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1. Introduction 

As we have recently shown/ 1 ,2/, the regularization of a three­

body Born-Oppenheimer-like Hamiltonian/)/ at the points of pair col­

lisions leads to a special type of the hyperspherical three-body Ha­
miltonian. From this transformation it follows that an adiabatic hy­
perspherical description/4/ is a proper variant of the Born-Oppenhei­
mer adiabatic description/)/. There is a lot of nUlllerical justifica­
tions of this assertion in the field of atomic/4 ,5/, molecular/6/ 

and mesomolecular physics/7/. The calculations of the e.ee'" -system 
are also very instructive in that sense /u ,~/. 

The key problem in the Born-Oppenheimer adiabatic approach is 
the quantum-mechanical problem of mo·tion of a light particle (muon 

or electron) in the field of two fixed center9. The distance between 
centers is a parameter. When this distance is either ne gligible or 

infinite, the solutions of the problem can be given in an analytic 
form/ 10/. This is an important point as it is helpful for a numerical 

analysis of the problem and also provides the classification scheme 
for quantum states and the so-called correlation diagram which puts 

into one to one correspondence the solutions from two limiting ana­
lytic sets. 

After the above-mentioned transformation of the Born-Oppenheimer 
three-body Haroiltonian one should define the new adiabatic Hamiltonian 

(dynamic two-center problem). Practically it should be preceded by a 
partial wave analysis of the total Ham i ltonian. This is an important 
physical feature of the new adiabatic description. Because of that 
fact the dynamic two-center problem depends on exact quantum numbers 
of the to tal angular momen tum J and the to tal pari ty p (all partic­
les are supposed to be different and spinless). As a result, an ana­
lytical analysis of the new adiabatic problem is also Jp-dependent. 
This is the price one should pay for quality of the new basis. Let 
us remind that in the original adiabatic method one should use all 



adiabatic states to r'estore the exact quantum n umbers of the total 

system. 

It was already mentioned that the purpose of tbe transformation 

of the Born-Oppenheimer operator}1,2/ was the regularization of its 

properties in the regions of pair collisions. This transforma tion pro­

duced the change of the adiabatic (slow) variable. The distance bet­

ween centers (heavy particles) was changed to the hy pe rradius, whicb 

is just known to be the proper variable to treat the triple-collision 

]<Iock ISS ingulari ty. Tilis indica tes that the dynamic two-cen ter pro b­

lem that includes the hyper-radi u s as a parsmeter is much more natu­

ral to account for the proper dynamiC description of the total sys­

tem in that important reeion. 

'1'his paper is aimed at analytic analysis of solutions of' the 

dynamic two-center pro blem in the limi t of the vani shing hy perradius. 

The solu tions should be, of course, closely connec ted wi th hy pers phe­

rical harmonics/11 /. Tneir particular form, derived in this way, is 

much more !}eneral a nd easy to use than those known from the litera­

ture/12- 16/. It includes only well-known polynomials. 

In the next section we briefly review the problem of the choice 

01' proper hyperspherical angles. In sect. 3, the Hamiltonian of a 

three-body system and that for the dynamic two-center problem in the 

chosen coordinates are g iven. In sect. 4, analytical solutions of the 

Latter problem in the limit of the vanishing hyperradius are der'ived. 

The way to produce the correlation diagram is briefly discussed in 

the fifth section, which also includes the formula for the degeneracy 

of the Jp-hyperspherical harmonics. The solutions alternative to 

those from sBction 4 are given in the Appendix A. 

-...,.2. The choice of variables 

We s tart wi th "molecular" Jacobi coordina tes X and --; , 

Fig. 1, for the system of two "heavy" particles a 6 and one "light" 

particle C • The eff;. --ion can be taken as a samp{e system. The hyper­

radius R for that system is defined by 

p,J.= X2 --f. (1);; '1-2 

wbere fvI and /'V1 are reduced masses of the sys tems ( CJ-, -&) and 

(Ct-~t,.C) 

(2 )1/M =1j~G1 ~ -1/h-.{,; 111M = -lIMe- -+ Jrh"a ... w. e) 

so tha t 

~ 

X is the posi tion vec tor of t rela tive to ex. • and -; is 

2 

c 
Fig. 1. Type-c Jacobi coordina­

ies. The position of the prin­

cipal axis of the inertia ten­
Sor is given. 

Ok - W II I - " b 

( 

Fig. 2. Type-a and -b Jacobi-2 0 ­

ordinates. The direction of Xcv 
is opposite to the usual one. 

Angles between the prinCipal 

axis of ihe inertia tensor and 

the related Jacobi vectors X~ 

and XI are given. 

Q~- "b ~b 

that of C- with respect to the center of mass of (ex-+ ~ ). The 
Hamiltonian for o-u r system is given by 

_ 1 -1 d S d ; !~) 
(3)/-1 --iH p,5 J7fP.. JR. -+ 1rIO;R 

t= -i/2HR L 
-+ ~/I< (4 ) 

ch ::- -fIx - flXo. -1/x(,- (5 ) 

r' 

Here ~ is the adiabatic hyperspherical Hamiltonian of Macek/4/ 

which includes R as a parameter, and () repre-sents five dimen­

sionless variables. The ejgenfunctions 7;, ([}; .R) and eigenstates 

II?) of the operator ~ are obtained by solving the SchroedingerE" 
equation 

[2- c/, (1<)7 Y'h (6,-1<):=0, (6 ) 

'" The most cownonly used set of variables 0 is X . :I j,( d 
,. X'"where X and are polar and azimuthal angles of--> ~ the vectors 


)( and X , respectively, and 


d = OtrW to< h !~/H X /..;;: :L ) (7) 
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In this case -1 7 2 
" I' -1J /' )d 12

i = - r-h·, ()( e..:Jf,,,) ()b: (+vj,,;ledCf. / drj +-- ...+-- (8) 
69-) ~ iv'" 'e>(-- --') 

where (~-;;. (Z. L :- - . v, v:. and the volume element dV is
,,' ,,/I X 

dv::: r<. 5 01Rcio 
/I 

cI0:: r;. ~ {;< I!A' 1eX )2rllX' cI; JI, (9) 

The inner product for the solutions of the eigenproblem (6) is defi­

ned by 

(1./<' It/
J

, ) ~ j I 0 'I"~ I)' . ( 10) 

As it explicitly follows from the operator form (S),-tv'",:x= 0 and 

c&:s ot' ~ 0 define singular points of the problem (6). It should be 
noted that they are pure mathematical singularities that have appeared 

due to the choice of the jndependent variables. This artificial comp­
lication of the problem can be easily eliminated by introducing the 

hyperspheroidal doordinates/ 1/ 

XOo",Yf! Xi - Xq 
(11 )f=- '1=X' X 

The explicit form of the total Hamiltonian (5) with " hy perspherical 
angles" 5 and 1 used as independent variables was given in/1,2/ . 

As i, 1 are internal coordinates, the resulting coordinate frame is 
a body fixed one. It is well known that the Coriolis coupling term 

appears as a part of the total Hamiltonian in that case. We have de­
monstrated earlier/2/ that to make this cou~ling vanish in t~e re­

gions of pair collisions. one should set 0 = I ( If,0(/.1..,[ j. where 
d;JSJJi define the Euler rotation specifying the body-fixed frame 

with its unit vectors to coincide with the principal axes of the 
inertia tensor of s three-body system. The use of this frame is ra­
ther familiar/ 16/ in studying three-particle systems. An important 
feature of that' choice in our case/1 ,2/ is that it appeared to be 

the only possibility after we had demanded that the resulting Hamil­
tonian should have a proper behaviour in the vicinity of the pair­

-collision singularities. 
Now all six coordinates needed for studying a three-particle 

system in the center of mass frame are fixed. If our reasoning is 
valid, we may believe them to be the best available. They are ade­
quate to treat the physical singularities and are convenient to allow 

4 

for the sy=et ry properties of the problem. They are also very satis­

facto ry from the point of view of mathematics as the kinetic energy 
operator is of a simple form in this case and the singular points of 

the Schroedinger operator are just singular pOints of the physical 
problem. 

J. The Hamiltonian 

Wi th the hyperradius R defined by (1) the hyperspheroidal coor­

dina tes f and 'I given by (11) and Euler angles O<;/>' j' definint:; 
the body-fixed frame with its unit vectors chosen to coincide with 

the principal axes of the invertia tensor of the system, the total 
three-body Hamiltonian can be given in the form/2/ 

( 12 ) /-I::: /, -2~ 6~22 ~ fiR) - 2~/<L 
The operator 

~=i ~ 7:~ i-. ~{/J,12.. ~'1(4~ ..lp/J Ij -I~ J1j ( 1 J) 
o "2M i<. 2.1_/J 1 -r J ( ;. 2. s )J 

with S 

i = J0jz Pr)(J) d~ -6-X.,)J: ] 
( 14 ) 

A' :: ~~ r 11)~ ~/-- lJJL 71~1 f!..'i'L 11 f - OJ .+ >(-r-'1 Jt, 

should be referred to as a 
It contains the operator 

f = .L !~z ~ 
III 2 ­-.i 1 

rotational dynamic two-center Hamiltonian. 

(/2. OZ)z.. .3 

-- -+-- (15 ) 


11- 13 
which is just the Hamiltonian of an asy=etric top with the classi­
cal expressions for the principal inertis moments 

~ ~ ~ II 2 ~ ..( 2( ,;-:---)J :: j -+ j:: R · 1 ::: -IfR -1-1" V 1- Ll ( 16 ) 
1 l- '3 I Z. 2 ~ 

and ~, are projections of the total angular momentum jT in the bo­
'.... 

dy-fixed frame. When :1::: D, )., coinc ides wi th 
~ 

-f (17 )to ~ - ~ f 2 ;'L~ Ti 
~ 

The differential operator txf7 is g iven by 

5 



a- _-1_ I-:L ~~f)'1... ~ J if l)2] (1 0 ) 
'7-j"-'1:' t.-djO dj 'J1(J-'7 dlt . 

All other quantities appearing in the definition of 1-1 are func ­

tions of coordina t es and Jacobi masses : 

'£ -= 	 (I "v!f - ~ '-0) /(i1-1 t 4 (1-1(A) / ;;; -= ¥vi/4M 

1::-	 1 -+ ~ If l-f- '; l_ ,) ~ f 'l-r .k 2_ -I ) 

[61- I) /1- tJ z)7 -tIl. 	 (1 9 ) S :: 

sz. 
Ll 	 -:::: ~; f2. 

The volwne e l ement is now 

6' I ~ =- /,? .I j . / / I
dv::- R {l('R '/2 {ffc,,! it~f {iloI~1 ,t ( 20 ) 

We 	 l ook for a physical solution of tile Schroedine,;er equation 

(21 )/-I y ~ E~ 
wi th the well-defined total allgular momentulTI J and total parity J 
This is supplied with the partial-wave representation of the wave 

function ~ in the form/ 2/ 

y - Jf f1/y;I=i 8.~tf~)li) t~Jf~) r',} ( 22 ) 
}<,:O 

The angular part of tne wave function has the form 

JI' ; t ')'~'1 J I i/2._ 7 J J-lH ' )	 ' 
(2 3)6J., !~lJ)= ;; ti: !~h-.t1/~,,4+f(1) <;J ,., _Hjfrj1d)] 

It contains the Wigner ~ -functions ~ define d in /17 / wi th/ff'j /{ J 
and 1M ~ J being the prOjections of J on to the space and body -f ixed 

~ -axis , respectively., The projection of the SchroedinGer equation 

( 21) onto the .states ( 23) leads to the system of J -+ -1 (for normal 


parity states, i.e. when P~t 1)J , or J when r~- f1)J ). The re ­


sulting ' Schroedinge r equation with the matrix ~amiltonian 


6 

]J, IJ:Jt :L /~ ;;-.!L ) _ ~ 
IHI r -= fh - 2J1 ( JR l 

-+ 

P, J(( 2HI? l. (24) 

includes the matrix operator of the dyn amic two-center problem fo r 

rotational stat es If//>; this is just the operator (1 3 ) averaged ove r 

the angular states ( 23) . The operator of an asy mmetric rotator ~ 
co uples the stat e s ( 23 ) for /'101'= I'I-I:f 2. and the Coriolis-type operato·r 

from 	 (1 3) includes also M' -== Jvr =- -f coupli ng. 

In the adiabatic picture the components of the vector- column 

s olutions of the projected Schroedinger equation 

(#7)_EJp) y7}/R, r1) ={/ (25 ) 

are searched in the form 

'-ff>17 />(f?, ( ~) -= yJ~;)At! I R) ;:.,~ ) 
) 	

(26 ) 

where the components --t",7)b are solut i ons of tile Jp - projected dynamic
Jp

two - center problem with !h from (24) 

[	 ltP- ~ J}~)] :t 7j :: O. (27 ) 

In this equa tion the hyperradius R is inc l uded as a parameter. In 

the next section we shall derive the solution of the Schroedinger 

equation (27) in the limit of 1<-0. 

4. 	Triple-collision-limi t solution for the 


hyperspherical adiabatic states 


Vlhen R~ 0 , the kinetic energy operator of a three - body Hamil­

tonian beha ves like 1/1<.2. in compari son wi th 1/1< behaviour of the 

po ten t ial energy opera tor for the Coulomb in terac tion. So , as it i s 

well known , the hyperspherical adiabatic eigenfunctions can be given 

in that limit in terms of hyperspherical h a rmonics / 11 /. In a gene ra l 

case they depend on five variable s and there exist several popular 

choices of that set . The s implest analytical form of hyperaphe rical 

harmonics is o bt ained when laboratory-frame coordinates connected 

wi th any possible pair of Jacobi vectors are used. We have already 

introduc ed a set of that 6 ~ /""1;' X}, this paper.s or t, in Sect.2 of 


In that case the ha r monic s are the solutions of the ei genvalue equa­


tion 
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17 ~/ 7/>/13 
')[i K (1(-;-1/ )J 7KI'L Ic) /x) ;);( -== 0, (28 ) 

/I 

where i is given by the expres sion (8). The quantum numbers /: 
and ~L are those of grand and pair angul ar momenta and the letter 

C in parentheses means th,at the C -set (Fig . 1) of Jacobi coor­
"",, / JpM- ( " :)')

dina tes is used. 1For .7K t L leJ
) 01 , x ,'f. we have up to the norma­

lization factor/ 1/ 

) fo f-1 J ,," j Lr Jf tfJ / '" A)
~tL (c) (.t) x, x' -: IKe L (,,() J t L (x) X , (29) 

where IKfL Ix') is the Jacobi polynomial 

11<~L ~f:: ~~r>()t ~,() t.P!-h l (K--t-+i. dIM;!.-,. Yz; ~ ~ ~)OO) 

h::: (K-i -~)/2 should be non-ne gative and 


U~ )V I~ J ~ -)'[ !- ~LJ
7t'L =i!,t (,x~ IL/.. ' (YJ (I!il" .... ' /JHJ 1-+ f -1) . (1) 

The Cle bs h- Gordan coefficients appear in this expression and the last 
factor accounts for the proper parity of the solution. As Vie have cho ­
s en the other set of hyperspherical angles, namely 0= I ~ '1/~~J' } , 
we should transform the expre ssion (29) properly. This transformation 
includes the rotation of the coordinate system with Euler angles eX ,
f ' t and the substitution into the final expression of the 1; '1 
combinations for all the functions of the internal coordinates. The 
procedUre is straightforward, the only important step wi ll be explai­
ned aft er presenting the final express ion which reads 

~ Jpf'1,J _ J 'if . 'jfH,j ( )

~eU,,) (!' 1/lfJ)-L '=itL <- ,/c)/t,1j 8 .. , (~!,t, 02 ) 


10..'= 0 


whe re
:if t Jpt Jp

IdIL~ '/c) ~'1J={JIKtL f)-! [(L ' Pe~ !&/J~ ... ,/w) 0 3 ) 

with the coefficients 

8 

J'fl /) J ~!-f h. ( ,-. )U =- pc- ~ ~/j- J: / L ().t j-hA tl/1 
.... L 0"" . (4) 

Apart from the Jacobi polynomi als 4K1L It) g;i ven by 0) the fo rm", ')- ) 
(2) includes the associated Legendre polynomi al s of W.-!, f) = (~ ·XIft''''/ (I ...) I -I / ,)'" !I Ii,., / -t 

.; 

7 I 2P" 1&/: - - '( T (-1>..,8; -- Ito!' fj -1) (5) 
t j .. 2 (t-flM). j t .! cI(M& ) 

J 

/ ]t and the combination of the Roae (~ -functions dlvfk.-1 / froT!! (" I G)
,.J~ 

in t~T fo rm 
Jf f- 1) Iv, 7 , ;+1-.-' J ' }

r{~ /w):=/(~ j J --, fJH,M,!-W)-+/lf) )"'_t.- '!uJ) . (6) 
, 1~ (}.... )(t..- ~ "1) 

Three scalar combinations of hyperspheroidal coordinates j end / 
appear in (29). They are given by 

.h~ cI ~ ~/VF 

~~ & ~ \ff ~ 1ft -f ) 07 ) 

i;; /(f'J-x) ~ 
¥v~ 11ft .­

V -1- tI 

Two of them ( 0<: and e )are frequently used in the construction 
of the hyperspherical harmonics. The succes s of the present deriv a­

tion is due to the parametrization of the ( c/ , /' 'J )~rotation in 
terms of W (Fig . 1 ) that is the a ngle between vector f . connect­
ing "centers" a and 6 , and the nearest principal axi s of the i ner ­
tia tensor of a three-body system. 

The direct comparison of the rotated ha rmonic s (29) and the adis ­
batic anzats for the total three -body e ir,enfunction ( 26) shows that 

~lto. 'Ie;} (f,;;) are the solutions of the dynamic two-cen­
ter problem in the vicini ty of the point of tripl e collision. 

5 . Correlation diagr ams 

The eigenvalues :E:f>/p) of the dynamic two- cente r problem (27) , 
i.e. hyperspherica l adiaba t ic potential , cur ves, reproduce in the l i ­
mit of R~ ,,() the spectra of C¥-fe.. and g-1e.. subsystems . In the 
limit of te~ CI t he spectrum of the problem (27) is defined by t he 
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qua~fo-.llil n umber K as it follows from (28) and (4) . Different 

~ ., (a) are not allowed to cross for finite !<. because of non ­

deGeneracy of the problem . So, the lowest value of the spectrum of 

( 27) for .R -? "acorresponds to the l owest possible value of K which 

de pends on the Jp - pair . If the de ge neracy of the spectra of clus ­

ters ()( -+ C and d-fC is known and if the degeneracy of the spect­

:!:' um of the s a me problem in the limit of R~ 0 can be found , we can 

de termine t he value of /( correspondin[; to ~ny given en erbY i n the 

limi t of f~ ~ . The correspondin G scheme is usually referred t? af 
a correlation diaeram . Exa~ples of diaGrams like t hat for {0fJ~)01J 
and ~1pJ:: ~-1-1~ hyper-spherical adiabatic states of the oI+/ --i on 

are presented in our paper/ 18/. They can be easily constructed for 

anYJctate, if a !~e neral expression for the de e;eneracy fI(I\J,p,) of 

~ (f2) in the limi t of R~ 0 is derived . We complete the sec ­

tion wi th t h is result: 

N/tcJ h)= :i(y-J"-I_ ~-tpft}J)(]-+ -'/-fP!fj-J ) l/ j (2 ,..,) n J. (3c ) 

ti . Swnrnary 

Now the hyperspherical adiabatic method is wia-ely used bo th for 

the approximate serlianalyt ic ana l ysis / 18 , 19 / and calculation of a 

rather different t hre e -body systems/ 20- 23/. In this paper we have 

used the earlier proposed set 0f hyperspheroidal coo rdinates and 

derived the eiCenfunctions of the relevant adiabatic Schr oe dinGer 

equat i on i n the vicinity of the point of triple collision . The sol ~ ­

tion is , as it sr.o!.ld be , a special form of th~ rotated hyperspheri ­

cal harnonics . Its final ex pressi.on , when cOr.lpared with siail s r form s 

o<r.CWTi from the .literature / 12 - 16/, appears to be the most beneral and 

easy to construct . Tllo L< :-h the ori i., i nal pL; rpose of this paper was 

t o Frepare the tr'i al f ~'nctior.s for f nrthe::, se mia r. aly ti c ar.aly s is of 

the a diabatic pr:Julcn (27) alone the lines repor te d earlier/l o/, we 

hope tha t · the de r i v ed fo r n f0 1' rota ted hy perspherical ha rr:lonics can 
also be useful fo r o ther investi:.:;ations / 20 - 23 / 

Appendix A 

The analytic for-n (29) for space- fixed hyperspherical harmonics 

and its body - fi xe d partner (32) were defined for the c - ty pe Jacobi 

coordinates , Fi C. 1 . Fo r two other possible cho ices o f the J a cobi vec ­

to rs , Pi g . 2 , tne )'e l e vant space- fixed ha rnon i cs ore t;l Ven by t he same 

analy ti c ex press ion bu t with diffe r'ent a r l :l.llllen ts a nd iudices : 

'\ J pM J (. "~) l f ) fo H.r /\ /I ) (29a)Yn .. Q., cL'" I '1",,1c, -= 1n J", (<>< '"J :JL'" I", /X ... / ;/" 
~/JPHJ( "" )_J f) UJpt-f..r " A) 

J kLcie, .Ip, Xi, ,/" - pKL (/e (1 J j 6 Ie (xe, I Xt (29b) 

with 

,t 
~ Y,/ J;,. to, (7a)

i':J :X'i 

(7 b ) lr<~ -:- ~~ Y"f.r:~ >'6.... 
/1, 2 / 

and 

H I). :: /ff~ ) ~", ~ ~1<-l ; I '" ~ ~-;;;; /t- xt- (2a) 

1"1<,:: t1ft IM-i'; (,..f~ ~!6 :: ~.,;;it-f'X)2. (2b)/ / -fit 
The cor:r:.esponding rotated partners will be y;:JL.: /~'0 ~ h.,6)~ / ./Pt« - I.) ~ '" / -,
and /'K L ( l (~ 1/~f, ! by analog with the expresaion (32) 
after the atbove - mentioned change of the arc wne nts of the polynomi als 

and indices in (32) -( 36) . The physical (or mathematical) meanin G of 

all of them is clear from comparison with the c - case and from Fib ' 2 . 

We just give their exact j, 1 - form for t r,e completeness 

-h" C<'", :: J~ 7 /I - ~) 
OO 

-f 
-hL.t (}",:; ~ ~ 

&J1 c{o,Wr ~ -1 (378 ) 

i~ /1 w"') J-v '"" 2 &0, 
C-&~ 2.90. e.1(J Z tXat-f 

I n order to change from a - to b- case, the si Gn of r; and -;e should 

be changed . Three different s ets of the rotated hyperspherical ha nJo ­

nics (29) , (29 a ) a nd (29b) are interconr.ected by the Raynal - Revei 

transforma tions/1 1/. One more known or thoe ona l transfor~: 8tior. used 
24

in this pa per i s tha t of Ch ang and Fano/ /, Given by (33) . 0i t h 

10 II 
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that rema rk one c a n ~ons ider t he total matrix transformat ion from 

(34) as a g eneralisation of the above- mentioned Chan!;-Fano transfor­

mstion. 
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n CHXapa T., <%>YKy,o;a X., MaTBeeHKO A.B. E4-88-739 
AHHaMH4eCKaH 3a,o;aqa ,o;BYX ~eHTpoB: 
peweHHe D TOqKe TpoHHoro y,o;apa 

llonyqeHo peweHHe ,o;HHaMHqeCKOH 3a,o;aqH ,o;BYX ~eHTpOB 
/a,o;HaoaTHqeCKOrO rHnepC~epH4eCKOrO raMHnbTOHHaHa/ B OK­
peCTHOCTH TOqKH TpOHHoro YAapa. OHO HBnHeTCH cne~HanbHoH 
~OPMOH rHnepC~epHqeCKHX rapMOHHK ,o;nH 3a,o;aqH Tpex Ten C 
TOqHhlMH KBaHTOBhlMH qHCnaMH nonHoro MOMeHTa, nonHOH qeT­
HOCTH H napHbIX HKOOHeBCKHX yrnoDbIX MOMeHTOB. 3Ta ~opMa 
HBnHeTCH HaHoonee oo~eM H npOCTOH H3 HMeID~CH B nHTe­
paType. 

PaOOTa BbmonHeHa B llaoopaTopHH TeOpeTHqeCKOH ~H3HKH 
OIDm. 

npenpHHT 06'ullHHeKHoro HHclHTyra qepHblX HccnellOBllHHH, ,Uy6Ha 1988 

Ishihara T., Fukuda H., Matveenko A.V. 
Dynamic Two-Center Problem: 
Triple-Collision-Limit Solution 

E4-88-739 

We have derived analytic solutions of the dynamic two­
center problem (adiabatic hyperspherical hamiltonian) in 
the vicinity of the triple-collision point. They are ro­
tated hyperspherical harmonics with quantum numbers of 
the total angular momentum, parity and pair Jacobi angu­
lar momenta. Their particular form is both general and 
simplest available. 

The investigation has been performed at the Labora­
tory of Theoretical Physics, JINR. 
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