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1. INTRODUCTION

In refs. /1-3/ we achieved a good description of all the experi-
mentally observed characteristics of the fission-fragment mass-kinetic
energy distribution. The calculations were performed in the frame-
work of the diffusion model for highly excited nuclei. In particular,
we reproduced the large values of variances of the fission-fragment
mass distribution Gf, and their significant increase with an in-
crease in the compound-nucleus fissility parameter. So we have over-
come the traditional difficulties of the statistical and dynamical
fission models.

The value of 654 is defined to a large extent by the mass
asymmetric coordinate variance, 602, (t), at scission, i.e. 6/3 ~
~ 6‘5 (tsc ) » The dynamical evolution of 602( (¢) in the framework
of the diffusion model shows a systematic deviation from the instan-
taneous statistical limit value /"3'4/. The deviation becomes large
at the end (in time) of the descent of a fissioning nucleus from the |
saddle point to scission. The time dependence of 65( (Z) is one of
the main reasons why the diffusion model calculations of 6,{, agree
well with the experimental data. The charge coordinate varia.nce,Gj ’
behaves in time in another way /5/. Our calculations have shown
that the mode is in statistical equilibrium during almost the whole
descent. The variance 6 (¢) deviates from the 1natantaneous sta-
tistical limit only very near acission, much nearer than 6 ()s Just
before the scission point 6 "freezes" due to the inertia and the
friction of the mode sharply :anroasea.

Here we report on the results of the calculations of the relaxa-
tion times for the mass-asymmetric, charge and neck modes in the
framework of the diffusion model. We aim at understanding the reasons
for the above-mentioned G (#) and 62 (¢) time dependences and
at exploring the applicability of the stetistical approach to research
into the fission-fragment mass and charge distributions. A long time
ago the characteristic times of collective modes were used o7 to
asgsess the role the "memory" of the fissioning system plays during the
descent. Karamyan, Oganessian and Pustyl'nik used the oscilla-
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tion periocda of the mass-asymmeitric mode (with the value (1-3)-10’215

8/) and of the charge mode (with the value 10"223) as the oharacter—
istic times. Comparing the values with the descent time 7 . = (2-10)«
'10"215 the authors of concluded that the statistical model /9/
is not applicable to calculating the fission-fragment mass distribu-
tion and can be used in the case of the charge one.

The relaxation time is more suitable to play the role of the

characteristic time provided there is dissipation in the system.
Many experimental and theoretical papers are devoted to the investi-
gation of the relexation times of different collective modes observe
ed in dissipative heavy-ion collisions (see refs in /10'114. The ex~
perimental values of the relaxation times for the mass-asymmetric
(7, ) and charge ( 7, ) modes in dissipative heavy-ion collisions are
equal 12 to 6'10'219 and 1.3010'223, respectively. In the expe-
rimental investigation of the quasi-fission reactions 13,14/ the
value (5.3 % 1.0)¢1072's was obtained for 7,, . It should be noted
that in the compound nuclear fission the relsxation times cannot be
observed experimentally as opposed to quasi-fission and dlssipative
heavy-ion reactions where the relaxation time is the subject of ex~
perimental studies.

2. THE MODEL

In a good approximation the mass~asymmetric and charge modes in
excited nuclel fission are harmonical /1'5’7'10/. The stiffness co~
efficients of the modes depend on the fission coordinate {(e.g. elon-
gation) and on the neck parameter. The inertia (/) and friction (J*)
parameters of the modes depend on the same coordinates, too. Moving
along the descent trajectory one has to take into account only one
coordinate, more conveniently,the fission one. Then the time depend-
ence of the coordinate defines the time dependence of the inertia and
friction parameters.

let us consider the dymamics of the fluctuations of an oscilla-
tor with time-dependent parameters using the diffusion model /3+4,15/
based on the Fokker-~Plank equation (FPE) for collective variables.
The Langevin equation which is equivalent t¢ the FPE is

By iy F () m. (1)

nge y . is & finite mode coordinate (of, 4, etc); /3 = ¢/t and
f=p m/m are the damping constant and the generalized damping
constant, respectively; u)=((:/m}7/2 is the y =oscillator frequency,
f; (%) is the random Langevin force with the statistical properties

<F(#)>=0 <F(t)F,(¢')>=2DJ(¢-¢') 3 D 18 the diffusion co-
efficient.

If we are interested in the mass-asymmetric mode, the coordinate
o of the well-known /187{c A ot} - parametrization will be used in-
stead of 7 in (1)s In the case of the charge mode 4-Z2,-Z,, .,
will replace Y Here 7, 45 the light fragment charge, and Z,,.,
is the value of Z, correspomding to the compound nucleus charge
density. We will use the elongation parameter ( , or the half-dis~
tance between the ceuters of wass of the future fragments, P » 88X~
the fission coordinate 716/ . The collective coordinate 4 defines
the neck radius when ¢ and o are flxed.

Dealing with fission of compound excited nuclel we have <y >= 0
(for « or 4 ), in contrast to quasi~fission end dissipative
heavy-ion reasctions. So the variance 6 2 (¢) will be the main sub-
Ject of our investigations The dynamics of oscillator fluctuations
is described by the following system of equationas for the second
moments of the distribution function 7 ( Y, p}/‘ # } which obeys the
FFE

a62
¥ _
ot '26?}7}/‘2(1‘) ,

Shy _2[C(£)6,, +f 816 Jmis)-D (2]
dt 7Py Py ’

%%:,e, - cu)cs;, f@fy/m (¢)-0(¢)6yp, /m(2) .

The time dependence of < X > and < A > defines ¢ » My Y and D
as functions of 7 . Here the diffusion coefficient I is connect-
ed with nuclear temperature 7 and friction ¢ by the Einstein
relation: D=§T* , where 7 ° 1s the effactive temperature for
the collective mode /1951157,

It should be noted that a simllar system of equations for the
second moments wad obtained in /17 using the Schrodinger equation
with friction 718419/, me only aifference 1ies in the last term of
the secind equation for 5; .

System (2) may be reduced to two equations

(2)

6? 1»?6% +a)26y = U/(mZG;) , (3)
U--28U+2D6y )
where U=6_ IH 6,

Py~ .
The exaot aoyluit::lgn of eq.y 4) is

U= [ZLJ}G;,exp(Zﬁt’)d%Uo]exp(—2/3t). (5)
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If we neglect diffusion and friction in (2), eq.(3) coincides with
the equation for & obtained earlier in where the dynamics
of forming the charge distribution in dissipative heavy-ion colli-
gions and in fission was investigated. In this case ﬁi: m/mt, Lees
the time dependence of the inertia leads to the occurrence of a kind
of quasi~friction in the mode.In the process of the rapid descent the
fissioning system remembers the value of 6’ even if there is no
friction along this coordinate at all. In that case U=1/,= /52/4' /20/
along the descent trajectory.

An approximate solution of eq. (3) may be written as follows:

5y = Gyo €xp(~ 5 ) Sysel1-exp(-2)] . o)

It is similar to the ordinary law of the transition process which was
exploited to analyze the experimental data in /13’14/, il.e.

<Y >=y, exp(-£)e Yst[1-exp (- 7)1 e

The only difference is that &5 0 * (5yst and 7 are time
dependent in eg. (6),in contrast to the analysis of /13,14 /

The oscillator (3) i3 underdamped provided >/3//2 and it
is overdamped if W< 6/2 » In the case of underdamped wotion
eq. (6) is the result of t1me aversging of (10a) from /4 oger the
oscillation period. The structure of the solution (6) corresponds to
that of eq. (3): the left~hand part of eq. (3) describes the damp-
ed oscillator and the first term of {6) corresponds to it; the non-
uniforaity in the right-hand part of (3) generates the second term

in (6).

In eqs. (6,7) the parameter is defined by the equations:
2p w>f/2
T-= (/3/2 (/3% w )/2] w<fB/2 (8)
B/w? w<xfB/2

Eqs (7) showz that 7 is the relaxation time of the collective

coordinate mean value (this i1s the parameter which we shall exploit

and discuss later on). It is obvious from eqe (6) that the variance
6%  relaxes twice faster than < Y > .Figure 1 shows the g -

dependence of the relaxation time. The dependence is not smooth

and 18 of opposite nature for the underdamped and overdamped regimes

of the osclllator.

3. THE RELAXATION TIMES FOR THE MASS-ASYMMETRIC MODE

The stiffness coefficients, inertia and friction parameters
which define the relaxation time may be calculated using macroscopic
approaches 1if we deal with fission of excited nuclei. Different
versions of the LDM /21,22,23/ and droplet model 724/ were used to
calculate the stiffness coefficients of the mass-asymmetrio mode. The
inertia parameters were computed in the framework of the Werner-Whee-~
ler method 25/. We used two-body 25 and "surface'" one-body /26/
dissipation to calculate the mass-asymmetric friction parameters.

Figure 2 illustrates the dynamics of (0, and jid/ during the
descent (note that the time dependence of the values is defined by
thelr dependence on the coordinate F along the trajectory). It is
interesting that the O -dependence of cw, and B turns out to be
unlversal for the different versions of the LDM and for a wide range
of the Z /A of compound nuclei /3/. In Fig. 2 the difference between

the frequencies of the nags-asym-—
6 T I metric mode is due to the type of
viscosity (which changes the des-
cent trajectory significantly),

:3 ag well a8 to the used veraion of
3.. ] the potential energy calculations
E) (LDM /22/ in case of two-body vis~-

cosity and the droplet model
in the case of one~body dissipa~

0 l 4 1 tion). The value of Wy gives us
O 1 2 3 the possibility of evaluating the

, (5/(2 (L)) mags-asyumetric oscillation periocd:

its value grows during the descent

e 1. trom (2-3)10721 § at the saddle
Figs 1. Relaxation time (in poing (according to the estimation
units of inverse frequency) or 8/y 4o (5= 6)10‘21 8 near

versua generalized damping the scission point.

coefficient (in units of From Fig. 2 1t ia eéasy to see
twice frequency). the strong difference between}ﬁd
and ;3d' in the case <. two~body
viscosity due to the contribution from term nvd,/n7 - ,;Lthe caBe
of one~body viscoalty the contribution from ﬁ?d:f*vli & negligibly
small and the reagson for an increase in jix is the sppearance of
a "window" term in the"wsll and window" formmuls foi tiwe friction
parameter as the neck arises. Before that moment the value of Ez‘
for one-body viscosity is even smaller than that for two-bcdy one (in
the latter cage the fast descent results in a large value of /2 [ﬂ%&.
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Fig. 3. The dependence of
the relaxation time for the
masg-asymmetric mode upon
the elongation parsmeter ¢
along the trajectory of desw~
cent of 3 Use Curves 1

and 2 represent the results
of celculationz using
two~body viscosity. (1 -V, =
102 4gVesetn™> and the

wu 72V 2 - Y, = 1.5010723
MeVesefu 3 and the LDM/22/),
Curves 3-5 represeént the
results cf calculations
using "surface" one-bhody vis-
cosity. (3 - the LM 722/

4 - the droplet modsl 724/,
5 - the LDM /23/y,

Fg. 2. The frequency, the
damping and generalized
damping coefficlents of

the masg~-asymmetric mode
versug the coordimate N
along the trajectory of des
cent of 239U, The solid
curves represent the re-
sults of calculations
uging two-body viscosity
(Y, = 15010 2o Vegetn™>,
the 1M 722/}, The dnshea
curves represent the re-
sults of calculetions
using “surface" one~body
viscosity snd the droplet
nodel

[

8 20 22

¢, elongation (R,)

Surprisingly, both one-body and two-body viscosities lead to a
similer behaviour of the « ~osclllator. It is explained by the
similar p ~dependence of ":c during descent (it should be noted
that p -dependences of /3 are different in these cases)s The mass-
agymmetric oscillator 1s underdamped during the large part of descent,
becoming overdamped until scission. The relaxation ftimes plotted in
Fig. 3 for two dissipation mechanisms are not very different.Figure 3
showa that the relaxation time increasses sharply as the « =-oscillat~
or becomes overdamped. The increasse arises in all the versiona of
calculations and agrees with Fig. 1. The values of 7, are {4-6) x
10’215 depending on the LDM version and on the type of viscoaity
ugsed.

Our calculated values of 7, agree with the experimentsl data
on relaxation times for this mode in dissipative heavy-ion collisi-
ons 12 and quasi~fission reaotions 13,14 + The agreeuent allows
one to conclude that the dynamlcs of the mass-asymmetric mode 18 de~
fined by the same type of the collective motion in dlssipative heavy-
ion collisions, quasi~fission and fission of compound nuclei despite
the different mechanisms of the reactions. Figure 4a shows the corre-
lations between the elongation parameters of the nuclei at the saddle
points and at the points where the regime of o =~oscillator changes
from underdamped to overdamped (below the switch points). (Here we
gee & remarkable independence of the version of LDK used in the cal-
culations)}. The relaxation occurs very fast (7, < 1-10’215, gee Fig.
4b) befere the awitch point. Taking into account the fact that the
descent 18 rather slow at the beginning it is easy to understand that
the informaetion about the part of descent between the two above-men~
tioned pcints is wissing at all. This part of descent increases with
growing 22/A. For rather light nuclei (Z2/4 < 34) this part is small
and, as a result, the oL -oscillator "remembers" its saddle point Qj -
value well. Moredver, the part of descent between the switch point
and scission is rather small for these nuclei.

In the heavier fissioning nuclei (22/A > 36) the part of the des=-
cent from the saddle point to the switch point is approximately equal
to that from the switch point to the scission one. The second part of
the descent is even larger than the firsi one for the nuclei with
Z2/A > 43, However, this is ndt so for the durations of the two parts
of the descent: as a result of the acceleration the duration of the
first part of the descent 1s longer than that of the last part (see
Fig. 4b). Obviously the part of the descent from the switch point to
the scission point, which is passed repldly and during which 7, is
rather large, is the part that defines the value of 6’ .
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Fig. 4. @) The values of
the elongation parameter
of the saddle points (cir-
cles), the scission points
(squares) and the points
where the regime of yJ-oscil-
lator changes from under=-
damped to overdamped (tri-
angles) versus the para-
me ter ZZ/A of compound
nucleus.

b) The values of the re-
laxation times for the
masg-asymme tric mode at
the scission point (the
lines with
both sides) and at the
saddle points (the lines
with the arrows on one
gide) versus the parameter
22/A. All other marks have
the same meaning
Fig. 4a.

arrows on

as in

¢) The ratio between the
variance of the mass-asym—
metric coordinate calculated
in the diffusion model and
its instantaneous statistic-
al 1imit at the scission
point versus

the para-
meter ZzlA.

The full marks in Fig.4
a,b,c represent the results
of calculations using two-
body viscosity ( V, = 10"23
MeVesefu™3 and the LDM/2V/,
the open marks represent the
results of calculations with

Y, = 15410 Mevegesa™>
and the IDM /227y,
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In our view it is not correct to look for the point which de-
fines the fission-fragment mass distribution. Rather the distribu-
tion 1s formed by the fluctuations of the o =coordinate during
motion in the long part of the descent (see on the search for the
boundaries of this part in numerical calculations). Taking into ac=-
count that 7, (¢sc) is much larger than the time of motion from the
switch point to the scission (see Fige 4b) it is easy to understand
the abrupt deviation of 6; (%) from its instantaneous statistical
limit, which occurs at the end of the descent (see Fig. 4c).

4, THE RELAXATION TIMES OF THE CHARGE MODE

For the charge mode, the coefficients entering intc the ILangevin
equation (1) were calculated in the framework of the hydrodynamical
model in which the dipole isovector oscillations are suggested
to be the main cause of the redistribution of charge between the
future fragments. The methods used to calculate the stiffness coeffi-
cients and inertia parameters of the charge mode are described in
refs /28, 29/, regpectively. On the other hand, there is no well ela-
borated approach to computing the dissipation of the charge mode. So
the charge mode friction parameter XA is often assumed to be a
coordinate-independent free variable coefficient /5'30/. The model
of the stationary flow of viscous liquid through a cylindrical
tube /31 was used in a to estimete the dissipation of the charge
mode. The neck of the nucleus is supposed to play the role of the tube.

This simplified model allows us to obtain only the collective
coordinate dependence of the damping coefficient /34 rather than
the friction parameter XA « Solving the Navier-Stokes equation with
the boundary condition &¥ (surface) = O we obtain /31/, in the frame-
work of the model, the following equation

Ba= 6V /(p, T5)= 6/} (9)
where 0,=05"0,/Ps » Po=Pp*Pn- PosPn and O, are proton,

neutron and tctal densities, respectively; 7, 1s the neck radius;
v, and Y  are dynamical and kinematiocal viscogsities, respectively.
The value of Y  in 717/ was obtained by fitting 732/ the giant ai-
pole resonances widths.
Obviously one can use the model for the mass-asymmetric mode
and get the following result
Z-N

P = 6%/ (P 25)= 57 Pa . (10)
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Fig, 5. The frequency, the generalized damping coefficient (above)
and the relaxation time (below) of the charge mode verggg
the coordinate P along the trajectory of descent of U.
The 50lid curves represent the results of calculations using
two=body viscosity ( V, = 1.5¢10"2MeVesetu™>, the LDM /22/),
The dashed curves represent the results of calculations
using "surface" one-body viscosity (the LDM /22/).

According to eq. (10), pd; must increase during descent because 7,
is decreasing. This contradicts the results of our calculations using
the Werner-Wheeler method (see Fig. 2, where /3, decreases weakly
as the fissioning nucleus approaches the scission pointe. The discre-
pancy may indicate that the model of the stationary flow through a
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cylindrical tube is oversimplified end incapeble of describing the
real motion of the charge (aend mass) modes. On the other hand,the esti-
mation (10} of 4. is in qualitative agreement with the\}%d value
calculated in the framework of the "surface" one-body viscosity mo-
del (see Fig. 2).

Figure 5a illustrates the dynamics of (W, and ﬁ; during the
descent. As the fissioning nucleus approaches scission, /E; sharply
increases according to eqe (9). It should be noted that the nﬁd/ﬂnl
contribution to ﬁa is small (not exceeding 5%) even for two-body
viscosity), in contrast to the mass-asymmetric mode. In Fig. 5 the
different curves for the two types of viscosity are due to differenc-
e8 in the trajectories of the descent from the saddle point to scissi-
on.

In agreement with Fige. 1, the increase in ﬁ; leads to a decrea-
se in TA when A =-oscillator is underdamped, and, on the contra-
ry, to an increase in TA when the A =-oscillator is overdamped
(see Fige 5b)e It is seen that at scission 7, 1is equal to (0.8 -
0.9)'10"21 8. These values are much larger than the experimental ones
deduced from the dissipative heavy-ion collisions data 12/. On the
other hand, our estimate of ﬁA is close to the value obtained in
ref. .

It is easy to understand the reason of the charge mode equilibra-
tion during the whole descent if we compare 7, with the typical
times of descent ((4--‘5)-10'21 8 for two-body viscosity and (20-30) x
10'21 8 for one-body viscosity). In the case of two-body viscosity
the variance of the charge distribution "freezes" just before scission
due to a sharp increase in pA .

5. THE RELAXATION TIMES OF THE NECK MODE

The relaxation of the mass-asymmetric and charge mode are studi-
ed in dissipative heavy-ion collisions and quasi-fission rather in
detail,at the same time much less is known about the relaxation pro-
cesges of the deformation and neck formation coordinates in dissipa=-
tive heavy-ion collisions.

The analysis of the h-mode relaxation time (remember that the
h-coordinate determines the neck radius) is a very complicated prob-
lem in fission, too. Firat, the C and /i  coordinates are not nor-
mal and cannot be investigated as independent ones /1'3’16/. In parti-
cular, the nondiagonal component of the inertia tensor meqp is, on
the average, equal to the square root of the product of the diagonal
components M., end /mgp /143,16/ during the descent. In the
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"jdeal" parametrization using the normal coordinates the nondiagonal
component of the inertia tensor must be small. The {p,A} -paramet-
rization satisfies this condition /3’16/. The calculations show that
the inertia and friction tensors are more diagonal in the{p,ﬁ}-pa-
rametrization than in {C,h} -one. So, the coordinates p and
can be used as approximately independent ones.

The potential deformation energy depending upon the coordinates

can be written as follows /33,34/

Ve h) = Vi e SEE(po g, 0, (1)

where ﬁﬂ (x) describes the location of the fission valley bottom,
x:=2(p-Pgy) » Psg 18 the saddle point p -value. Eq. (11) shows
that the neck mode is a harmonical one. As a result, the above -
described model can be used to estimate the 6; -relaxation time.

But there is a second difficulty. Namely, when the fissioning
nucleus approaches scission,the stiffness coefficient UR begins to
decrease rapidly. Thus the h-mode becomes an infinite one at the scis-
sion point defined as the point at which the ridge between the fissi-
on valley and the valley of the separated fragments vanishes. However,
h-mode remains finite at scission with Cg ~ 200 MeV if the scissi-
on point is determined by the condition F, (p,A)=F, (f),ﬁ ), where

Ft is the Coulomb repulsive force between the future fragments and
£ 18 the force of nuclear attraction /2’3/.

Let us estimate the h-mode relaxation time taking the latter
fact into account. The h-cuts of the potential energy surface and
plots of the stiffness coefficients (g versus p =coordinate are
presented in Figs 1 and 2 of ref. 33/ and in Fig.2b of ref./34{ Fi-
gure 6a illustrates the dynamics of cdg and ];5 during the descent.
It is geen that the h-oscillator is underdamped during the large part
of the descent and becomes overdamped near scission. The switch of
the regime is due to the decrease in (g and, mainly, to the signi-
ficant growth of friction parameter Jk « As was the case for the o« -
and A -modes,the switch of regime is accompanied by an increase iniaa
from value 0.3-10'21 s during almost the whole descent to the value
1.8+10~21 g at scission.

In ref, 7. the characteristic time of the mode corresponding
to the formation of the fission-fragment kinetic energy distribution
was deduced from the temperature dependence of the energy variance.
The time value obtained is approximately one order of magnitude smal-
ler than the characteristic time of mass-asymmetric mode.In the frame-
work of our model /3433,34/ the formation of the fission-fragment ki-
netic energy distribution is determined at least partly by the neck

12

mode. Figures 6 and 3 show ﬁf_\
that Ty ~7,/2 during K%
large part of the descent iED
and Z};z(’Z;CM-T‘,‘/J) = —
just before scission. The N
ratio @, /Wy is \_c
not larger than 2 during 2d2~
the whole descent. Eéh

Fige 6. The frequency, O L | | |
the generalized coeffici-
ent (above) and the rela-
xation time (below) of
the neck mode versus the
coordinate p along the e
;;gjectory of descent of 1:) O | | | \
Cf. The droplet model
/28] "3 weurtace" one- 06 08 10 12
body viscosity have been f)
used in the ocalculations.

6, CONCLUSION

The main results of the work can be summarized as follows.

The oscillators of all modes exhibit a similar behaviour: during
the first stage of the descent all of them are underdamped and become
overdamped nearer to scission due to a sharp increase in inertia and
friction parameters.

The calculated values of the relaxation times for the mass-asym-
metric mode in compound nucleus fission agree with the relaxation times
observed in dissipative heavy-ion collisions and quasi-fission reacti-
ons. Consequently, despite the different types of the reactions used
the evolution of the mass-asymmetric mode is determined by the same
type of collective motion. The value of the mass-asymmetric mode rela-
xation time depends weakly upon the type of viscosity (one-body or
two-body) used in the calculations although the descent times differ
by a factor of 5-8 « In refs /13'144 after analysing the 7 exci-
tation energy dependence it is concluded that nuclear viscosity in
quasi-fission reactions is of one-body nature. Our calculations
(neglecting the dependence of viscosity upon temperature) do not allow
one to say anything about the type of nuclear viscosity. The time de~-
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pendence of 7, during the descent help to understand the time evolu~
tion of the mass-asymmetric coordinate variance Gi in exact nume-
rical calculations /1’3/.

The relaxation times for the charge mode do not agree with the
experimental values from dissipative heavy=-ion collisions,in parti-
cular, the calculated values are several times larger than the expe-
rimental ones. The discrepancy can result from the use of a very

crude model to estimate the damping coefficient of the mode discussed.

Therefore, the exact numeriocal calculations of the charge-mode
friction parameter must be carried out.

The relaxation times for the neck mode are about one quarter
of Ty at scission; these values of 7y are in qualitative
agreement with the experimental values deduced from the temperature
dependence of the variances of the kinetic energy distribution.

The authors wish to thank Prof. G.N.Smirenkin and Dr., Yu.A.La-
zarev for stimulating and useful discussions.
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