

ОбъӨДИНеННЫй ИНСТИТУT ядерных

исследований
дубна
T.Ishihara ${ }^{1}$, H.Fukuda ${ }^{1}$, S.Hara ${ }^{2}$, A.V.Matveenko

A NEW SERIES IN SPECTRA OF MUONIC MOLECULES

Submitted to "Письма в ЖЭТф"

[^0]The first adiabatic calcylation of bound states of muonic molecules was done in 1959 . 1 . It was followed by the first variational calculation of symmetric molecules in $1964 / 2 /$. Interest in the problem was resumed after 1973 when a loosely bound state of the $d d \mu$-ion was found in the adiabatic approach ${ }^{/ 3 /}$. Further adiabatic calculation of the dt_{μ} loosely bound state (1978) was a sort of sensation/4/. After that several groups contributed to the problem and finally the results of two independent variational calculations, were published in the same volume of Physical Review 75,6 . Table 1 demonstrates some energy values from the already mentioned papers. One can definitely say that the problem is solved.

Up to our knowledge only states with normal parity, i.e., for $p=(-1)^{\mathrm{J}}$, where p is the parity quantum number and J is that of the total angular momentum, were considered until now. In this paper we present the results of the adiabatic calculation of $(J=1, p=1)$ states of monic molecules $\mathrm{xy} \mu$, where $x, y=p, d, t$. Our adiabatic approach is definitely different from that used by the Dubna group during a rather long period of time ${ }^{/ 7 /}$. The basic equation of our method was produced by two subsequent transformations of the, usual adiabatic (BornOppenheimer) Schrödinger equation 8,9 . Actually, these transformations lead to a sort of hyperspherical adiabatic approach ${ }^{10}$, which is now widely used by many authors for a large class of problems. Recently, we have demonstrated that it is quite effective for the calculation of $(J=0, p=1)$ states of the $d t \mu$-ion $11 /$. The way of solving the adiabatic problem in this paper is different from that in 11 . We use here a proper variant of the semianalytic approach described in $/ 12 /$.

The hyper-radius R for a system of two nuclei x and y and a negative muon μ is defined by
$M R^{2}=M X^{2}+m X^{2}$,
where M and m are the reduced masses of the systems (x, y) and ($x+y, \mu$), respectively,

$$
\begin{equation*}
1 / \mathrm{M}=1 / \mathrm{m}_{\mathrm{x}}+1 / \mathrm{m}_{\mathrm{y}} \tag{2}
\end{equation*}
$$

$1 / \mathrm{m}=1 / \mathrm{m}_{\mu}+1 /\left(\mathrm{m}_{\mathrm{x}}+\mathrm{m}_{\mathrm{y}}\right)$,
\vec{X} is the position vector of y relative to x and \vec{x} is that of μ with respect to the centre of mass of $(x+y)$.

Table 1
Normat parity bound states. Only selective references are given in order to illustrate the increasing accuracy of calcutations (in $\in V$)

	dd $\mu(J=1$, ground $)$	dd $\mu(\mathrm{J}=1$, excited $)$	dt $\mu(\mathrm{J}=1$, excited $)$
$1959, / 1 /$, adiab.	226	-	-
$1964, / 2 /$, var.	226.55	-	-
$1973, / 3 /$, adiab.	224	0.7.	-
$1978, / 4 /$, adiab.	226.25	1.96	0.85
$1985, / 7 /$, adiab.		1.956	0.656
$1988, / 5 /$, var.	226.6816786	1.9748717	0.6601721
$1988, / 6 /$, var.			$0.660030 \pm$

The Hamiltonian for our system is given using the hyperradius by $18-10 /$
$H=-\frac{1}{2 M} \frac{1}{R^{5}} \frac{\partial}{\partial R} R^{5} \frac{\partial}{\partial R}+h(\hat{o} ; R)$,
where h is the adiabatic Hamiltonian operator which includes R as a parameter, and \hat{o} represents five dimensionless variables. Following $/ 8,9 /$ we use the set $\hat{o}=(\alpha, \beta, \gamma, \xi, \eta)$, where (α, β, γ) define the Euler rotation specifying the bodyfixed frame with its unit vectors to coincide with the prin-
cipal axes of the inertia tensor of a three-body system. The hyperspheroidal coordinates ξ and η are given by
$\xi=\left(r_{\mu x}+r_{\mu y}\right) / R, \quad \eta=\left(r_{\mu x}-r_{\mu y}\right) / R$.
A physical solution of the Schödinger equation
$(\mathrm{H}-\mathrm{E}) \Psi=0$
with the well-defined total angular momentum J and total parity p is supplied with the partial-wave representation of the wave function Ψ in the form $\% /$

The angular part of the wave function has the form
$B_{m}^{\mathrm{JpM}_{\mathrm{J}}}(\alpha, \beta, \gamma)=\frac{(-\mathrm{i})^{\mathrm{m}}}{4 \pi} \sqrt{\frac{2 \mathrm{~J}+1}{1+\delta_{0_{\mathrm{m}}}}}\left\{\mathrm{D}_{-\mathrm{m}-\mathrm{M}_{\mathrm{J}}}^{\mathrm{J}}(\gamma, \beta, a)+\mathrm{p}(-1)^{\mathrm{J}} \mathrm{D}_{\mathrm{m}-\mathrm{M}_{\mathrm{J}}}^{\mathrm{J}}(\gamma, \beta, a)\right\}$.

It contains the Wigner $D-f_{\mu} n c t i o n s$ with $\left|M_{J}\right| \leq J$ and $0 \leq m \leq J$ being the projections of \vec{J} onto the space and body-fixed $\bar{z}-$ axis, respectively. The projection of the Schrödinger equa-: tion (6) onto the states (7) leads to the system of $\mathrm{J}+\mathrm{l}$ (for normal parity states when $p=(-1)^{\mathrm{J}}$) or J (for abnormal parity states when $p=-(-1,)^{\mathrm{j}}$) Schödinger equations. In our particular case of abnormal parity states with $J=1$ and $p=1$ this system degenerates into one equation as it follows directly from the analytic expression (8). As a result, the total wave function can be searched for in the form
$\Psi(\overrightarrow{\mathrm{X}}, \overrightarrow{\mathrm{x}})=-\frac{\mathrm{i} \sqrt{3}}{4 \pi} \mathrm{~B}_{1}\left(\alpha, \beta, \gamma^{\prime}\right) \psi_{1}(\mathrm{R}, \quad \xi, \eta)$.
The adiabatic part $h(\hat{o} ; \mathrm{R})$ of the Hamiltonian operator (5) ${ }^{/ 9 /}$
$h(o) ; R)=h_{0}+T_{R}+T_{\text {Coriolis }}$,
where
$T_{R}=\frac{1}{2}\left(\frac{J_{1}^{2}}{I_{1}}+\frac{\mathrm{J}_{2}^{2}}{\mathrm{I}_{2}}+\frac{\mathrm{J}_{3}^{2}}{\mathrm{I}_{3}}\right)$
is the Hamiltonian of an asymmetric top with the classical expressions for the principal inertia moments
$I_{1}=I_{2}+I_{3}=M R^{2}, I_{2}=\frac{1}{2} M R^{2}(1+\sqrt{1-\Delta})$
and J_{1} are projections of the total angular momentum \vec{J} in the body-fixed frame. The operator
$\mathrm{h}_{0}=-\frac{2}{\mathrm{~m}} \rho^{2} \frac{\hat{\mathrm{a}} \xi \eta}{\mathrm{R}^{2}}+\mathrm{V}-\frac{3}{2 \mathrm{MR}^{2}}$
includes the nonrotational part of $h(\hat{o} ; R)$. In the last expression the differential part is
$\hat{\mathbf{a}}_{\xi \eta}=\frac{1}{\xi^{2}-\eta^{2}}\left[\frac{\partial}{\partial \xi}\left(\xi^{2}-1\right) \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\left(1-\eta^{2}\right)-\frac{\partial}{\partial \eta}\right]$
and all other quantities we need are functions of the coordinates and Jacobi masses
$\kappa=\left(m_{x}-m_{y}\right) /\left(m_{x}+m_{y}\right), \quad \vec{a}=m / 4 M$,
$\rho=1+\vec{a}\left(\xi^{2}+\eta^{2}-2 \kappa \xi \eta+\kappa^{2}-1\right)$,
$\mathrm{s}=\left[\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)\right]^{1 / 2}$,
$\Delta=4 \tilde{a} s^{2} / \rho^{2}$.
The total volume element is
$\mathrm{dv}=\mathrm{R}^{5} \mathrm{dR} \frac{\xi^{2}-\eta^{2}}{\rho^{2}} \mathrm{~d} \xi \mathrm{~d} \eta \sin \beta \mathrm{~d} \alpha \mathrm{~d} \beta \mathrm{~d} \gamma$,
and V is the potential energy operator. Using the results of $/ 9 /$ we have
$\mathrm{J}_{1} \mathrm{~B}_{1}=0, \quad \mathrm{~J}_{2}^{2} \mathrm{~B}_{1}=\mathrm{B}_{1}, \quad \mathrm{~J}_{3}^{2} \mathrm{~B}_{1}=\mathrm{B}_{1}$,
$T_{\text {Coriolis }} \quad B_{1}=0$,
$\left\langle\mathrm{B}_{1}\right| \mathrm{T}_{\mathrm{R}}\left|\mathrm{B}_{1}\right\rangle=-\frac{2}{\mathrm{mR}^{2}} \rho^{2} / \mathrm{s}^{2}$.

Thus, the projected Hamiltonian operator for ($j=1, p=1$). states reads

$$
\begin{equation*}
\boldsymbol{H}=-\frac{1}{2 M} \frac{1}{R^{5}} \frac{\partial}{\partial R} R^{5} \frac{\partial}{\partial R}+h \tag{18}
\end{equation*}
$$

with the dynamic two-center Hamiltonian operator
$h=-\frac{1}{2 \mathrm{~m}} \frac{\rho^{2}}{\mathrm{R}^{2}}\left[\hat{\mathrm{a}}_{\xi_{\eta}}-\frac{1}{\mathrm{~s}^{2}}\right]+\mathrm{V}-\frac{3}{2 \mathrm{MR}^{2}}$.

Next, we use the adiabatic idea and search for the solution of the exact Schrodinger equation
$(H-E) \psi_{1}(\mathrm{R}, \xi, \eta)=0$
in the form
$\psi_{1}(\mathrm{R}, \xi, \eta)=\mathrm{R}^{-5 / 2} \chi_{1}(\mathrm{R}) \phi_{1}(\xi, \eta ; \mathrm{R})$,
where $\phi_{1}(\xi, \eta ; R)$ is the ground state eigenfunction of the eigenproblem
$[h-\epsilon(\mathrm{R})] \phi(\xi, \eta ; \mathrm{R})=0$.
Six lowest potential curves $\epsilon_{i}(R)$ defined by this eigenproblem are given in Fig.l. Their particular behaviour justifies

Fig.1.Six lowest hyperspherical adiabatic potentials for abnormal parity states with $J=1, p=1$.
the one-state ansatz (21). Actually, the ground state, which produces minimum at $R \approx 8$, is well separated from the other eigenvalues in that region. The important property of the ground potential curve is that its dissociating limit is $n=2$ hydrogenic-like state (n stands for the principal quantum number).

Now with the known $\epsilon_{1}(\mathrm{R})$ and $\phi_{1}(\xi, \eta ; \mathrm{R})$ we get the Schrödinger equation for $X_{1}(R)$
$\left[-\frac{d^{2}}{d R^{2}}+2 M V_{1}(R)-2 M E\right] x_{1}=0 ;$
where $V_{1}(R)$ is the effective potential containing the diagonal nonadiabatic correction
$\left.V_{1}(R)=\epsilon_{1}(R)+\frac{1}{2 M}<\frac{\partial \phi_{1}}{\partial R} \right\rvert\, \frac{\partial \phi_{1}}{\partial R}>+\frac{15}{8 M R^{2}}$.
The diagonal matrix element from (24) is given in Fig. 2. The bound state energies (in eV) of the $\mathrm{xy} \mu$ molecules are presented in Table 2.

We have obtained for the first time the ($J=1, p=1$) bound state in all muonic molecules $x y \mu$ where $x, y=p, t$ or d. One-state adiabatic approximation with the asymptotically correct hyperradial adiabatic potential has been used ${ }^{\prime 9}$. The nonadiabatic diagonal matrix element was also included into the analysis.

Fig.2. The effective ground $(J=1, p=1)$ hyperspherical adiabatic potential (24) and the diagonal matrix element given separately.

Table 2
Abnormal parity bound states ($J=1, p=1$) of $\mathrm{xy} \mu$ muonic molecules (in eV)

$t t \mu$	$d t \mu$	$d d \mu$	$p p \mu$	$p d \mu$	$p t \mu$
24	16	20	12	2	0.5

The energies from Table 2 are really the upper bounds of the eigenvalues of the exact Schrödinger equation (20) for ($\mathrm{J}=1$, $p=1)$ states of the muonic molecules. Now when the question of the existence of the bound states is positively solved, the direct variational solution of the three-dimensional problem (20) should be more adequate in order to get more accurate values of the state energies. Two systems, namely $\mathrm{pd} \mu$ and $\mathrm{pt} \mu$, have a loosely bound state. One can believe them to play an important role in $\mu \mathrm{CF}$. This problem will be discussed in the subsequent paper.

Note added in proof:
As we have found, B.P.Carter (Phys.Rev., 1968, 173, p. 55) made lower estimates for bound state energies of $x y \mu$ muonic molecules. He used the Born - Oppenheimer 2p π-term without a matrix element. Those estimates are uncertain as he added an arbitrary $1 / 8$ term to simulate approximately the $n=2$ atomic dissociation limit of the $\mathrm{xy} \mu$ system which should depend on the reduced masses. His partial wave analysis is also not exact and misleading. As a result, he used the same $2 \mathrm{p} \pi$-term to calculate ($J=1, p=1$) and ($J=0, p=1$) states of muonic molecules which was wrong ${ }^{/ 9 /}$. One should, of course, remember that his paper was published 20 years ago.

REFERENCES

1. Belyaev V.B. et a1. - ZhETF, 1959, 37, p.52; (Sov. Phys. JETP, 1960, 37, p.1171).
2. Halpern A. - Phys.Rev.Lett., 1964, 13, p. 660.
3. Ponomarev L.I., Puzynin I.V., Puzynina T.P. - ZhETF, 1973, 65, p. 28.
4. Vinitsky S.I. et a1. - ZhETF, 1978, 74, p. 849.
5. Alexander S.A., Monkhorst H.J. - Phys.Rev., 1988, 38, p. 26 .
6. Kamimura M. - Phys.Rev., 1988, 38, p.621.
7. Gocheva A. et al. - Phys.Lett., 1985, 153B, p. 349.
8. Matveenko A.V. - Phys.Lett., 1983, 119B, p.11.
9. Matveenko A.V., Abe Y. - Few-Body Systems, 1987, 2, p. 127.
10. Macek J.H. - J.Phys., 1968, B1, p.861.
11. Hara S. et al. - Phys.Lett., 1988, 130A, p. 22.
12. Hara S. et al. - to be published.

Исихара Т. и др.
Новая серия в спектрах мюонных молекул
Для мюонных молекул впервые рассчитаны связанные состояния с аномальной четностью. Две системы, $\operatorname{pd} \mu$ и $\mathrm{pt} \mu$, имеют слабосвязанное состояние.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного института ядерных исследований. Дубна 1988

Ishihara T. et al

E4-88-849
A New Series in Spectra of Muonic Molecules
Abnormal parity bound states of muonic molecules are calculated for the first time. Two molecules $\mathrm{pd} \mu$ and $\mathrm{pt} \mu$ have a loosely bound state.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Received by Publishing Department on December 9, 1988.

[^0]: TInstitute of Applied Physics, University
 of Tsukuba, Ibaraki 305, Japan
 ${ }^{2}$ Institute of Physics, University of Tsukuba, Ibaraki 305, Japan and Institute of Physical and Chemical Research, Wako-shi Saitama 351, Japan

