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The first adiabatic ca7c~lation of bound states of muonic 
molecules was done in 1959 1 • It was followed by the first 
variational calculation of symmetric molecules in 1964/ 2/ . 

Interest in the problem was resumed after 1973 when a loosely 
boujd state of the dd~-ion was found in ~he adiabatic appro
ach 3/. Further adiabatic calc.ulation of the dt~ loosely 
bound state (1978) ~as a sort of sensation/4/ . After that se
veral groups contributed to ~he problem and finally the re
sults of two independent variational calculat~ons were pub
lished in the same volume of Physical Review 5;6/. Table 1 
demonstrates some energy values from. the already mentioned 
papers. One can definitely say that the problem is solved. 

Up to our knowledge only states with normal parity, i.e., 
for p = (_I)J, where p is the parity quantum number and J is 
that of the total' angular momentum, were considered until now. 
In this paper we prese~t the results of the adiabatic calcu
lation of (J 1, p"" 1) states.of muonic molecules xY~, whe::::z 

re x, y = p, d.t , Our adiabat ic approach is defini tely different 
from that used by the Dubna group during a rather long period 
of time/?/. The basic equation of our method was produced by 
two subsequent transformations of fihe usual adiabatic (Born
Oppenheimer) Schrodinger equation 8,9/. Actually, these trans
forjatjons lead to a sort of hyperspherical adiabatic appro
ach 10 ,which is now widely used by many authors for a 
large class of problems. Recently, we have demonstrated that 
it is quite effective for the calculation of (J = 0, P = 1)" 

dt ' ·/11·, I Th fl': h d i bstates 0 f t he ~-1on '. e way 0 so v1ng ~le a .1a at1c 
problem in this paper is different from that in 11/. We use 
here a proper variant ot the semi~nalytic approach described 
in/ 12 / . 

The hyper-radius R for a syste~ of two nuclei x and Y and 
a negative muon ~ is defined by 

222
MR = MX + mx , .(l) 

where M and m are the reduced masses of the systems (x,Y) and 
(x+Y,~), respectively, 
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11M l/m x + l/m y ,	 (2) 

1/01 = l/m ll + 1/(01 x + my) ,	 (3) 

-£ is the position vector of Y relative to x and x is that of 
fl' with respect to the centre of mass of (x + y ), 

Table 1 
Normal parity bound states. Only selective references 
are given in order to illustrate the increasing accu
racy of calculations (in eV) 

ddu (J= 1, ddu CJ> 1, dtl-1(J=I, 
ground) excited) excited) 

1959, /1/, ad i ab . 226
 
/2/
1964, , var. 226.55 

1973,/3/, adiab. 224 0.7. 

1978,/4/ , ad i.ab , 226.25 1. 96	 0.85 

1985,/7/ , adiab. 1 .956 0.656
 
/5/
1988, , var. 226.6816786 1.97 tf8717	 0.6601721 

1988, /6/ , var.	 0.660030 +
 
0.00002
 

The Hamiltonian for our system is given using the hyper
radius by /8 -10/ 

1 1 a 5 d " 
H = - -- --'5 --R - + h Co : R),	 (4)

2M R aR aR 
where h is the adiabatic Hamiltonian operator which includes 
R as a parameter, and 0 represents five dimensionless va
riables. Following /8,9/ we use the set 0 == (li, (3, y, 1;, T/ :, 
where (a ,~,y) define the Euler rotation specifying the body
fixed frame with its unit vectors to coincide with the prin

2 

cipal axes of the inertia tensor of a three~body system. The 
hyperspheroidal coordinates f, and ~ are given by 

I; ::: (rllX+ ~y)1 R, TJ = (rgx - r",y)/R .	 (5) 

A physical solution of the Schodinger equation 

(H - E,) 'II = 0	 (6) 

with the well-defined total angular momentum J and total pa
rity p is supplied with the partial-wave representation of the 
wave f~nction W in the form';9/ 

J pM J -+ -+ J J pMJ . J P 
'I' (X ,x ) = I. B rn (a , (3 .; y) if.! m (R, 1;, TJ ).• (7)

m=O 

The angular part of the wave function has the form 

JpM J (_i)rn 2J+1 J	 J J 
B m (a,{3,y)=---V-- {D M ( y,{3,a) +p(-l) D M (y,{3,a)}.

417 1 +0' -rn- 'J m- J
Om (8) 

It contains the Higner D-f»nctions with \M JI::;. J and 0:5: m ~ J 
being the projections of J onto the space and body-fixed z
axis, respectively. The projection of the Schrodinger equa~~ 

tion (6) onto the states (7) leads to the system of J + 1 
(for normal parity states when' P = (-1)~ or J (for abnormal 
pari ty states when P =-(-1,) J) Schod i.nger equations. In our 
particular case of abnormai-parity states with J = 1 and P = 1 
this system degenerates into one equation as it follows di
rectly from the analytic expression (8). As a result, the 
total wave functiort can be searched for in the	 form 

-+ -+ • V' 3 
'II (X , x) = - 2-~... B 1 (a , (3, yl) tit 1(R , 1;, TJ)·	 (9)

4,17 

The adiabatic part h(o;R) of the Hamiltonian operator (5) 19/ 

h(o'; R) = ho- + T R + T Coriolis '	 (10) 

where 

2 2 2
1 J 1 J 2 J S

T = -(-- + -- + -- ) (II)
R 2 1 1 l

1 2 a 

3 



Thus, the projected Hamiltonian operator for (J = 1, P = 1),is the Hamiltonian of an asymmetric top with the classical 
states readsexpressions for the principal inertia moments 

2 1 2 -- 1 1 0 5 a 
1 1 = 12 + 13 = MR , 12 = "2 MR (1 + V 1 - /).. ) ( 12) H = --- - --R -~ +" (I8)

2M R 5 aR aR 
~ 

and J 1 are projections of the total angular momentum J in 
the body-fixed frame. The operator 

,..
 

2 2 a eTJ 3
 
h =--p ----+V----- ( 13) 

o m R2 2MR2 

includes the nonrotational part of h(~; R). In the last expres
sion the differential part is 

1 a 2 0 a 2 a---[ --(t - 1) -- + ---( 1 - 71 ) ---] (14)
a ~71 ~ 2 _ n2 o~ . a~ 071 a." 

and all other quantities we need are functions of the coordi
nates and Jacobi" masses 

K = (m x - my) / (m x + my), ~ = m/4M , 

(15)p 1 + ~ ( ~ 2 + 71 2 - '2K ~ 71 + K 2 - 1) , 

2 2' liz 
S = [(~ - 1) ( 1 - 71)] , 

/). =4~s2/p2. 

The total volume element is 

5 ~2_712 
dv = R d R ---- d ~ d 71 sin t3 dad 13 d y , ( 16)

2 ' 
P 

and V is the potential energy operator. Using the results 
of /9/ we have 

J 1B 1 = 0 , =J
2
2 B 1 B 1 J 3 

2 
B 1 B 1 , 

T Coriolis B 1 = 0 , ( 17) 

<B 1 I TR IB 1 > = -~-- P 2/ 8 2 • 
mR.2 

I)
 with the dynamic -two-center Hamiltonian operator
 

1 p2,.. 1 3 
-] + V - ---. (19)

" = 2m.: R2 [ a~TJ 8 2 2MR2 

Next, we use the adiabatic idea and search for the solution 
of the exact SchrBd~nger equation 

( H ~ E) t/J1 ( R, ~ , 71) = 0 (20) 

in the form 

- 5/2
r/J 1 (R, ~, 71) = R X 1 (R) ¢ 1 (~, 71; R), (21 ) 

where ¢1(~,71; R) is the ground state eigenfunction of the 
eig.enproblem 

[" -€(R)] ¢(~, 71; R) = O. (22) 

Six lowest potential curves €t(R) defined by this eigenprob
lem are given in Fig. 1. Their particular behaviour justif~es 

0.04iii i... .. , 
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the one-state ansatz (21). Actually, the ground state, which 
produces minimum at R=:: 8, is well separated from the other 
eigenvalues in that region. The important property of the 

2ground potential curve is that its dissociating limit is n=
 
hydrogenic-like state (n stands for the principal quantum
 
number) .
 

Now with the known -=1 (R) and ¢ 1 (~, 1/; R) we get the Sc'hro
dinger equation for X1(R)
 

d2 . (23)[ - -- + 2MV1 (R) - 2ME] X 1 = 0 , 
dR2 

where V is the effective potential containing the diago
1(R)


nal nonadiabatic correction
 

151 a¢l _~> + (24)VI (R} = e l(R) + 2M <-ar- I aR 
8MR 2 

The diagonal matrix element from (24) is given in Fig.2. The 
bound state energies (in eV) of, the xY~ molecules are pre
sented in Table 2. 

We have obtained for the first time the (J=I,p=l) bound 
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state in all muonic molecules xY~ where x,y=P,t or d.One-state 
adiabatic approximation' with the asymptotically correct hyper I' 

radial adiabatic potential has been used/9~The nonadiabatic 
diagonal matrix element was also included into the analysis. 
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Table 2 
Abnormal parity bound st~tes (J = 1~ P = 1) ofxy~ muonic 

molecules (in eV) 

t t u dt~ dd~ pp~ pd~ pt~ 

24 16 20 12 2 0.5 

The energies from Table 2 are really the upper bounds of the 
eigenvalues of the exact Schrodinger equation (20) for (J=I" 
p = 1) states of the muonic molecules. Now when the question 
of the existence of the bound states is positively solved, 
the direct variational sdlution of the three-dimensional 
problem (20) should be more adequate in order to get more ac
curate values of the state energies. Two systems, namely pd~ 

and pt~, have a loosely bound state. One can believe them to 
'play an important role in ~CF. This problem will be discussed 
in the subsequent paper. 

Note added in proof: 

As we have found, B.P.Carter (Phys.Rev., 1968, 173,p.55)
 
made lower estimates for bound state energies of xy~ rnuonic
 
molecules. He used the Born - Oppenheimer 2prr -term without
 
a matrix element. Those estimates are uncertain as he added
 
an arbitrary 1/8 term to simulate approximately the n=2 ato

mic dissociation limit of the xy~ system which should depend
 
on the reduced masses. His 
exact and misleading. As a 
to calculate (J = 1, P = 1) 
muonic molecules which was 
remember that his paper was 
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HCHxapa T. HAP. E4-88-849 
HOBaH cepaa : B cnexrpax MIOOHHbIX xorrercyn 

,I:(nH MlOOHHbIX xorrexvn nriepaue paCCqHTaHbI CBH3aHHbIe co
CTOHHHH c anosrarrsnon qeTHOCTblO. ,I:(Be CHCTeMbI, pdu H ptu , 
HMelOT cna6oCBH3aHHoe COCTOHHHe. 

Pa60Ta BbIrronHeHa B lla6opaTopHH TeOpeTHqeCKOH: ~H3HKH 

onaa. 

Flpenpaar 06'be.o;HHeHHoro HHCTHTyT8 anepnsrx accnenoaaaaa. .uy6Ha 1988 

Ishihara T. et al. E4-88-849 
A New Series in Spectra of Muonic Molecules 

Abnormal parity bound states of muonic molecules are' 
calculated for the first tim~.· Two molecules pdll and ptll 
have a loosely bound state. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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