possible to assume $P_{14 q}=P_{22 q}=P_{33 q}=P_{0 q}$. In the following $P_{0 q}$ is approximated by the well-known Thomas-Fermi expression $P_{o q}=\gamma_{q} n_{q}^{5 / 3}$ with $\dot{\gamma}_{q}=\frac{\hbar^{2}}{5 m}\left(\frac{3 \pi^{2} A}{2 z_{q}}\right)^{2 / 3}=\gamma\left(\frac{A}{z_{q}}\right)^{2 / 3}$. Assuming
the same equjlibrium shapes for proton and neutron distributions, we put $n_{q}=n Z_{q} / A \quad$ with $A=Z_{n}+Z_{p} \quad\left(Z_{n}\left(Z_{p}\right)\right.$ being the number of neutrons (protons)) and sum up eq.(6) for protons with that for neutrons. Subtracting the sum for $i=j=1$ from the analogous sum with $i=j=3$ one obtains

$$
\Omega^{2} y_{11}=\frac{1}{16}\left[2\left(t_{+}+2 t_{-}\right)-\frac{Z_{P}^{2}+Z_{n}^{2}}{A^{2}}\left(2 t_{+}+t_{-}\right)\right] \cdot \int n\left(x, \frac{\partial}{\partial x_{3}}-x_{1} \frac{\partial}{\partial x_{1}}\right) \vec{\nabla}^{2} h d \vec{r}-
$$

$$
\begin{align*}
& -\frac{1}{8}\left(t_{+}-\frac{Z_{p}^{2}+Z_{n}^{2}}{2 A^{2}} t_{-}\right) \cdot \int\left[\left(\frac{\partial n}{\partial x_{3}}\right)^{2}-\left(\frac{\partial n}{\partial x_{1}}\right)^{2}\right] d \vec{r}- \tag{7}\\
& -\frac{Z_{f}}{A} \int n\left(x_{3} \frac{\partial}{\partial x_{3}}-x_{1} \frac{\partial}{\partial x_{4}}\right) V_{c} d \vec{r}
\end{align*}
$$

where $f_{i j}=f_{y n}+f_{i j p}$.

In the analogous formula of refs. ${ }^{/ 22-23 /}$ the effect of the nuclear forces has been approximated by the surface tension. Cur calculations with more realistic forces (skm ${ }^{*}$) show that this approximation works well.

Fig. 1.

Rotational parameter $\mathrm{Y}=\frac{1}{2} I^{2} / I_{0}^{2}$ as a function of the deformation parameter \mathcal{D}^{2} for different Z_{P} and $\left.A_{b}=17 \mathrm{MeV}, r_{0}=1.2 \mathrm{fu}\right)$. The fuil curve shows the results of our calculations with SKM ${ }^{*}$, the dashed curve those obtained in ref. 122/ with surface tension. ref. ${ }_{\text {is }}^{\text {angular momentum. }}$

This is not suprising since the Skyrme parameters are chosen to reproduce the Weizsäker mass formula and particularly the surface term $b A^{2 / 3}$. The dependence of Ω^{2} on the deformation of the nucleus calculated in both cases with SKM^{*} force and with surface tension, is shown in fig. 1. The details of the calculations and the precise expression for Ω^{2} can be found in Appendix A.

4. Small deviations from the equilibrium

Analyzing the reaction of the system to an infinitesimal perturbation one can determine its eigenfrequencies. A small deviation from the state of equilibrium of the system is described by taking the variations of equations $I_{4 q}, I_{5 q}$.

Before going on with variations, let us stress out some new points arising here.

Firstly, in refs. ${ }^{22-23 /}$ the volume of integration was finite and one dealt with the Lagrange variations $\Delta \eta$ and $\Delta P_{i j}$. In this work we formally integrate over an infinite volume, hence only the Euler variations δn and $\delta P_{i j}$ survive (see,e.., , the rules of variation in ref. /28/).

Secondly, the nuclear matter in refs. ${ }^{122-23 /}$ was understood to be incompressible and the whole effect of the nuclear forces was reduced to the surface tension. In this paper we use particular realistic nucleon-nucleon interaction and we are able, moreover, we are obliged to describe also compression modes of excitation (monopole resonances).

The expression for the Euler variations of neutron and proton densities may be easily derived from the continuity equations (3). Multiplying eqs. (3)by $d t$ and defining the infinitesimal displacements of the elements of the neutron and proton liquids

$$
\begin{equation*}
\vec{\xi}_{q}(\vec{r}, t)=\vec{u}_{q}(\vec{r}, t) \cdot d t \tag{8}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\delta n_{q}=-\operatorname{div}\left(n_{q} \vec{\xi}_{q}\right)-\eta \operatorname{div}\left(n_{q} n_{q^{\prime}}\left(\vec{\xi}_{q}-\vec{\xi}_{q^{\prime}}\right)\right) . \tag{9}
\end{equation*}
$$

The presence of a term proportional to $\}$ which is responsible for the exchange effects $/ 26 /$ makes the last expression different from the classical $/ 28 /$ one. Obviously the Euler variation of the total density δn does not contain any exchange effects.

Lagrange variation of the mean velocities $/ 28 /$ can be obtained by calculating the differentials of equations (8):

$$
\begin{equation*}
\Delta \vec{u}_{i}(\vec{r}, t)=\frac{d \vec{\xi}_{q}(\vec{r}, t)}{d t} . \tag{10}
\end{equation*}
$$

The expressions for their Euler variations $\delta^{\top} \vec{u}_{\nu}(\vec{r}, t)$ are derived by using the relation $/ 2 \dot{y} /: \Delta=\delta+\sum_{i=1}^{3} \sum_{i} \frac{\partial}{\partial x_{i}}$

Now we are ready to take variations. of eqs. $I_{\varphi q}$ and $I_{s q}$ with respect to the equilibrium state with given Ω. Keeping the terms linear in variations, one gets

$$
\begin{align*}
\ddot{V}_{i, j q} & =b_{1} V_{i j q}-b_{2} V_{i j q^{\prime}}+b_{3} \pi_{i j q}+ \\
& +\delta_{i j}\left(b_{q} \tilde{V}_{q}-b_{s} \tilde{V}_{q^{\prime}}+b_{q} \tilde{V}_{q}-b_{2} \tilde{V}_{q^{\prime}}+b_{s} \pi_{q}+b_{,} \pi_{q^{\prime}}\right)+ \tag{11}\\
& +2 \Omega \sum_{k=1}^{3} \varepsilon_{i k 3}\left(b_{10} \dot{V}_{k, j q}-b_{1 r} \dot{V}_{k, j q^{\prime}}\right)- \\
& -\delta_{q, \rho_{i j}} \delta_{i j} \sum_{k=1}^{3} A_{k i}\left(b_{i 2} V_{k k q}-b_{13} V_{k k q^{\prime}}\right) \\
\dot{\pi}_{i j q}= & -d_{1}\left(\dot{V}_{i j q} / \bar{a}_{j}^{2}+\dot{V}_{j, i q} / \bar{x}_{i i}^{2}\right)+ \\
& +d_{2}\left(\dot{V}_{i j q^{\prime}} / \bar{a}_{j}^{2}+\dot{V}_{j, i q^{\prime}} / \bar{a}_{i}^{2}\right)- \\
& -2 \Omega \alpha_{3} \sum_{k=1}^{3}\left(\varepsilon_{j 3 k} \pi_{i k q}+\varepsilon_{i s k} \pi_{j k q}\right) .
\end{align*}
$$

Here and in the following we use the notations:

$$
\begin{aligned}
& V_{i j g}=m \int n_{\eta} \xi_{i q} x_{j} d \vec{r} \quad, \quad V_{i j q}=V_{i, j q}+V_{j, i q}, \\
& \tilde{V}_{q}=\sum_{k=1}^{3} \frac{V_{k, k \eta}}{\bar{a}_{k}^{2}}, \quad \widetilde{V}_{q}=\sum_{k=1}^{3} \frac{V_{i, k q}}{\bar{a}_{k}^{4}}, \quad \Pi_{i j q}=\delta \Pi_{i j q},
\end{aligned}
$$

$A_{k i}$ are the so-called index symbols, defined in refs. ${ }^{/ 22,28 / ; ~}$ $\bar{\alpha}_{i}=a_{i} / R \quad$ witt. $a_{i}(i=1,2,3)$ being the semi-axes of the nuclear spheroid. The coefficients b_{n} and d_{n} depend on the SKM* parameters and on the indices i, j, q and can be found in Appendix B.

Deriving equations (11) some natural assumptions have been made. (i) The integrals containing Coulomb interaction have been calculated in the approximation of a sharp surface of the nucleus in which case one can use some formulae from ref. $/ 28 /$. (ii) Following the prescriptons of ref. ${ }^{/ 24 / \text { we try to find solutions for displacements and }}$ variations of the pressure tensors in the form:

$$
\begin{align*}
& \xi_{i q}(\vec{r}, t)=L_{i q}(t)+\sum_{k=1}^{3} L_{i, k q}(t) x_{k}+\sum_{k, e=1}^{3} L_{i, k \ell q} x_{k} x_{e}, \tag{12}\\
& \delta P_{i j q}(\vec{r}, t)=n_{q}(\vec{r})\left[D_{i j q}(t)+\sum_{k=1}^{3} D_{i j, k q}(t) x_{k}\right]
\end{align*}
$$

A natural question arises here: are there solutions more complicated than (12)? What will happen if, in particular, one adds in (12) terms with higher powers of coordinates? This problem has been discussed in ref. ${ }^{24 /}$ and it turns out that such solutions may be constrrusted; but to do this, the system of equations $I_{4 q}, I_{5 q}$ must be supplemented with equations for higher-rank tensors $\mathcal{F}_{i j} \ldots \kappa q$ and $P_{i j \ldots k q}$, a strict correspondence existing between the number of the terms in equations (12) and the number of the equations for the moments.

Inserting expressions (12) into the definitions of the $V_{i, j q}$ and $\Pi_{i j q}$ we find relation between $V_{i, j q}$ and $L_{i, j q}$:

$$
L_{i, j q}=\frac{3 A}{4 \pi m Z_{q} \alpha_{1}^{4} \bar{\alpha}_{j}^{2}} V_{i, j q} \quad, \quad \alpha_{\mu}^{\nu}=\int_{0}^{\infty} \rho^{\nu} n^{\prime}(\rho) d \rho
$$

and between $\Pi_{i j q}$ and $D_{i j q}$:

$$
\Pi_{i j g}=z_{q} D_{i j g}
$$

Due to three-planar symmetry all the integrals containing $L_{i g}$, $L_{i, k \ell g}$ or $D_{i j, k g}$ vanish.

We may rearrange equations (11) to obtain equations for the irreducible tensors of ranks $\lambda=2,1,0$. These tensors occur to be just the variations of the quadrupole moment $Q_{2 \mu q}=\int n_{q} \tau^{2} Y_{2 \mu} d \vec{\tau}$, angular momentum $I_{i q}=\int n_{q}\left\{\left[\vec{\imath} \times \overrightarrow{u_{q}}\right]_{i}+[\vec{v} \times[\vec{l} \times \vec{r}]]_{i}\right\} d \vec{r}$ inertia tensor $\quad Q_{00 q}=\int n_{g} r^{2} Y_{00} d \vec{r}$ (i.e. the mean square dies) and similar combinations of the components of the $\Pi_{i j}$ tensors. In the present work the relation between the variations $\delta Q_{2 \mu q}, \delta I_{i q / 23 /}$ and the tensors $V_{i, j q}$ is quite more complicated than in ref./23/ (due to exchange effects).

Inserting the expressions (9) into the formula $\delta Q_{2 \mu \eta}=\int r^{2} Y_{2 \mu} \delta n_{q} d \vec{\tau}$, one obtains

$$
\begin{aligned}
& \delta Q_{2, \pm 2 q}=\frac{1}{4 m} \sqrt{\frac{15}{2 \pi}}\left\{\left(1+\overline{5} \frac{Z^{\prime}}{A}\right)\left(V_{1 q q}-V_{22 q} \pm 2 i V_{12 q}\right)-\overline{5} \frac{Z_{q}}{A}\left(V_{11 i^{\prime}}-V_{22 q} \pm 2 i V_{12 q}\right)\right\}, \\
& \delta Q_{2, \pm 1 q}=\mp \frac{1}{2 m} \sqrt{\frac{15}{2 \pi}}\left\{\left(1+\overline{\frac{T}{A}} \frac{q^{\prime}}{} q^{\prime}\right)\left(V_{13 q} \pm i V_{23 q}\right)-\bar{\xi} \frac{Z_{q}}{A}\left(V_{13 q^{\prime}} \pm i V_{23 q}\right)\right\},
\end{aligned}
$$

and by analogy for the angular momentum variation:

$$
\begin{aligned}
& \delta I_{i q}=\int\left\{n_{p}\left[\vec{z} \times \delta \overrightarrow{u_{q}}\right]_{i}+\delta n_{p}\left[\overrightarrow{r_{2}} \times[\vec{\pi} \times \vec{r}]\right]_{i}\right\} d \vec{r},
\end{aligned}
$$

$$
\begin{aligned}
& \delta I_{2 q}=\dot{V}_{1,3 q}-\dot{V}_{1, q}-\Omega\left\{\left(1+\bar{\xi} \frac{Z_{q} q^{\prime}}{q^{\prime}} V_{2, q}-\bar{\zeta} \frac{Z_{q}}{Z^{\prime}} V_{23 q^{\prime}}\right\},\right.
\end{aligned}
$$

For the variation $\delta Q_{00 q}$ one has:

$$
\delta Q_{0 o q}=\frac{1}{\sqrt{4 \pi}} \int r^{2} \delta n_{q} \alpha \vec{r}=\frac{1}{2 m \sqrt{\pi}}\left\{\left(1+\bar{j} \frac{Z_{q}}{A}\right) \sum_{i=1}^{3} V_{i i q}-\bar{\xi} \frac{Z_{q}}{A} \sum_{i=1}^{3} V_{i i q^{\prime}}\right\}
$$

The expressions for $\delta \Pi_{2 \mu q}$ can be found from those for $\delta Q_{2 \mu q}$ replacing $V_{i j q}$ by $\Pi_{i j g}$ and in a similar way $\delta \Pi_{\text {loq }}$ is found from $\delta Q_{\text {ooq }} \cdot{ }^{\prime j q} \bar{j}=\xi \alpha_{2}^{4} / \alpha_{1}^{4}$.
5. Eigenfrequencies and transition probabilities

Because of the axial symmetry of the nucleus, the multipole momont projection on the axis of rotation is a good quantum number and the set of equations (11) split into five groups of equations coresponging to $\mu= \pm 2, \pm 1$ and 0 .

The $\mu=2$ group of equations reads:

$$
\begin{align*}
& \delta \ddot{Q}_{2,+2 q}=r_{1} \delta \dot{Q}_{2,+2 q}+r_{2} \delta \dot{Q}_{2,+2 q^{\prime}}+r_{3} \delta Q_{2,2 q}+r_{4} \delta Q_{2,+2 q^{\prime}}+r_{5} \delta \Pi_{2,+2 q}+r_{6} \delta \Pi_{2,2 q} \\
& \delta \dot{\Pi}_{2,+2 q}=r_{q} \delta \dot{Q}_{2,+2 q}+r_{8} \delta \dot{Q}_{2,+2 q^{\prime}}+r_{9} \delta \Pi_{2,+2 q} \tag{13}\\
& \quad \text { The } \mathcal{M}=1 \quad \text { group is }
\end{align*}
$$ Here $\delta I_{+q}=\frac{1}{\sqrt{2}}\left(\delta I_{1 q}+i \delta I_{2 q}\right)$.

Similar equations with $-\Omega$ in place of Ω in the coefficients τ_{n} and J_{n} correspond to $\mu=-2$ and $\mu=-1$. The coefficients τ_{n} and J_{n} are obvious linear combinations of the coefficients b_{n} and $d_{n} \quad$ listed in Appendix B.

The most cumbersome group of equations is that for $\mu=0$:

$$
\begin{aligned}
& \delta \ddot{Q}_{2,0 q}=t_{1} \delta Q_{2,0 q}+t_{2} \delta Q_{2,0 q^{\prime}}+t_{3} \delta Q_{9,0 q}+t_{4} \delta Q_{9,0 q^{\prime}}+t_{5} \delta I_{3 q}+t_{6} \delta I_{3 q^{\prime}}+t_{7} \delta \Pi_{2,0 q} \\
& \delta \ddot{Q}_{0,0 q}=t_{8} \delta Q_{9,0 q}+t_{9} \delta Q_{0,0 q^{\prime}}+t_{10} \delta Q_{2,0 q}+t_{11} \delta Q_{2,0 q^{\prime}}+t_{12} \delta I_{3 q}+t_{13} \delta I_{3 q^{\prime}}+t_{N} \delta \Pi_{90 q}+t_{15} \delta \Pi_{\rho, 0 q^{\prime}} \\
& \delta \dot{I}_{3 q}=t_{16} \delta \dot{Q}_{30 q}+t_{17} \delta \dot{Q}_{2,0 q^{\prime}}+t_{19} \delta \dot{Q}_{9,0 q}+t_{19} \delta \dot{Q}_{9,0 q^{\prime}} \\
& \delta \dot{\Pi}_{2,0 q}=t_{20} \delta \dot{Q}_{2,0 q}+t_{21} \delta \dot{Q}_{3,0 q^{\prime}}+t_{22} \delta \dot{Q}_{0,0 q}+t_{23} \delta \dot{Q}_{9,0 q^{\prime}} \\
& \delta \dot{\Pi}_{0,0 q}=t_{24} \delta \dot{Q}_{2,0 q}+\dot{t}_{25} \delta \dot{Q}_{2,0 q^{\prime}}+t_{26} \delta \dot{Q}_{0,0 q}+t_{2 \times} \delta \dot{Q}_{30 q^{\prime}}
\end{aligned}
$$

$$
\text { with } t_{n} \text { being evident combinations of the coefficients } b_{n} \text { and } d_{n} \text {. }
$$

$$
\begin{aligned}
& \delta \ddot{Q}_{2,+1 q}=J_{1} \delta \dot{Q}_{2,+1 q}+J_{2} \delta \dot{Q}_{2,+1 q^{\prime}}+J_{3} \delta Q_{2,+1 q}+J_{4} \delta Q_{2,+1 q^{\prime}}+J_{5} \delta I_{+q}+J_{6} \delta I_{+q^{\prime}}+I_{7} \delta \eta_{2,+q} \\
& \delta \dot{I}_{+q}=1_{s} \delta \dot{Q}_{2,+1 q}+I_{g} \delta \dot{Q}_{2,+1 q^{\prime}}+J_{10} \delta Q_{2,+1 q}+I_{1 q} \delta Q_{2,+1 q^{\prime}}+J_{12} \delta I_{+q}+J_{13} \delta I_{+q^{\prime}}(14) \\
& \delta \dot{\Pi}_{2,1 q}=s_{14} \delta \dot{Q}_{2,+1 q}+j_{15} \delta \dot{Q}_{2,+1 q^{\prime}}+j_{16} \delta Q_{2,+1 q}+j_{1,2} \delta Q_{2,+1 q^{\prime}}+j_{18} \delta I_{1 q}+J_{1 g} \delta I_{+q^{\prime}}+j_{20} \delta \Pi_{2,+1 \xi^{\prime}} .
\end{aligned}
$$

Obviously, systen (15) contains three integrals of motion, hence it can be simplified by rewriting $\delta I_{3}, \delta \Pi_{2,0}$ and $\delta \Pi_{0,0}$ in terms of $\delta Q_{2,0}$ and $\delta Q_{0,0}$. Une of these integrals of motion allows a simple physical interpretation, namely $\delta I_{3 p}+\delta I_{3 n}=$ const means that the projection of the variation of the total angular momentum on the axis of rotation is conserved. Actually, system (14) also contains two integrals of motion δI_{1} and δI_{2}, but these profections are constants only in a laboratory frame of reference. In a rotating frame they rotate with angular velocity Ω. It is easy to obtain from equations (14)

$$
\delta \dot{I}_{+}=-i \Omega \delta I_{+}
$$

and consequently $\delta I_{+}=$const $e^{-i \Omega t}$.
The reduced probabilities for electromagnetic transitions may be calculated applying the theory of linear response of a systen to an external field perturbation.

$$
\begin{equation*}
O(t)=O e^{-i \omega t}+O^{t} e^{i \omega t} \tag{16}
\end{equation*}
$$

In the case of quadrupole and monopole electric transitions we have $0=e_{p} \delta_{q, p} \tau^{2} Y_{2 \mu}$ or $0=e_{\rho} \delta_{q, p} \tau^{2} Y_{o 0} \quad$ respectively, and for nagnetic dipole transitions

$$
0=-i \frac{e \hbar}{2 m c} \vec{\nabla}\left(\tau Y_{1 \mu}\right) \cdot\left[\vec{r} \times\left(\vec{\nabla}_{r}+m \Omega \vec{\nabla}_{p}\right)\right] \delta_{q p} \equiv 0_{1} .
$$

A convenient form of the linear response theory is given by Lane $/ 29 /$. The matrix elements of an operator 0 obey the relationship

$$
\begin{equation*}
\left.\left|\left\langle\psi_{a}\right| O\right| \psi_{0}\right\rangle\left.\right|^{2}=\lim _{\omega \rightarrow \omega_{a}} \hbar\left(\omega-\omega_{a}\right) \overline{\left\langle\psi_{0}^{\prime}\right| O e^{-i \omega t}\left|\psi_{0}^{\prime}\right\rangle} \tag{17}
\end{equation*}
$$

where ψ_{0} and ψ_{a} are the unperturbed wavefunctions of the stationary states; Ψ_{0}^{\prime} is the perturbed धround state wavefunction, $\omega_{a}=\left(E_{a}-E_{o}\right) / \hbar$ are the normal frequencies of the system. The par means averaging over a time interval much greater than $1 / \omega, \omega$ being the frequency of the external field $O(t)$.

Let us consider in more detail the case of quadrupole operator Its matrix element may be expressed in terms of variables $V_{i, j q}$:

$$
\begin{aligned}
& \left\langle\psi_{0}^{\prime}\right| e_{p} \delta_{q, p} r^{2} Y_{2 \mu}\left|\psi_{0}^{\prime}\right\rangle e^{-i \omega t}=e_{p} \overline{n^{\prime}(\vec{r}, t) \delta_{q_{1}} r^{2} Y_{2 \mu} d \vec{r} e^{-i \omega t}}= \\
& =e_{p} \int \overline{n_{p}(\vec{r}) r^{2} Y_{2 \mu} d \vec{r} e^{-i \omega t}}+e_{p} \overline{\int n_{p}(\vec{r}, t) r^{2} Y_{2 \mu} d \vec{r} e^{-i \omega t}}= \\
& =e_{p} \overline{\int Q_{2 \mu p}(t) e^{-i \omega t}} .
\end{aligned}
$$

To find the absolute value of $\delta Q_{2 \mu q}(t)$ we neec to add potential (16) to the Hamiltonian in equations (1). The right-hand side (r.h.s) of equations (2) are then modified by the terms

$$
\begin{equation*}
\frac{2}{\hbar} \sin \left\{\frac{\hbar}{2}\left(\vec{\nabla}_{r}^{0} \cdot \vec{\nabla}_{p}^{f}-\vec{\nabla}_{p}^{0} \vec{\nabla}_{q}^{f}\right)\right\}\left\{O_{w}(\vec{r}, \vec{p}) e^{-i \omega t}+O_{w}^{*}(\vec{r}, \vec{p}) e^{i \omega t}\right\} f_{q}(\vec{r}, \vec{p}, t) \tag{19}
\end{equation*}
$$

Proceeding in the same way as before, one obtains equations for all the moments of the Wigner function needed to calculate $\delta Q_{2 \mu g}(t)$. The only new element now is the presence of the terms (19) that make the equations for the moments inhomogeneous. Thus, the perturbation by a field proportioral to $1 / 22$ does not affect equations (14) and (15), but makes the first equation of the systern (13) (for protons only) inhomogeneous:

$$
\delta \ddot{Q}_{2,2 p}=\cdots-10 \frac{e_{p} Z_{p}}{m A} \alpha_{1}^{4} \bar{a}_{1}^{2} e^{i \omega t} \cdot\left(1+\bar{j} \frac{Z_{n}}{A}\right)
$$

The perturbation with a field proportional to $X_{2,1}$ makes inhomogeneous the first proton equation of system (14):

$$
\delta \ddot{Q}_{2,1 p}=\cdots-10 \frac{e_{p} z_{p}}{m A} \alpha_{1}^{4} \frac{1}{2}\left(\bar{a}_{1}^{2}+\bar{a}_{3}^{2}\right) e^{i \omega t} \cdot\left(1+5 \frac{z_{h}}{A}\right)
$$

Finaliy, the perturbation with a field proportional to $Y_{2,0}$ makes inhomogeneous the first equation (for protons) of system (15):

$$
\delta \ddot{Q}_{2,0 p}=\cdots-10 \frac{e_{p} Z_{p}}{m A} \alpha_{1}^{4} \frac{1}{3}\left(\bar{x}_{p}^{2}+2 \bar{\alpha}_{3}^{2}\right) \cos \omega t \cdot\left(1+\bar{\zeta} \frac{Z_{n}}{A}\right)
$$

According to the time dependence of the inhomogeneity we suppose that the variations $\delta Q_{3 \mu q}, \delta \Pi_{2 \mu q}$, etc. must depend on time like $e^{i \omega t}, \cos \omega t$ or $\sin \omega t$. For such type of t-dependence equations (13)-(15) become a system of linear algebraic equations and the problem of calculating $\delta Q_{2, \mu q}$ reduces to the calculation of determinants.

The characteristic equation of the homogeneous set of equations yields the eigenfrequencies ω_{α}.

A formula analogous to (18) is derived for the matrix element of the operator responsible for monopole excitations

$$
\left\langle\overline{\left.\psi_{0}^{\prime}\left|e_{p} \delta_{q, p} \tau^{2} y_{o, 0}\right| \psi_{0}^{\prime}\right\rangle e^{-i \omega t}}=e_{p} \overline{\delta Q_{0,0 p}(t) e^{-i \omega t}}\right.
$$

The perturbation with a field $0=e_{\rho} \delta_{\mathcal{P}, \rho} \tau^{2} Y_{0,0}$ affects the second equation of system (15) (n or $q=p$):

$$
\delta \ddot{Q}_{0,0 p}=\cdots+8 \frac{e_{p} z_{p}}{m A} \alpha_{1}^{4} \frac{1}{3}\left(\bar{a}_{3}^{2}+2 \bar{\alpha}_{1}^{2}\right)\left(1+\bar{\xi} \frac{z_{n}}{A}\right) \cos \omega t
$$

For the matrix element of the magnetic dipole operatol one gets

$$
\overline{\left\langle\psi_{0}^{\prime}\right| O_{1}\left|\psi_{0}^{\prime}\right\rangle e^{-i \omega t}}=\overline{\delta m_{1, \mu p}} e^{-i \omega t}
$$

with $\delta m_{1, \mu p}$ being the variation of the proton magnetic dipole moment

$$
m_{1, \mu p}=\frac{e_{p}}{2 c} \int n_{p} \vec{\nabla}\left(\varepsilon Y_{1, \mu}\right) \cdot\left[\vec{r} \times\left(\vec{u}_{p}+[\vec{\Omega} \times \vec{r}]\right)\right] d \vec{r}
$$

Obviously, the components of $M_{1, \mu}$ are proportional to the angular momenta components, i.e. $M_{1,0}=\frac{e_{p}}{2 C} \sqrt{\frac{3}{4 \pi}} I_{3}, M_{1,1}=-\frac{e_{p}}{2 C} \sqrt{\frac{3}{4 \pi}} I_{+}$

The perturbation with a field O_{1} makes inhomogeneous the second equation of system (14) with $q=p$:

$$
\delta \dot{I}_{+p}=\cdots-i \Omega \sqrt{\frac{\pi}{3}} \frac{\epsilon_{p} z_{p}}{c A} \alpha_{1}^{4}\left(\bar{a}_{1}^{2}+\bar{a}_{3}^{2}\right) e^{i \omega t}
$$

Thus, we have constructed everything we need to calculate the energies and transition probabilities of $2^{+}, 1^{+}$and 0^{+}states.
6. Numerical results

6.1. $\Omega=0$ case

In figs. 2-5, the calculated sigenfrequencies of β-stable nonrotating nuclei are compared with the empirical data.

For $\Omega=0$ equations (13-15) yield two five-fold degenerated 2^{+} states (isoscalar (IS) and isovector (IV) ones) and two 0^{+}states (Iis and IV respectively). Having in mind the physical meening, of the dynamical variables (in these equations), it is natural to identify the above states with the giant quadrupole and monopole resonances of both types.

The calculations have been performed with two parametrizations (see Appendix 4) of the equilibriuri density n : of Bernstein ${ }^{/ 30 /}$ and of Bohr and Mottelson $/ 31 /$ (BNi). Besides we check the accuracy of the idely used approximation in which protons and neutrons vibrate in or out of phase with $V_{i j n} / Z_{n}= \pm V_{i j p} / Z_{p}$.

The resultis presented infiga.2,3demonstrate that the energies of the isoscalar quadrupole resonance (ISQR) in mediun-mass and heavy nuclei are closer to the data when calculated with parametrization of Bernstein but in light nuclei the parameters of BM are to be pre-

Fig. 2. The energies of the isovector quadrupole resonance calculated with the equilibrium density parameters by Bernstein /30/ (full curve), by BM /31/ (dashed-dotted curve) and in the approximation (see text) of equal neutron and proton amplitude

Fig. 3. The same as in fig. 2 for the isoscalar quadrupole resonance. The experinental data are from ref. /1/.
ferred. The solution with $V_{i j n} / Z_{n}=V_{i j p} / Z_{p}$
for the isoscalar quadrupole resonance (ISQR) practically coincides with the exact one. The approximate solution for the IVQR ($V_{i j n} / Z_{n}=-V_{i j p} / Z_{p}$ deviates aignificantly both from the data and the exact result

Comparing the energies of the ISQR plotted in fig. 3 with the analogous results of refs. $/ 15, \mathrm{c} 2 /$ one sees that in the region of light nuclei our more realistic calculations describe the experimental data worse than the simplified calculations with a sharp shape of the nuclear density and Fermi-step approximation for the momentum distribution. Obviously, the Thomas-Fermi approximation underestimates the mean values $\left\langle p^{2}\right\rangle \sim P_{0}$, which occur to be very important in calculating the giant resonance energies. In heavy nuclei the smoothness of the shape is smaller and the above effect is not so prominent.

In calculating the energies of the monopole resonances presented in figs. 4,5 the parametrization of Bernstein seems to be preferable. The approximate solution for the ISMR practically coincides with the exact one.

The empirical information on IVMR is very scarce. Strictly speaking, there is only one experiment $/ 7,8 /$ (fig. 5) to compare with.

Fig. 4. The same as in fig. 2 for the isoscalar monopole resonance. The experimental data are from ref. /3/.

Fig. 5. The same as in fig. 2 for the isovector monopole resonance. The experimental data are from ref. /7/.

The approximate solution like in the case of IVQR deviates from the exact one, the discrepancy being of about 10% in heavy nuclei.

The E2- and EO - transition probabilities have been calculated as well as their contributions to the electro-magnetic energy-weighas well as their con mie

$$
\begin{align*}
S(E 2) & =\frac{25}{4 \pi} Z_{p} e_{p}^{2} \frac{\hbar^{2}}{m}\left[\left\langle r^{2}\right\rangle+\left\langle n r^{2}\right\rangle \frac{m}{2 \hbar^{2}}\left(t_{+}-\frac{t_{-}}{2} \frac{Z_{p}}{A}\right)\right]= \tag{20}\\
& =\frac{25}{2} S(E O)
\end{align*}
$$

Here $A\langle x\rangle=\int n x d \vec{r}$. The correction to the classical sum rule (the term with t_{+}, t_{-}) results from the nonlocal part of Skyrme interaction. Our calculations demonstrate that both 2^{+}excitations give nearly the same contribution to the sum rule (20) and completely exhaust it. The same is true concerning the two 0^{+}excitations (see the Table).It is interesting to note that the contribution from the isoscalar 2^{+}excitation goes down when the atomic mass increases and the contribution from the isovector 2^{+}excitation decreases.

Table. Percentage contribution of the different resonances to the enerGy-weighted sum rule. IS-isoscalar, IV-isovector,

	ISQR	IVQR	ISNR	IVMR
${ }^{40} \mathrm{Ca}$	46.9	53	44	56
144_{Sm}	40.7	59.2	48.3	51.6
${ }^{208} \mathrm{~Pb}$	37.8	62.1	50	49.9

As for the 0^{+}excitations the tendency is just the opposite. The experimental data are by tradition normalized to the isoscalar or isovector sum rule. The relation between these two sum rules is given by the formula /32/:

$$
S(\tau=0, \lambda)=S\left(\tau=1, \mu_{\tau}=0, \lambda\right) \approx \frac{A}{z_{1} e_{p}^{2}} S(E \lambda) .
$$

Our calculations show that one of the two 2^{+}excitations approximately exhausts the isoscalar EWSR and the other the isovector EWSR. The same is true for the corresponding 0^{+}excitations. The results of our calculations along the data are shown in fig. 6.

The overexhausting of the isovector EWSR for IVQR results just from the impossibility to decouple exactly the isoscalar and isovector modes.

The lare discrepancy between the theoretical and experimental results for ISMR in light nuclei is probably connected with the incorrect treating of the empirical data.

In calculating the sum rule we can answer the question about the aignificance of the integrals including the third-rank tensors $P_{i j k g}$ we have neglected in our equations. Indeed, the equations of motion are written directly in terms of multipole moments and therefore the described excitations must exhaust the corresponding multipole sum rule. All the energies and probabilities are calculated nezlecting $P_{i j k y}$ terms and hence the l.h.s. of the sum rule

$$
\begin{equation*}
\left.\sum_{i}\left(E_{i}-E_{0}\right)|\langle i| F| 0\right\rangle\left.\right|^{2}=\frac{1}{2}\langle 0|[F,[H, F]]|0\rangle \tag{21}
\end{equation*}
$$

contains some uncertainty. As to the commutators in the r.h.s. of (21), they are calculated with exact Hamiltonian without any approximation. That's why the difference between the r.h.s. and the l.h.s. of eq.(21) serves as a criteria for the importance of the neglected terms.

Fig. 6.

Percentage exhaustion of the isoscalar energy weighted sum rule (EWSR) by the IS-quadrupole resonance (upper part) and by the ISmonopole resonance (lower part). exhaustion of the isovector EWSR by the ifovector quadrupole resonance. The experimental data are from ref. /1-6/.

Our calculations show that for all nuclei the proportion l.h.s./ /r.h.a. is more than $99,9 \%$, i.e. the role of $P_{i j k}$ terms is insignificant when describing excitations up to quadrupole.

6.2. $\Omega \neq 0$ case

 in ${ }^{154}$ Er as a function of the velocity of rotation (or more precisely of the eccentricity $e^{2}=\left\{-\alpha_{3}^{2} / \alpha_{1}^{2}\right.$ and the angular momentum I related one-to-one with Ω). Due to deformation of the nucleus and the Coriolis forces each of the two 2^{+}states (ISQR and IVQR) split into five branches corresponding to $\mu= \pm 2$ (the so-called γ-mode), $\mu= \pm 1$ (denoted as α-mode) and $\mu=0$ (β-mode). The two β-modes are always coupled with the volume (monopole) excitations. The picture of the ISQR splitting is very similar to that obtained in ref. with an average field on the nuclear surface approximated by a surface tension. 6 and 11. The isovector low-lying γ-mode has no any peculiarities, but the isovector α-mode goes to zero at $I_{c} \approx 19$.

The fifth low-lying mode (the curve №13) corresponds to the vibration of the proton angular momentum towards the neutron one (like scissors). This last mode has no isoscalar analogue as the total (neutron plus proton) angular momentum is conserved. Evidently, it can be classified as an isovector 1^{+}excitation. In nuclei with static deformation such a mode is known as a scissors mode or angular resonance $/ 33 /$, In ref. $/ 33$ / another mode corresponding to the rotation of the proton angular mpmentum with respect to neutron one has been predicted. The mode № 11 in the fig. 7,8 seems to be just this mode.
 \int compare the calculated 1^{+}energy for the same deformation $\delta=0.258$ (i.e. for $e \simeq 0.66, I \simeq 69 h$ in $f i g .7$) with the experimental value $/ 34 / E_{1^{+}}^{\text {exp }}=3.1$. MeV in ${ }^{156} \mathrm{Gd}$, one finds that the theoretical results $E_{1^{+}}(N \cong 13) \simeq 4.9 \mathrm{MeV}, E_{1^{+}}(\mathrm{N} \cong 11) \simeq 1.9 \mathrm{MeV}$ seem to be quite reasonable. As for the theoretical $B(M 1)$ factors of the above mentioned two levels they are practically the same ($\simeq 1.6 \mu_{N}^{2}$) and agree nicely with the experimental $B(M 1) \uparrow=1.3 \pm 0.2 \mu_{N}^{2}$.

It should be noted, that particular calculations are neededfor nuclei with static deformation. The results of such investigation will be presented in a next paper.

In fig. 9 the angular momentum dependence of the calculated $B(E 2)$-factors is shown. For moderate I the behaviour of the curves WN: $1,5,7, \varepsilon, 12,14$ and 15 corresponding to E2-transitions from the isoscalar excited states to the ground state is similar to that of the analogous curves calculated in ref. $/ 23 /$ with surface tension. Noticeable differences appear at $l \simeq 40$.

The following pecularity is nicely seen - the probability for the transition from isoscalar levels is greater than that from the isovector ones. Only at extremely large I the picture may be just the opposite.

As has been noted in Sect. 5, each level can be distinguished by a quantum number μ (the multipole moment projection on the axis of rotation). The levels NNO 12 and 11 have the following pecullarity:

Fie. 9.
B(E2)-factors (in Weisskopf units B_{w}) of the transitions fron the ex-
cited to the eround state. The curves are numbered in correspondence with the levels (fic. 7) from which the transitions go.
also interesting. As the mode № 12 is the precession mode, one can say that in the point I_{c} the vector of the precession changes its direction.

In fig. 10 the calculated $\mathrm{B}(\mathrm{EO})$-factors are shown as a function of e and I. As is seen, in the region $e \simeq 0.6-0.7$ ($\delta \simeq 0.3$) B(EO)factors for compression mode and for β-mode have the same value. This is a demonstration of a strong coupling of the monopole and quadrupole excitations in deformed nuclei. Experimentally such coupling is manifested in the "splitting" of the giant monopoje resonance in de-
formed nuclei /3/. It is interesting to note that the last result has been obtained in the simple schenatic model /13/.

6. Conclusion

The results obtained in this work quite convincingly demonstrate the virtues of the method of moments. Indeed, isoscalar as isovector $0^{+}, 1^{+}$and 2^{+}excitations in rotating nuclei are described in a united approach. Simultaneously with the giant resonances low lying modes appear. In spite of the quite complicated interaction the calculations are relatively simple: one ne $\in d$ do find roots of polynoms of order $\leqslant 8$, the coefficients being simple integrals. The nonlocality of the interaction doesn't lead to any additional difficulties.

Of course, the possibilities of the method are not exhausted by present work. The area of its applications seems to be very vast, but we enumerate only some of the "next day" problems such as investigations of nuclei with static deformation, description of the excitations with $\lambda>2$, the inclusion of spin degrees of freedom, etc.

The authors would like to thank Professor I.M.Mikhailov for fruitful discussions and for his constant interest in our work.

Appendix A

Equidensity shapes are approximated by ellipsoids and hence the shape with $n(\vec{r})=\frac{1}{2} n(0)$ obeys:

$$
x_{1}^{2} / a_{1}^{2}+x_{1}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}=1
$$

By changing; the variables $\xi_{i}^{2}=R^{2} x_{i}^{2} / \alpha_{i}^{2}$ we EO to a reference system in which the foregoing shape becomes sphere with radius $R, \rho^{2} \equiv \xi_{1}^{2}+$ $\left.+\}_{2}^{2}+\right\}_{3}^{2}=R^{2}$. In this system we assume a Fermi distribution for the density $n(\rho)=n_{0}[1+\exp ((\rho-R) / a)]^{-1} \quad$ with a being the diffuseness parameter.

Integrating by parta

$$
\int n x_{3} \frac{\partial}{\partial x_{3}} \vec{\nabla}^{2} n d \vec{r}=\int\left(\frac{\partial n}{\partial x_{3}}\right)^{2} d \vec{r}+\frac{1}{2} \int(\vec{\nabla} n)^{2} d \vec{r}
$$

and iserting into eq.(7) we finally obtain
$\Omega^{2}=\frac{m}{4}\left(\frac{t_{+}}{2} \frac{Z_{p}^{2}+Z_{n}^{2}}{A^{2}}-t_{-}\right) \frac{R^{4}}{a_{t}^{2}}\left(\frac{1}{a_{1}^{2}}-\frac{1}{a_{3}^{2}}\right) \frac{S_{2}^{2}}{\alpha_{1}^{4}}-2 \pi m n_{0}\left(\frac{e_{p} Z_{p}}{A}\right)^{2}\left(A_{1}-\frac{a_{3}^{2}}{a_{r}^{2}} A_{3}\right)$,
where A_{i} are the index symbols of ref. $/ 28 /, e_{p}$ - the proton charge, $S_{2}^{2}=\int_{0}^{\infty} \rho^{2}\left(\frac{\partial n}{\partial \rho}\right)^{2} d \rho, \quad \alpha_{1}^{4}=\int_{0}^{\infty} n \rho^{4} d \rho$.

The deformation parameter δ is defined as previously in ref. ${ }^{/ 22 /}$, $a_{0}^{2}=a_{2}^{2}=\alpha_{0}^{2}\left(1+\frac{2}{3} \delta\right) \quad, \alpha_{3}^{2}=a_{0}^{2}\left(1-\frac{4}{3} \delta\right)$ and a_{0} is fixed by the conservation of the nuclear volume $a_{1} a_{2} a_{3}=R^{3}$. We use two sets of parameters of the Fermi distribution. The former is from the Bernstein's work $/ 30 /: R=1.115 A^{1 / 3}-0.53 A^{-1 / 3} \mathrm{fm}, \alpha=0.568 \mathrm{fm}$ for all nuclei with $A \geqslant 20$. The latter is from the book of Bohr and Mottelson ${ }^{132 /}: R=1.12 A^{1 / 3}-0.86 A^{-1 / 3} \mathrm{fm}, \alpha=0.54 \mathrm{fm}$. In both cases the third parameter n_{0} is fixed by the condition $4 \pi \int_{0}^{\infty} n(\rho) \rho^{2} \alpha \rho=A$.

Appendix B

$$
\begin{aligned}
& B_{1}=\Omega^{2}\left(1-\delta_{i 3}\right)\left(1+\bar{j} z^{\prime}\right)+\frac{z^{\prime} \mathcal{H}}{m \alpha_{1}^{\prime} \tilde{a}_{i}^{2}}+\frac{\gamma t_{+} \varepsilon_{\gamma^{\prime}}}{4 \hbar^{2} \alpha_{1}^{\prime} \bar{a}_{i}^{2}}+\delta_{\beta p} \varphi\left(1+\eta n_{0} z^{\prime}\right) 2 B_{i j}+ \\
& +\frac{2 T_{3 y}}{\bar{a}_{i}^{2} \tilde{a}_{j}^{2}}+z^{\prime} G, \quad b_{3}=1+\frac{2 \pi m \alpha_{2}^{2}}{\hbar^{2} A}\left(t_{+}-z t_{-} / 2\right),
\end{aligned}
$$

$$
\begin{aligned}
& b_{4}=\frac{1}{m \alpha_{1}^{4}}\left\{x^{\prime} B_{q}+\frac{3}{2} t_{0} \alpha_{2}^{2}\left[\left(x_{0}+\frac{1}{2}\right) \alpha-1-x_{0} / 2\right]-\alpha F\right\}+\frac{\gamma}{4 \hbar^{2} \alpha_{1}^{4}}\left(\alpha^{\prime} \varphi_{r}+D_{r}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& B_{5}=\frac{\partial}{m \alpha_{1}^{4}}\left(\beta_{q}+F\right)+\frac{\gamma z}{4 \hbar^{2} \alpha_{1}^{4}}\left(C_{q}+t_{+} \mathcal{B}^{2 / 3}+\frac{15}{4} t_{+} \alpha_{p_{3}}^{2}+\frac{15}{11} t_{-} \alpha_{1} \alpha_{11_{j}}^{2}\right)+x K, \\
& b_{c}=2 z^{\prime}\left(T_{1}+T_{2 q}\right)+2 T_{3 p}, \quad b_{q}=2 z\left(T_{1}+T_{2 q}\right) \quad, \quad b_{9}=\frac{m \pi \tau_{A}^{2}}{2 \hbar^{2} A} z t_{+}, \\
& b_{8}=\frac{m \pi \alpha_{2}^{2}}{\hbar^{2} A}\left[t_{+}\left(1-\frac{z^{\prime}}{2}\right)-\alpha \frac{t_{i}}{2}\right], \quad b_{r 1}=1+\overline{2} \alpha^{\prime}, \quad b_{r r}=5 z, \\
& b_{12}=\varphi a_{i}^{2}\left(1+\xi n_{0} x^{\prime}\right), b_{n 3}=\varphi a_{i}^{2}\left\langle n_{0} x, \quad d_{1}=\frac{3 \gamma}{m \alpha_{1}^{4}}\left(\alpha_{s / 3}^{2}+\frac{5}{8}\right\} \alpha^{\prime} \alpha_{\beta_{3}}^{2}\right), .
\end{aligned}
$$

$$
d_{2}=\frac{15}{8} \gamma \gamma^{2} \frac{\alpha^{2} q_{3}}{m \alpha_{1}^{4}}, \quad d_{3}=1+\frac{2 m}{A} \int n C_{q} d \vec{r} .
$$

Here the following notations are used

$$
\begin{aligned}
& \left.A=\frac{t_{0}}{5}\left(1+\frac{x_{0}}{2}\right)\left(S_{2}^{4}+2\right\} \Omega_{2}^{1}\right)+\frac{t_{3}}{120}\left\{(\sigma+1)\left[\sigma\left(1-x_{3}\right)+2\left(2+x_{3}\right)\right]+\right. \\
& \left.+2 \sigma(\sigma-1)\left(1+2 \mathcal{R}_{3}\right) z z^{\prime}\right\} \cdot\left(\mathcal{R}^{\sigma}+2 \xi \cdot \mathcal{R}^{\sigma+1}\right), \\
& B_{p}=\mathscr{A}-\frac{t_{s}}{\delta}\left\{(\sigma+1)\left[(\sigma+2)\left(1-x_{j}\right)+2\left(1+2 x_{3}\right)\left(x^{\prime}-\sigma z\right)\right]+\right. \\
& \left.+2\left(1+2 x_{3}\right) \sigma(3 \sigma+1) z z^{\prime}\right\} \cdot\left(\frac{\alpha_{\sigma+2}^{2}}{\sigma+2}+\left\{\frac{\alpha_{\sigma+3}^{2}}{\sigma+3}\right)+乡 t_{0} \alpha_{3}^{2}\left\{\alpha\left(x_{0}+\frac{1}{2}\right)-1-\frac{x_{0}}{2}\right\},\right. \\
& \mathcal{E}_{q}=2\left(\mathcal{R}^{2 / 3}+2 \xi \mathcal{R}^{5 / 3}\right), \quad \epsilon_{q}=\left\{\left[\frac{45}{11} \alpha_{1 / 3}^{2}\left(\frac{t_{2}}{2} z-t_{+}\right)+2 t_{+} \mathcal{R}^{5 / 3}\right],\right. \\
& D_{q}=\frac{45}{8} \not \alpha_{\psi_{3}}^{2}\left(\frac{t_{7}}{2}-t_{+}\right)+t_{+} \alpha^{\prime}\left(\mathcal{R}^{2 / 3}-\frac{45}{8} \alpha_{p_{3}}^{2}\right), \\
& G=\frac{1}{\bar{a}_{i}^{2}}\left[T_{1}\left(\frac{2}{\bar{a}_{i}^{2}}+\frac{2}{\bar{a}_{i}^{2}}+\sum_{k=1}^{3} \frac{1}{\bar{a}_{k}^{2}}\right)+\frac{2}{\bar{a}_{i}^{2}} T_{2 \eta}\right], \quad K=\left(T_{1}+T_{2 q}\right)\left(\overline{\bar{a}_{i}^{2}}+\sum_{k=1}^{3} \frac{1}{\bar{a}_{k}^{2}}\right), \\
& F=\frac{t_{1}}{\delta} \frac{(\sigma+1)^{2}}{\sigma+2}\left[(\sigma+2)\left(1-x_{1}\right)+2\left(1+2 f_{3}\right) \alpha^{\prime}(1+\sigma \alpha)\right] \alpha_{\sigma+2}^{2}, \\
& T_{1}=\frac{\hbar^{2}}{4 m \alpha_{1}^{4}} \frac{t_{5}}{3 s}\left[4 S_{2}^{2}+S_{4}+2 \xi\left(4 a_{2}+Q_{4}-\frac{4}{3} S_{3}\right)\right] \text {, } \\
& T_{3 q}=\frac{t^{2} S_{2}^{2}}{8 m \alpha_{1}^{2}}\left(2 \frac{t_{t}}{2}-t_{-}\right), \quad T_{2 q}=\frac{\frac{\hbar}{2}^{2}}{4 m \alpha_{1}^{4}}\left(2 \frac{t_{t}}{2}-t_{-}\right)\left(Q_{2}+\frac{S_{5}}{5}\right) \text {, } \\
& \alpha_{\mu}^{\nu}=\int_{0}^{n} \eta_{(\rho)}^{\mu} \rho^{\nu} d \rho, \quad \mathcal{R}^{\mu}=\int_{0}^{\infty} n(\rho) \rho^{\mu}\left(\frac{\partial h}{\partial \rho}\right)^{2} d \rho,
\end{aligned}
$$

$$
\begin{aligned}
& S_{2}^{\mu}=\int_{0}^{\infty} \rho \mu\left(\frac{\partial n}{\partial \rho}\right)^{2} d \rho, \quad S_{3}=\int_{0}^{\infty} \rho^{3}\left(\frac{\partial n}{\partial \rho}\right)^{3} d \rho, \quad S_{4}=\int_{0}^{\infty} \rho^{4}\left(\frac{\partial^{2} n}{\partial \rho^{2}}\right)^{2} d \rho \\
& Q_{2}=\int_{0}^{\infty} n(\rho) \rho^{2}\left(\frac{\partial n}{\partial \rho}\right)^{2} d \rho, \quad Q_{4}=\int_{0}^{\infty} n(\rho) \rho^{4}\left(\frac{\partial^{2} n}{\partial \rho^{2}}\right)^{2} d \rho
\end{aligned}
$$

$$
B_{i j} \text { - the index symbols defined in } / 22,28 /
$$

References

1. jatchler G.R. - Proceedings of the International School of Physics "Enrico Fermi", Varenna, Italy, 1976, Course IXIX, Elementary Nodes of Excitation in Nuclei (Societa Italiana di Fisica, Bologna, 1977), p. 271.
2. Bertrand F.E., Satchler G.R., Horen D.J. et al. - Phys.Rev 1980, v. C22, p. 1832.
3. Buenerd M. - J. de Physique 1984 v. 45, p. C4-115.
4. Pitthan R. - Proceedings of the Giant Multipole Resonance Topical Conference held at the American Museum of Science and Energy, Oak Ridge, Tennessee, 1979, ed. by F.E.Bertrand, p. 161
5. Zorro R., Bergquist I. et al. - Nucl. Phys. 1987 v. A472, p. 125.
6. Murakami T., Halpern I., Storm D.W. et al. - Phys.Rev. 1987, v. C35, p. 479.
7. Erell A., Alster J., Lichtenstadt J. et al. - Phys.Rev. 1986, v. C34, p. 1822.
8. Van der Woude A. - Preprint KVI-583, Gröningen, 1986.
9. Liu K.F., Brown G.E. - Nucl.Phys. 1976, v. A265, p. 385.
10. Malov L.A., Soloviev V.G. - Particles and Nuclei, 1980, v. 11, i. 2, p. 301.
11. Auerbach N., Klein A. - Nucl. Phys. 1983, v. A395, p. 77.
12. Civitarese 0., Furui S., Ploszajczak M., Faessler A. - Nucl. Phys. 1983, v. A408, p. 61.
13. Aberg s. - Nucl.Phys. 1987, v. A473, p. 1.
14. Krivine H., Treiner J., Bohigas O. - Nucl. Phys. 1980 v. A336, p. 155.
15. Nix J.R., Sierk A.J. - Phys.Rev. 1980, v. C21, pe 396.
16. Holzwarth G. - Proceedings of the Winter College on Fundamental Nuclear Physics (ICTP, Trieste, Italy) 1984, ed. by K.Dietrich, M. Di Toro, H.J.Mang, v. 2, p. 967.
17. Da Providencia J.P., Holzwarth G. - Nucl.Phys. 1985, v. A439 p. 477.
18. Di Toro M., Lombardo V., Russo G. - Nucl. Phys. 1985, v. A435 p. 173.
19. Nishizaki S., Andó K. - Prog.Theor.Phys. 1984, V. 71, p. 1263.
20. Jang S., Szymanski Z. - Nucl.Phys. 1985, v. A436, p. 397.
21. Jang ǐ., Bouyssy A. - Phys.Rev. 1987, v. C36, p. 1587.
22. Balbutsev E.B., Vaishvila Z., Mikhailov I.N. - Yad. Fiz. 1982, v. 35, p. 836; v. 36, p. 1109.
23. Balbutsev E.B., Mikhailov I.N., Vaishvila Z. - Nucl. Phys. 1986, v. A457, p. 222.
24. Balbutsev E.B., Mikhailov I.N. - J.Phys. G: Nucl.Phys. 1988, v. 14, p. 545.
25. Bartel J., Quentin P., Brack M., Hákansson H.B. - Nucl. Phys. 1982, v. A386, p. 79.
26. Engel Y.M., Brink D.M.,Goeke K., Vautherin D. - Nucl.Phys. 1975, v. A249, p. 215.
27. Bertsch G.F. - Nuclear Physics with Heavy Ions and Mesons 1977 Les Houches Lectures, ed. R.Balian et al. (Amsterdam: North Holland) 1978, vol. 1, p. 175.
28. Chandrasekhar S. - Ellipsoidal figures of equilibrium . Yale University Press, 1969.
29. Lane A.M. - Nuclear Theory, Ed. Benjamin, New York 1964.
30. Bernstein A.M. - Adv.Nucl.Phys. 1969, v. 3, p. 325.
31. Bohr A., Mottelson B.R. Nuclear Structure, Ed. W.A.Benjamin, New York, Amsterdam, 1969, v. 1.
32. Bohr A., Mottelson B.R. Nuclear Structure, Ed. W.A.Benjamin, New York, Amsterdam, 1974, v. 2.
33. De Franceschi G., Palumbo F., Lo Iudice N. - Phys.Rev. 1984, v. C29, p. 1496.
34. Bohle D., Richter A. et al. - Phys.Lett. 1984, v. B137, p. 27.

Received by Publishing Department
on December 22, 1988.

