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1. Introduction

/1,2/

body Born-Oppenheimer-like Hamiltonian

the regularization of a three-

/3/
lisions leads to a special type of the hyperspherical three-body Ha-

As we have recently shown
at the points of pair col-

miltonian, From this transformation it follows that an adiabatic hy-
perspherical description 4 is a proper variant of the Born-Uppenhei-
mer adiebatic description/3 « There is a lot of numerical justifica-

/4,5/

tions of this assertion in the field of atomic , molecular 6

and mesomolecular physics/7/. The calculations of the e£e” -gysten
are also very instructive in that sense /U’9/.

The key problem in the Born-Oppenheimer adiabatic approach is
the quantum-mechanical problem of motion of a light particle (muon
or electron) in the field of two fixed centers. The distance between
centers is a parameter. When this distance is either negligible or
infinite, the solutions of the problem can be given in an analytic
form 10/. This is an important point as it is helpful for a numerical
analysis of the problem and also provides the classification scheme
for quantum states and the so-called correlation diagram which putse
into one to one correspondence the solutions from two limiting ana-
lytic sets.

After the above-mentioned transformation of the Born-Oppenheimer
three-body Hamiltonian one should define the new adiabatic Hamiltonian
(dynamic two-center problem). Practically it should be preceded by a
partial wave analysis of the total Hamiltonian. This is an important
physical feature of the new adiabatic description. Because of that
fact the dynamic two-center problem depends on exact quantum numbers

"of the total angular momentum ] and the total parity P (all partic-
les are supposed to be different and spinless). As a result, an ana-
lytical analysis of the new adiabatic problem is also Jp-dependent.
This is the price one should pay for quality of the new basis. Let
us remind that in the original adiabatic method one should use all



adiabatic states to restore the exact quantum numbers of the total
system,
It was already mentioned that the purpose of the transformation

of the Born-Uppenheimer operator/1’2/

was the regularization of its
properties in the regions of pair collisions., This transformation pro-
duced the change of the adiabatic (slow) variable. The distance bet-
ween centers (heavy particles) was changed to the hyperradius, which
is just known to be the proper variable to treat the triple-collision
Fock's singularity. Tnis indicates that the dynamic two-center prob-
lem that includes the hyperradius as a parameter is much more natu-
ral to account for the proper dynamic description of the total sys-
tem in that important region.

This paper is aimed at analytic analysis of solutions of the
dynamic two-center problem in the limit of the vanishing hyperradius.
The solutions should be, of course, closely connected with hypersphe-
rical harmonies/11/. Tnelr particular form, derived in this way, is
much more general and easy to use than those known from the litera-

:ure/12‘167.

It includes only well-known polynomials.
In the next section we briefly review the problem of the choice
ol proper hyperspherical angles. In sect. 3, the Hamiltonien of a

three-body system and that for the dynamic two-center problem in the

chosen coordinates are given. In sect. 4, analytical solutions of the

latter problem in the limit of the vanishing hyperradius are derived,
The way to produce the correlation diagram is briefly discussed in
the fifth section, which also includes the formula for the degeneracy
of the Jp-hyperspherical harmonics. The solutions alternative to
those from section 4 are given in the Appendix 4,

2. The choice of variables —
—

We start with "molecular" Jacobl coordinates >( and X,
Fig. 1, for the system of two "heavy" particles , é and one "light"
particle & ., The l/r——ion can be taken as a sample system. The hyper-
radius R for that system is defined by _

, 2 na 2
R2:X + — %7, (1)
et

where ﬁ4 and M are reduced masses of the systems ( &, fg) and
(a+6,c)

’//M: ’,/""‘a*/{/‘“é/‘ 1/ = 4/“"'¢"’//‘Ma"""é} (2)

—_
so that )( is the position vector of é relative to & , and X is

Fig. 1. Type-c Jacobi coordina-
tes. The position of the prin-
cipal axis of the inertia ten-
sor is given.

Fig. 2. Type-a and -b Jacobi co-
ordinates. The direction of ;ZL
is opposite to the usual one.
Angles between the principal
axis of the inertia tensor and
the<£glated Jacobi vectors 7(4,
and X £ are given.

that of C with respect to the center of mass of ( &~ é ). The
Hamiltonian for our system is given by

H:~2—Z1’ %%Ri% + %/OR) (3)

2:: f:ﬁMRZ+ é/ﬁ (4)
C//Q:///X—’//xa-4 Xg (5)

Here 14 is the adiabatic hyperspherical Hamiltonian of Macek/4/

which includes R as a parameter, and () represents five dimen-
. . A~ ~

slonless variables. The ejigenfunctions 72,/1)) kﬁ) and eigenstates

E,,/P/)of the operator 14 are obtained by solving the Schroedinger
equation

[Z-é},/ﬁ)]]%/é//?/:ﬂ- (6)

A A
Th(i most commonly used set of variables O isg {P(, ;’\, Xf;
wzfre X _and X are polar and azimuthal angles of the vectors
X and X , respectively, and

o = aqcfan /VWXA/;: 1)- (7



In this case .ﬁ

A Zz
. 7 (st ces +———
f, /Jw a(cd&o(/ /M ZE P wéx i (8)

where Z:—yx‘ EL ’ )( $7 and the volume element [fQ/ is
dv= R"o/ﬁ(/o
A = é""ﬂc/dﬁa(/ o o5 0/)/ (9

The inner product for the solutions of the eigenproblem (6) is defi-

o1, )= 4644

As it explicitly follows from the operator form (8), 4 X = @ and
coda = (7 define singular points of the problem (6). It should be
noted that they are pure mathematical singularities that heve appeared

ned by

due to the choice of the jindependent variables. This artificial comp-
lication of the problem can be easily eliminated by introducing the
hy persphercidal coordinates/1/

Xa 7 Xf Xg - Xg
= T e an
3 - 1% ) 7 X

The explicit form of the total Hamiltonian (5) with "hyperspherical
angles"_ﬁ and f? used as independent variables was given in
As f, 7 are internal coordinates, the resulting coordinate frame is
a body fixed one, It is well known that the Coriolis coupling term
appears as a part of the total Hamiltonian in that case. We have de-
/2/ that to make this coupllng vanieh in the re-
gions of pair collisions, one should set A f 7, ; where
d‘ﬁ/}/ define the Euler rotation speclfylng the body—flxed frame
with its unit vectors to coincide with the principal axes of the

monstrated earlier

inertia tensor of e three-body system. The use of this frame is ra-

/16/

ther familiar in studying three-particle systems. An important

feature of that .choice in our case 1,2/ is that it appeared to be .
the only possibility after we had demanded that the resulting Hamil-
tonian should have a proper behaviour in the vicinity of the pair-
-collision singularities.

Now all six coordinates needed for studying a three-particle
system in the center of mass frame are fixed. If our reasoning is
valid, we may believe them to be the best available. They are ade-

quafe to treat the physical singularities and are convenient to allow

for the symmetry properties of the problem. They are also very satis-
factory from the point of view of mathematics as the kinetic energy
operator is of a simple form in this case and the singular points of
the Schroedinger operator are just singular points of the physical
problem,

3. The Hamiltonian

With the hyperradius ;2 defined by (1) the hyperspheroidel coor-
dinates j{ and i? given by (11) and Euler angles aKA/%AV defining
the body-fixed frame with its unit vectors chosen to coincide with

the principal axes of the invertia tensor of the system, the total
three-body Hamiltonian can be given in the form

44 /% 5 d) 3
H= 1 7 M?“‘R(M/ MR

(12)

The operator

A=h+Te {A Lo T[4, Z/Mﬂ( i x/]f (13)

k zwwa

l,sfz [ﬁ?‘*’f}éd?’é/"(”/é%]

4= ;%71 [%/ﬁ’f/% - §/7y ]/jjz 7

should be referred to as a rotational dynamic two-center Hamiltonian.
It contains the operator

2 672 ’ 672
T? 2 ,_1 ~+ TL —+ —/_i (15)
£ 2 —/1 4/2 JZS

which is just the Hamiltonian of an asymmetric top with the classi-
cal expressions for the principal inertie moments

_/:: [14_/2:/‘/,@2/' ];: 21/-/,02//+ /7-4 / (16)

and £Z' are projections of the total angular momentum :7 in the bo=-
dy-fixed frame., When CL?[), coincides with

a o
D--m/J L Vi (17)
A
The differential operator szq is given by

with

(14)




4 o 4. 2

)
= 5ge L35 (3413 /f“/ S5, ] e

All other quantities appearing in the definition of l’/ are func-
tions of coordinates and Jacobi masses:

¥ = 014(-#“<.//?q“5‘*{”m122 ;; = “ﬂ/é?ﬂ4
p= A+G 57yt Dxpyene® 1)
/ /2
g /éz_f}/,,_,]z/77 (19)

. 2
AS

r*
The volume element is now

6p//? VE é/(//l/'ﬁ / 0/0/0?’ /J (20)

7 = ‘;;;

We look for a physical solution of the Schroedinger equation

/—/ (757 - Z;717¢J7 (21)

with the well-defined total angular momentuin ;7’ and total parity
This is supplied with the partial-wave representation of the wave
function 547 in the form/2/

_JhH.
4 /)/ ) Z 5 ///(}'/f ﬁ/e ?/‘7) (22)
The anbular part of tne wave function has the form

///H/ //,4 /f/w//ﬂ(f/@,w[r/w/] (23)

It contains the Wigner'fa-functions as defined in v with/he/é.j

and m £ J being the projections of J onto the space and body-fixed

Z -axis, respectively.. The projection of the Schroedinger equation

(21) onto the states (23) leads_to the system of J+41 (for normal
parity states, i.e. when P:G 4)3 , or :] when = - 61)3 ). The re-
sulting Schroedinger equation with the matrix Hamiltonian

'

; B4 foF 54 ) 3
//7//75? %P"QM IR R IR 2HR*

includes the matrix operator of the dynamic two-center problem for

(24)

rotational states P; this is just the operator (13) averaged over
the angular states (23). The operator of an asyumetric rotator /R
couples the states (23) for 'z m*2 and the Coriolis-type operator
from (13) includes also h+’'= k1 * 7 coupling.

In the adiabatic picture the components of the vector-column
solutions of the projected Schroedinger equation

/M r Z.Cdﬁ/ vz j/é/ﬁ, 5 7/ ={ (25)

are searched in the form

/ﬁ/ﬁ £y)= \/h/%é/ f/)/j///?) (26)

7
where the components Vp are solutions of the Jp-projected dynamic
two-center problem with % from (24)

[/Zj/é* 23/@7 *77/: i e

In this equation the hyperradius }2 ig included as a parameter, In
the next section we shall derive the solution of the Schroedinger
equation (27) in the limit of K- 67.

4, Triple-collision-limit solution for the
hyperspherical adiabatic states

¥ihen R—3 C), the kinetic energy operator of a three~body Hamil-
tonian behaves 1ike'ﬁﬁ?2 in comparison with ﬂd@ behaviour of the
potential energy operator for the Coulomb interaction. So, as it is
well known, the hyperspherical adiabatic eigenfunctions can be given
in that limit in terms of hyperspherical harmonics T In a general
case they depend on five variables and there exist several popular
choices of that set. The simplest analytical form of hyperspherical
harmonics is obtained when laboratory-frame coordinates connected
with any possible pair of JacobiAvectorsAagg used, We have already
introduced a set of that sort, O-= fﬂ” x/)/, in Sect.2 of this paper.
In that case the harmonics are the solutions of the eigenvalue equa-
tion



) BH:
[i . /(//@4)]\\//(“@@, x, )//f 0 (22)

where i is given by the expression (8). The quantum numbers k(
and ¢, are those of grand and pair angular momenta and the letter
C 1in parentheses means that the C -~set (Fig. 1) of Jacobi coor-~
dinates is used. For %IL ‘CT) (u//,?, )?) we have up to the norma-
lization factor/17/

JpM;

) M
\y/(ﬂ (c) ("(/’?/X}:'/KZL/'() fj/[, /% )(/ | (29)

where '721?[ ﬁ}/ is the Jacobi polynomial
S kel (os) ') Zﬁ/h, (KolslisdiJfo, L %/‘ﬁi{%@o)

M= /A/"Z‘ {j/z should be non-negative and
. I

o =2 [ et )1 p )]y

The Clebsh-Gordan coefficients appear in this expression and the last
factor accounts for the proper parity of the solution., As we have cho-
sen the other set of hyperspherical angles, namely 6:4{{:7/“2/§J/ R
we should transform the expression (29) properly. This transformation
includes the rotation of the coordinate system with Buler angles of,

3 3/ and the substitution into the final expression of the ;;7 -
combinations for all the functions of the internal coordinates. The
procedure is straightforward, the only important step will be explai-
ned after presenting the final expression which reads

ijNJ‘

o - GhM;
\\/zeu(c) (f,h/o(//s/g) :‘Z~o H([‘.%) /“7/ bw /‘///Sz(f/ (32)

where

g v/ b
b b e IZ LB B ),

with the coefficients

(34)

\Z/Z_ﬁg4/ 74f+mb,.9__og: /_Zf»m W,/L ())

Apart from the Jacobi polynomials 4‘(11 /e/given by (3) the forgq &
(32) includes the associated Legendre polynomials of co4 & = /?’)(
{4‘!—1

: YW_’/ P ma/; _2-¢Z(35>
’?.-/6’/: "7 () g0 /*“yja//mw@ §-7)

and the combination of the Rose (! -functions 6’L‘M / from ﬂ{h~}{Q)

J 2%

form

Lo 7 () 4 o}

Three scalar combinations of hyperspheroidal coordinates ; and 7
appear in (29)., They are given by

bon o -"//l//"—

Vs /4:-/] (37)
25 /Jﬁé-z)S

o Ao = :

NV 7= 4

Two of them ( o« and 69 ) are frequently used in the construction
of the hyperspherical harmonics., The success of the present deriva-
tion is due to the parametrization of the (¢ , ,d’)ﬁyotation in
terms of ¢« (Fig. 1) that is the angle between vector ;(/ , connect-
ing "centers" & and , and the nearest principal axis of the iner-

S &

tia tensor of a three-body system,
The direct comparison of the rotated harmonics (29) and the adia-
batic anzats for the total three-body eigenfunction (26) shows that
HZZI«'/C} & /7/ are the solutions of the dynamic two-cen-
ter problem in the vicinity of the point of triple collision.

5« Correlation diagrams

The eigenvalues é;qvﬁ)(xf the dynamic two-center problem (27),
i.e. hyperspherical adiabatic potential curves, reproduce in the li-
mit of R =0 the spectra of @<  and 67C  gubsystems. In the
1imit of R the spectrum of the problem (27) is defined by the



quagﬁam number ﬁ{ as it follows from (28) end (4). Different

2'" (7? are not allowed to cross for finite R because of non-
degeneracy of the problem. So, the lowest value of the spectrum of
(27) for /2’9 >Icorresponds to the lowest possible value of ﬁf which
depends on the ?25 ~pair, If the degeneracy of the spectra of clus-
ters &+C and 7 C is known and if the degeneracy of the spect-
rum of the same problem in the 1limit of kt’§7 can be found, we can
determine the value of kf corresponding to any given energy in the
limit of £Z7a0. The corresponding scheme is usually referred to a

a correlation diagram. Examples of diagrams like that for 4jﬁ§':ﬁ}&
and 47#3 B 4'14 ﬁ hyperspherical adiabatic states of the d4j‘_—ion
are presented in our paper 18 . They can be easily constructed for
anyaftate, if a general expression for the degeneracy k;%/b,) of
= A in the limit of /?" 69 ig derived. We complete the sec-
tion with this result:

/\///(J//,j éi/(-%f/* %"6/1/7/74 4;/;/_7}7 (38)

2

be Summary

Now the hyperspherical adiabatic method is widely used both for
the approximate semianalytic analysis/18’19/ and calculation of a
rather different three~body systems/2o—23/. In this paper we have
used the earlier proposed set of hyperspheroidal coordinates and
derived the eigenfunctions of the relevant adiabatic Schroedinger
equation in the vicinity of the point of triple collision. The golu-
tion is, as it should be, a2 special form of the rotated hyperspheri-
cal narmonics. Its final expression, when conpared with gimilar forms
<ncwnn from the 1iterafure/12_16/, appears to be the most general and
easy to construct. Thoiu h the ori;inal purpose of this paper was
to rrepare the trial functions for further semianalytic aralysis of
the adiabatic problem (27) along the lines reported eurlier/1b/, we
hope that’' the derived forrm for rotated hyperspherical harmonics can
also be useful for other investigations /20-23/.

Appendix A

The analytic forz (29) for space-fixed hyperspherical harmonics
and its body-fixed partner (32) were defined for the c-type Jacobi
coordinates, Fif, 1.,For two other possible choices of the Jacobi vec-

10

tors, Pig. 2, the relevant space-fixed narmonics are piven by the same
Bnal;ticAexpression put with different arpuments and indices:

jkr{J a Tﬁf*j' oy A // -
\ Ly
\jn o (au,m,ﬂﬁ e tala) yzm/q (%, , X

ijJ LY jﬁHJ 2 ”
\y )'{ L0, X

Kloby (JPIK@ Xg Khete f)y[o’ le //él é (29b)
with

'ig o, = \Ea; XZ//O;* Xa (7a)

Z/j Ly = \z/;f:’)/aﬁ/:e Xy (70)

and/T’z/

- 2
Ha: ﬂ/)a/ Wy, = 1""4)4,‘/)0‘ z 1ot 4"){/ (2a)

M{;‘—M/Jg/ wéz‘:é«/)é/'/)6:¢-r;-¢—fo(/2. (21)

JpH
7
; \/ (//f,////fo‘/
The corneﬁeonding rotated partners will be Klata [ &
4 AT

< , ; 2)
/7 by enalogy with the expression (3

and ¢y /6K/ y .

after éﬁ%lg OC;—Zéné{ined change of the arguments of the poly?omlals

and indices in (32)-(36). The physical (or mathematical) mean;n? of2

all of them is clear from comparison with the c-case and from Fig. 2.

We just give their exact f,? ~form for the completeness

b e T\ £ /“”’/

Sre

) S /{
o oL T e
A

3 e?q
2¥? /é?‘UaJ/ = = <

coA4 200‘ f (&Z/jzlﬁ/q

In order to change from a- to b-case, the sign of
be changed. Three different sets of the rotated hypers

jcs (29), (29a) and (29b) are interconrected by the Raynal-Revel
n ’

Y ~ation ueed
. One more known orthoonal transformatlorl
(33), viitn

a that of Chang and Fano 24 , £ilven by

(37a)

and 22 should

pherical harrmo=-

transformations
in this paper 1

11
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that remark one can congider the total matrix transformation from

Hcuxapa T., ®ykyma X., MarBeenko A.B.
(34) as a generalisation of the above-mentioned Chang-Fano transfor-
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PemeHHe B TOUYKe TPOMHOI'O yhapa

NonyuyeHo pemeHHe AUHAMHUYECKOH 3aHaydH IOBYX ueH;prOK_
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HOCTHU M IapHEX SKOOGHEeBCKHX YIJIOBLIX MOMeHTOB. 3JTa ¢dopma
ABIseTCs HauBonee o6mel M NPOCTOH H3 HMEWmMHXCH B JIATE=

paType.
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Dynamic Two-Center Problem: _
Triple-Collision-Limit Solution

We have derived analytic solutions of the.dyna?ic two=
center problem (adiabatic hyperspherical hamiltonian) in

e e B  (oyperspherical Bxpansion Hothod. the vicinity of the triple-collision point. They are ro-
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lar momenta. Their particular form is both general and
simplest available.
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