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I NTRODUCTION 

In most of the calculations within the quas i particle-pho
non nuclear model . ( QPNM) / 1-41 the use was made o f the first 
rank separable multipole and spin-multipole particle-hole in
terac tions between quasiparticles. The QPNM allows for the 
tensor forces /41 and particle-particle interactions/ 3- 51 . The 
ma thematical formalism of the QPNM is based on separable i n
t eractions between quasiparticles. 

As is known, nucleon-nucleon potentials can be represented 
as separable ones. Thus, separable representations are const
ructe d for the Reid potential /61 , for the Paris /71 and 
Bonn /SI potentials. Separable representat i ons of rank nmax~ 5 
provide a satisfactory approximation for these potentials. 

I n paper / 91 the standard Paris potential has been compared 
wi t h its separable representation for nuclear matter and it 
was concluded that the separable representation of the Paris 
potential is sufficient for nuclear matter calculations with
in the Brueckner scheme. It has been asserted in ref. /lOI that 
the f i r st rank separable interactions written in a proper way 
are equivalent to the density-dependent stationary Skyrme 
f orces in the random phase approximation (RPA). It should be 
noted t hat in calculating the properties of nuclei and nuclear 
reac tions, formulae include matrix elements of effective in
teractions between single-particle states. The results of cal
culations of nuclear properties are less sensitive to the ra
dial dependence of forces in comparison with the calculations 
of two- or few-nucleon systems where the use is made of sepa
rable representations of nucleon-nucleon potentials. There
fore, we can conclude that the use of separable interactions 
of a finite rank in calculating characteristics of complex 
nuc lei is justified. Efficiency of separable interaction s in 
nuclei i s to some extent due to the Hartree-Fock-Bogolubov 
approximation which plays a key role in solving a nuclear ma
ny-body problem. 

Calculations of the structure of complex nuclei in the 
QPNM or other microscopic models are usually made with pair

particle interaction is important in describing first 21 and 
31: s ta t e s in spherical nuclei/S.lll , double f3 decay 112/, 

Gamow-Teller f3 + decays of spherical/13.14/and deformed /151 nuc
l ei and st r ength f unctions of the Gamow-Teller (n,p) transi
tions 1 14/ . Therefore, general QPNM equations are to be deri
ved for particle-hole and particle-particle interactions. 

In the pres ent paper we present a general formulation of 
the QPNM for the finite rank separable isoscalar and isovec
tor mUltipole and spin-multipole and isovector tensor partic
le-hole and particle-particle interactions. 

1. THE MODEL HAMILTONIAN 
• 

The QPNM Hamiltonian includes a mean field of neutron and 
proton systems as the Saxon-Woods potential, superconducting 
pairing interactions and effective interactions between quasi
particles. Effective interactions include isoscalar and iso
vector multipole and spin-multipole and isovector tensor par
ticle-hole and particle-particl e interactions. They also in
clude charge-exchange interactions. Earlier, effective inter
actions were used in a simple separable form (n max = I). The 
constants are found from the corresponding experimental data. 
In this proc edure equations neglected in the Hartree-Fock
Bogolubov approximation are partially taken into account. The 
constants of effective interactions depend on the number of 
single-particle states included. 

We introduce separable interactions of a finite rank. Con
sider, for example, the central spin-independent interaction 

~ -. ~ ( 1) ... (2) ..-+
V( I r 1 -r 2 :) +(, r lV, ( I r 1 -r I),

2 

\~e expand it over multipoles and write it in the second quan
tiz ed form 

A,A ~(1 ) -+( 2 ) A 4TT_LL < 12 , L [R (r 1 r 2) + ( , r ) R r ( r ) -- , x122 ' ! ' A r 2 2A + 1 =_1\
11 

x (_)11 Y\ (l)Y\ (2)12 ' 1 '> a + a + a a1\11 1\-11 1 2 2' 1 

. 11-4/ .It has been su gge sted 1n r e fs. that for the partlcle
hole interaction 

A AA A A AA Aing and particle-hole interactions. Sometimes, particle-par R (r 1 r2 ) = K 0 R (r 1 ) R (r 2) • R, (r 1 r 2) = K 1 R (r1 ) R (r ),
ticle interactions are essential. Thu~, the role of particle- - 2 
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A A A . 	 at RA(r) =~R \r) has large freedom in describing the nuclear 
where R (r)=r or R (r) =a/arV(r), where VCr) is the central o n 
part of the Saxon-Woods potential. If one uses a separable s t r ucture. The func tions R~(r )are constructed from physical 

cons i dera t ions and corresponding experimental data.interaction of the rank nmax in the form 
Con s ide r exc ited states of doubly even spherical nuclei. 

n:nax 
Then, t ransform t he Hamiltonian consist i ng of the SaxonA A A A

R ( r r ) K ~ R (r )R (r 2 ), 	 ( I ) Woods potent i a l , pair ing and effective i nteractions between1 2 n 1 n 
n = 1 quas ipartic l es. For this purpose we perf orm the canonical Bo

golubov t ransforma tion 
for the particle-hole interaction and in the form j - m + ... ajm = UjUjm + (-) vja j _ m, 

nmax 
A A -A - A 

R (r r ) G ~ R (r )R (r'2) 	 ( I I ) and i nt r odu ce t he operators1 n 
n = 1 

" A+ ( j j' ; All ) ~ <jmj' m' J AIl > a ~ a .-+:' ." 

1 2	 n 

Jm J m 
for the particle-particle interaction, expansion over multi  mm 

j' - m poles takes the form 
B ( j j ' ; All ) ~ ( - ) < jm j'111 ' J All > a~ a " " 

Jm J - m 
mm 

°max a s 	well as the phonon creation operator
I \K~+pK~)M~lln\r)MAlln\pr) + ~ (G;+G~) x~ ~ 

T, p=±l 	 TAll n = 1 	 1... 1: \ I Aj A+(j ' " A ) _ (_)A-Il ", Ai A( " " A- ) I (2)1fJ .. , J , Il 'f'.' JJ, Il·
Q ~ Ill 2 jj ' JJ JJ 


-p + I) I) A ( eH) + MeH A ( eH + eH

P All n +x Alln,r PAlln,T + K 1 MAllo Alln + 01 PA ll O) 


Single-particle states are characteris ed by quantum numbers 


A -	 jm, i= 1.2 •... are the roots of the RPA secular equation. 
+ 	 I 0 1 P

Xllo 
\T ) P Alln \_r)!. Perform t he same transformations as in refs / 1 ,3,4/ and re

pre sent the QPNM Hamiltonian as 

The first term allow for the particle-hole (p-h) interaction, H I ! a + a + H + H ( 3 ) j jm jm v vqthe second term allows for the particle-particle (p-p) inter jrn 

action, the third and fourth allow for the charge-exchange 

(p-h) and (p-p) \nteractions and the last for the two-nucleon 
 where fj is the quasiparticle energy on t he subshell j . He r e 
exchange. Here KO and /(1 are the isoscalar and isovecfor 

c orstants of the p-h interaction of multipolarity A ; Go and 
 H v = HE v + H sv ' 	 ( 4 ) 
G are the p-p interaction constants, T =p for protons and r = 

=n 1 for neutrons. Introduction of a separable interaction of HEv = I Wfii ' Q~IQ~Li" (4 ' )

a finite rank n in comparison with = 1 results in an ii' 


max 	 n max 
additional summation over n. Introduction of a separable in All 


teraction of a rank is justified if nrnax is much less
n max 	 A 1 1 A A Ai AI' 
than the rank of the determinant of the RPA secular equation 	 w --- ~ I ~ [(K + pK ) D D + 

Eli' 4 2A+ln r p= ± l 0 1 or opr
for a nonseparable interaction. Note that a simple separable 

interaction 
 AA AA) AAi AAI ' ] (4 ' ' ) + \ /(O +PK D D +1 n T n p r

A A AA K R (r )R (r ),R (r1 r 2) 1 2 

!) 
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+ a A[ OAi. 0 Ai '. D Ai + OA! +] 0'\'\ [D'\'\i. 0 ,\,\1'· 0 AAi + OMi '+ 1 1 
r nr or + nr nr + r or or + nr nT , 

HSY I" ws1!' Q~MI QLMi" 	 (5)
LMii 

L = _1. 1 I, I I, (Kf..L + KAL lOALI OALi'_w
sit' 4 2 L + 1 n r A= L j: lOP 1 n r n pr 


p= !1 


L I, L-1LI L+lLi' L+lLi L-lLi' 
- K T (0 n rOn p r + D n prO n r ) + 

p= ± 1 

~ af..L (ALi- Ai 1'- ALi + ALi'+ ) + 	 ~ r 0nr Dnr + Onr °nr 

A = L± 1 


a L (DL- lLI- L+lLi'- L+1LI- L-lLi' L-lLi+ L+lLI'+ 
T n r D nT + D n r D n r + 0 n r On r + (5') 

L+lLi+ L-lLit 
+ Dnr Dnr )1, 

Hyq H Evq + Hsvq , 	 (6) 

HEvq= I, I,r l\j~/ (jj'l[(Q~J.LI +(-)'\""J.LQA_J.LI) B(W;A-J.Ll+h.C.] +(6') 
Aj;. 1 r jj' 

+v:~~ (jj')[(Q~J11 _(_)A-J.LQA_J.LI) B(jj';A-J.Ll +h.c.] I, 

V A J.L I (jj' l = _.1 __1 _ I I I, ( K A + P K A )fA (jj') V(-) 0 A I 

lEr 42A + 1np= ±10 1 n Jj opr 


_aArA (Ji , )(_)A-J.L(u(+) - U(-)OAI  (6' , ) r 0 	 jj Jj n r 

_ 0'\'\ f At.. ( 'J ' ) ( _) A - J.L (u (+) - U (-) ) D ,\,\ 1- I 
r 0 J jj jj 0 r ' 

VAJ.LI ("')_ 1 1 At.. M H ", (+ ) Mi 
2ET JJ ---4 2-'-1 I I I (KO +PKl)f (JJ) v j ' 0 /\+ 0 p =±l 	 n J npr 

_U(-)D A1 +-a~ r; (jj') (_)A-J.L (u~~~ jj n T - (6" ' ) 

-0	M ! M (jj')(_ ) A- J.L (u ~j-t) - u(-) ) OAAI + 1 
T n l jj n r ' 

H SY = I, IT iVLMi (Jj')[(Q+ _(_)L'M Q )B(jj';L-M)+h.c.] + 
q L Mir jj' 1sT LMI L-Mf 

+VLMI (jj')[(Q+ +(_)L-MQ )B(W;L-M) +h.c.]l, 
28 T LMI L-Mi (7) 

vLMI 	 (K AL(jf) =-~ _1_ I I I + ,/L)f AL ( " ') v(+ ~ OALi 
1ST 4 2L+1 0 A= L:tl 0 p 1 0 JJ Jj OpT 

p= ±1 
~ 

-K L I vC+) [ oL-1LirL+1LUJ ' ) OL+1Li rL·1L(jj'l]
T p jj' 0 nr -n + n p T n 

p = ±l '" 

(-) AL i + _ I aAL(AL (j ,,)(_)L-M( (+) 
T n J ' - U jj ' ) D n T U jj (7' )

A=L ± 1 

OL ( )L-M (+) (-) )[rL+1Lc . . ) L·lLI+ L-lL L+1Li + 
- T - U jj' - U jj , n JJ' 0 n T + f n or) D n T 11, 

v 
LMI 

(jj,)=...!. __l_ I I I oALrAL<Jj')(_~-M(u(+) -u(-) ) 0 ALi
2s T 4 2L + 1 n A= L ± 1 T n jj ' jj' 0 T + 

+ OL(_)L-M(U(+), _\l(-~)[rL+1L(jnOL.1LI'+rL.lL('nOL+1Ll-1I " 
T Jj jj n n T n J n r • (7 ) 

Here K~L and K~L are the isoscalar and isovector constants 
of the spin-multipole (p-h) interaction, O~ and O~L are the 
constants of the rnultipole and spin-multipole (p-p) interac
tion; K¥ ,af is the constant of the tensor (p-h) and (p-p) 
interaction. Then, 

D~ ~ = kr r:CJj') u;;) gj~! OALi = IT r AL (Jj') u(:-), w L1, 
o r jj ' n Jj jj' 

OAi. = I r r A(jJ ' ) v(-;-) gf..i OAI+ = IT rA(w)v(+), wA~ 
n r jj' n jj jj" n r jj' n jj jj 

rOALi. = I fAL(Jj') v ( -) gLi Df..Li+ I T CAL (jj') v~:~ w LI, 

n r jj ' n jJ' jj " n T Jj , n JJ jj 


(8) 

r ; 	 (jJ') = < J 11 i A R ~ (r ) Y AJ.L II j' >, 

r~L(Jj'l = < j II iA RoA(r) laYAJ.L ILM II j' >, 

u(+)=uv +uv v (±) =uu +vv gAi _ .I.Ai A, Ai Ai _'Ai_A,Ai 
j J' j J '- r j' jj' J j ' - j j" jj' - 'l'jj' + '+'jJ" w jJ ' -lP'JJ' '+'jj" 
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~r 	means summation over single-particle levels of the neutron 
jj' 

at r = n or proton at r = p systems. 
Note that for the RPA solutions the condition is fulfilled 

under averaging over the phonon vacuum 

< I 	~ f. a+ a + H I Q; i Q; i > = o. 
jm J jm jm v I\IJ. 1\ IJ. 

Therefore, Hamiltonian (3) has no terms ~ Q~!Q~!' and QAjdQ~!. 
The calculations within the QPNM were maae in three steps. 

~ 
The first step is the calculations within the independent qua
siparticle model: single-particle energies and the wave func
tions of the Saxon-Woods potential are found and the super
conducting pairing correlations are taken into account (see 
ref/lei ). As a basis, the QPNM uses not single-particle but 
one-phonon states including collective, weakly collective and 
two-quasiparticle states. Therefore, the second step is the 
calculations in the RPA of one-phonon states forming the ba
sis. At this stage all the QPNM constants are fixec. The third 
step is the inclusion of the quasiparticle-phonon interaction 
responsible for fragmentation of quasiparticle and collective 
motions and thus for complication of the nuclear state with 
increasing excitation energy. 

2. 	RANDOM PHASE APPROXIMATION FOR STATES OF AN 

ELECTRIC TYPE 


Now we derive equations for calculating in the RPA the 
energies and wave functions of one-phonon states 

+ 
QAlJ.i'llO' 	 (9) 

where '110 is the ground state wave function of a doubly even 
nucleus which is determined as a phonon vacuum. Normalisation 
(9) has the form 

1 ~ [(1/11.; )2 _(¢.~; )2] "" 1. (9')
2 jj' jj JJ 

To describe one-phonon states of an electric type, i.e. 
states with 1."= 1-, 2+, 3-, 4+, ... , we use the following part 
of the Hamiltonian (3): 

+ 
~ f j a j a j + HE . 	 (10)jm m m v 

8 

Now we find an average value of (10) over the state (9) and 

us i ng the var i at ional principle 


" I 	 Q I ~ + I + ~i [ Ai A! ] I 
U < Api 40 {j a . a . +HE Q~ . > --2- L gj'w ,

j 
, -2 =0 

j m Jm JID v 1 jj / J J 	 ( 1 1 ) 

get the following system of equations: 

D'\ 1 ° max A A A' A! 
~ 	 I I. r (K 0+ P K 1 ) X 1,( r ) D, +nr n'=1 p= ±1 nn npr 

+(K M +p,,"A.)xAi \ (r)O~i ]+CA[XA!-,(r)Dt.,i- +X AiC9 - (r)OA,i+] + a 1 on n p r r nn n r nn n l' 
(12) 

CA>.. [ XAIA,+( )DA!-!- XAi~+( )oA,Ai+]1+ 	 T nn T n r + on T n 7' , 

nmax 

DAAi ~ { ~ f( M 1.'\) Ai- ( ) M! 


o r , 40 .4 l K 0 + P K 1 X , r 0..... + 
o = 1 P = 11 	 nn up r 

+ (K A+pKA) XAi~ (T)O~! 1 OA[XAiA,-(T)OA,i+ xAiA,w-(r)oA,i +o 	 1 no n p T + T nn n r + nn n r 
( 12 ' ) 

+ a .\.\[ x .\.\,i W(T)DA,Ai- x.\.\}+(r)O~A!+ 11 
r nn n r + nn n r ' 

°max 
D A!+ _ ~ I ~ [( A .\ )D A ! X A! w+( r )n r -.4 .4 KO + pK l' , + 


n'= 1 P= ± 1 n p T no 


+ (K""+ pKM ) XA!A-( 1') D>0 i ] + 01. [X Ai~+( r)O ~i++ XAiV~ (r) DA,i-] + 
o 1 00' 0 pr r nn 0 r no 0 T 

(13) 

+a.\.\[xAi~V+(r)D¥!++ XAi~VW (r)OA,Ai-JI
r nn n r on n r ' 

A! Dmax ,\ A A!- A!
D or !. I ~ [ ( K a + P K 1 ) X nn' ( r ) 0 n' p r+ 

0'=1 p=±1 

.\.\ .\.\ AiAw- .\.\ 1 A Aiv- A!- A!vw Ai+ 
+( KO +PK1)X , ( 1' ) 0 , 1+0 [x ,(r)O'r+X ' (r)O 'r 1 + . nn 0 p T T nn n nn n 

(13') 

+ 0.\.\ [ XA i ~V-(T) D>"~!- XAi,AVW (T)OA~i+lI
r no n r + on n r • 
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Equat~ons for D~i± are derived from equations (13) and (13') 
f~r Dn~± by ~bstituting in each term of matrix element 
t ,(jj') by t ,(jj'). Here and in the next section we use the 
n. nn

notat1on 
T f~(Jntn\(Jn(u~T)' )2(JJ' 

X~1'(T) 1 ~ 2' --,nn 2 ~ + 1 Jj' ( jj' - W L 
tA(W)tA,(W)U(+) (-) 

~ r _n__ n JJ' vJJ' ( Jj'A1· 1X 	 , (r) = ----- 
nn 2 ~ + 1 Jj , 2 2 

(jj' - WA1 

t ~ (JJ') t A, (W) U(+) v(±) W 
n Jj' Jj' A1

XA1W,± (r) = 1 ~r (14)
nn 2 A + 1 2 2

JJ ' (jJ' - W ~i 

t~(jJ') t A,(jJ') (v(±) )2 
~_ n jJ' (JJ'X~1,v± ()_ 1 ~rnn r_ 2 2 -- 

2 ~ + 1 JJ ' ( jJ' - WAi 


v (-) WtA(Jl') tA, (W) v(+) 

X~1VW ~r n n JJ ' lJ' Ai


(r) 	= 1 
nn ' 	 (2 22 A+ 1 JJ ' Jj' - W~1 

t ~ (JJ ') t ~ ( jJ ' ) U(+) u(- )n n Jj , JJ ' W A1 

x~1,A(r) 1 ~r 


nn 2 ~ + 1 Jj' (J~' - wK1 


1 t~ (jj')t >..?- (JJ') U (:t) V (+) E 

____ ~ r _ n jj jJ' jJ' 


x A1A ±(r) 

2A 	+ 1 jJ' --2---r(jj'-WA1 

t; (JJ') t'0 (JJ') u( +) v(:t) Wn Jj jj , A1 

A1~W± 1


X nn' (r) = 
~r 

E2 _ w2 

2 A + 1 Jj' jj' A1 
 (14') 

t A (w) t'\'\ (In (v(t»)2
n n Jj' Ejl'

1X~1~v+ 	 };r
nn' - (r) = (2 _ w22 ~ 	 + 1 JJ ' jj' A1 

r t ;(Jl') ~ un V<+} u(-) Wl: 0 jj jJ A11X A1AVW ( r) ( 2 2on' 2 ~ + 1 jJ' jJ' - WA1 

10 

1 t~l{Jj') t ~,L (jj') (U)j'~) 2 ElL.. 
X'\'\:1(r) 	 ~r 
. nn 

2L + 1 jJ ' (~j' - WX1 

t ~L(In t ~:L (jj , ) U~j'> V~;) ( Jj'
1X AA: 1+( r) ~T 

nn 2 22L + 1 jj' (jj'  w L1 

t~L (W) t~:L(JJ') U~r) v~r) WL11x ,U:1W (T) = };T 
nn .( 2 _ w 2 (14")2L 	+ 1 jj' jj' L 1 

tAL (w) tA:L (jj')(v(:t) )2 ( . , 
n 0 jJ lj

X,\,\ ',1 v ± (T) = 1 };T 
nn 	 (2 _ w22L 	+ 1 JJ ' H' L1 

t AL (Jj') t;> (jJ') Vj~+) vJ~-;) wL1n'\'\'1vw (r) 1 }; r X ,
nn 	 (2 _ w2

2L + 1 Jj , JJ' L i 

Equations (12)-(13') include the functions (14") with L = A 
and ~'=A and (jj'=(j +El" 

Fr~~ equations (12), (12'), (13), (13') and the equation 
for D r 11 we derive the secular equation for the one-phonon 
energ~es wA1 as an equality to zero of the determinant of the 
rank 12 n . With the use of separable interactions of the max 
rank 0max ' the rank of the determinant increases 0max times 
in comparison with simple separable interactions. If one does 
not take into account spin-multipole interactions with L = A, 
the rank of the determinant equals 6 nmax ' If particle-par
ticle interactions are disregarded, the rank of the determi
nant is 4 nmax • With the inclusion of mUltipole p-h interac
tions the lank of the determinant . The phonon ampis 2 nmax 
litudes ~JJ~ and ¢A~ are calculated by using the condition 
(9'). JJ 

3. 	RANDOM PHASE APPROXIMATION FOR STATES OF A 

MAGNETIC TYPE 


To describe one-phonon states of a magnetic type, i.e. sta
tes with L"= 1+,2-,3+,4-, ••• we use the following part of the 
Hamiltonian (3) 

11 



I ( a+ a + H 	 ( 15) 
j jm jm BVJm 

We find an average value of (15) over (9) and using the varia

tional principle in the form (I I) we get for A = L + I the 

following system of equations: 


ALI nmax A'L A'L ,\,\'1 A'LI 

DOT I I I (K +pK )X 
 (T)Dn'pr 

n ' = 1 A'= L ± 1 0 1 nn 

p = ± 1 

_ /(L I [XAL;1i (r) DL,+lLi X "L,+li (T)D L ;1LIJT P on n p T + nn n p T + 
P = ±1 

+ I OA'I[X'\'\'!(r)DA'l-T I + + X,\,\'}W (T) DA,'Lr i -1
T nn 0 on n 

A'=L±l 	 (16) 

_OL [XAL : lI +(T} DL;-lLi+ + XAL;-lI+(r) OL:1LI+ 

T nn 0 T no 0 r + 


+ XAL :1! W (T) OL,+ lLI- XAL -; llw ( ) 0 L; lLi-] I 
no n r + no TOT , 

n 
max 

D ALI+ ~ (A'L A'L ,\,\ 'I + ,\' L I 
nT I { "" KO +PK 1 )X, (T)D , 

Q' '" 1 A'=L±l 	 on o p r 

p = ±1 

-K L I ·p[XAL;l1+(r)OL~lL1 XAL~ll+ ( )D L,-lLI]
T nn n p T + 00 r n p T + 

P = ±1 

,\' L ,\,\ , v + A' L 1+ ,\,\ 'I v W A' L1 
+ 	 I aT [ X no ' ( r ) 0 n ' T + X 00 ' ( T ) Dn 'T ] 
A'=L±l 


( 16 ') ... _a L [ X AL -, 11v + (T) D L, + 1 LI + X AL ;- 11 v+ ( ) D L; 1 L i+ 

T on 0 T + nn r 0 r + 


ALo11VW ()OL+1LI- AL+11vw ( ) L-1Ll-]
+,X T, +X, rO, I nn n r nn 0 T ' 

o 
maxo ALl- {I A'L A' L ,\,\ , I W A' L1I \' (KO + pK 1 ) X ' (T ) D ' or I\=L±l 	 00 OpT0'= 1 


p= ±1 


12 

_KL I p[ XALo,liW(r)D!.:+lLI XAL,+lIW(r)DL;lLi]
T nn n p r + nn n r + 

p = ± 1 

+ I OA'L[X'\'\'} VW( r)DA: L1+ + X,\,\>Vo (r) DA;Lio] 
(16")A' = L ± 1 r nn n r nn n r 

_ OL [XALo,liVW (r)DL,+lLI+ XAL+,liv(u (T) L;lLi+
T on n r + nn Do r + 

_.AL_1Ivo ( ) DL+1Llo XAL;-1iVo (r) DL;lLi-]1.+ x~, r , + 

nn 0 r DO 0 r 


The functions Xnn,(r) are determined by formulae (14"). 
From eqs. (16), (16 r), (116") wi th A = L + I, r = p and T = 

= n we get the seculir equation for as an equality to zerowLi 
of the determinant of the rank 12 nrna~ Tensor interactions do 
not increase the rank of the determinant. It is determined by 
spin-multipole interactions. If the p-p interactions are neg
lected, the rank equals 40max • In many papers the calcula
tion has been performed with A = L-l; then, the rank of the 
determinant is 2 nmax • 

If the RPA secular equations for states of electric and 
magnetic types are solved and the energies WAI and phonon 
amplitudes I/Jj~1 and ¢~I, are found, the Hamiltonian (3) ap
pears to be uniquely determined. It contains no any free 
parameters and no unfixed constants. 

Equations for charge-exchange one-phonon states can be de
rived in a similar way. For simple separable p-h interactions 
they are given in ref.!4! ; for the (p-h) + (p-p) Gamow-Teller 
interactions they have been derived in ref. ! 14! . 

4. BASIC EQUATIONS OF THE MODEL 

In the QPNM the excited state wave functions are given as 
a series in the number of phonon operators; in odd nuclei 
each term is multiplied by the quasiparticle operator. The 
approximation implies break off this series. In the calcula
tions performed earlier, except for refo! 17! , the wave func
tions consist of one- and two-phonon terms. 

The excited state wave function of a doubly spherical nuc
leus is 

13 



A 1 11 Al KJ . I' . \ . )+ llw ( A1 i 1 , A2i2 ) ~ [w. {.\2 i 2,A 1 1 3 "1 1 1'''2 1 '2 + ( 19 ' ) 'Pv (JM) I ~ RI Q JMI + ! I ~ < Al1l1 .\2 11 2 IJM > x (1 7) . 1113PA 13I A
1 11. 2 21l11l2 

A212 
KJ 

+ W A2 ( A2i3,AlillAli l,A 212 »), 
x Qt . Qt . 1'PO ' 1213"11l111 "21l21 2 

Alil Al11 
( 'l': (JM ) H 'l'v (JM» = 2 ~ RIP A 1 UA I (Ji) [1 +to/here v is the state number with given JM, and < AlIl1A21l2 I JM > (19")vq I A I .\ I 2 2 2 2 

1 1 2 2is the Clebsch-Gordan coefficient. Allowance is made for the 
fact that phonons consist of quasiparticle operators, and the +KJ (A i , A i )].
refore, satisfy complicated permutation relations / 3 ,4 / • In 1 1 2 2 

deed, averaging over the phonon vacuum we have 

> •1: < A'Il 'A~Il;IJM > <A1l\1l2IJM >< QA' , · ,QA' , · ,Q"AlliQ"A Il j wti has the form (4") for states of an electric type and 
1l1l2 211212 Il 1 2 2 2 1 2 Alil 

(5') for states of a magnetic type; UA 212 includes the 
Il '1l2 

functions V~Ti(Jj'), V~:/ (Jj') , V~:TI(Jj'), V~:;(jj'). 
KJ 

= 0",0..,0, \' ° ,+ 0",0. , 0, A'o. ,+ (A; i;,A'i'jAi,A2 i 2 ). Using the variational principle 
1\1\ 11 "2 "2 12 12 "" 2 112 " 2 12 I 

ol( 'P:(JM) H 'Pv (JM» -1'1) ( 'P~ (JM) 'Pv (JM» -1]1 = 0, 
Following refs. /3 ,4 / , the diagonal terms KJ denoted b y KJ(Ai, 
A2,i 2 ) are considerably larg er than nondiagonal ones. In the we get the equations 
diagonal in KJ approximation the normalization condition 
(17) has the form Al11 .\111 J 

(WJj -r,,)R -! (Ji)U A I (Ji)[l+K (A 1i 1,A 2 i 2 )]=0,j PA I 
AIAI22 22

Ali 1 1 1 2 2 


~ R~ + 2 ~ (P 1)2[1 + KJ 
(\i 1 ,A 2 i 2 )] 1 . 
A ( 18) Al11 Al11 (20)

AlAI 22 2(wA I +wA I +llw(A 1i l'A 2 i 2) -l'Iv)PA I +1:Rj UA 1 (Ji) o.
1 122 1122 221 22 

Then, the secular equation for the energies I'Iv of the states
•An average value of the Hamiltonian (3) over the state (17) described b y the wave function (17) becomes 

in the diagonal in KJ approximation is 
All 11" Al I1(' ( KJ )],J1)UA J1)1+ (A 1 ,AA111 UA 1 1 2 i 2212 212('P * (JM) H'l' (JM» = ~ W . R~ + 2 ~ (p, . )2 [wA j + )0 -..!. ~ v v I JI 1 A i A 1 f\ 212 1 1 det ll(wJI-l'I v II' 2Al11 W + 11=0.(1 1 2 2 AliI W + llW(A 1i 1, A2 12 ) -l'I 21)

A212 v 
A212 

+ w + llW(A 1i 1,A 2 i 2 »)[1 + K
J 

(A 1 i l,A 2 i 2)] +
A212 (19) 

From eqs. (20) and condition (18) for each value of I'Iv we 
A111 A111 J A1 I 1 + 2 ~ R . PAl U A 1 (Ji) [1 + K (t.. 1 i 1 ' A 2 i 2)], find R I and PAl . The form of eqs.(20) and (21) coincides

IA111A2121 22 22 2 2 
wi th that of eqs. for simple (n mu = I) separable interac
tions 14,51 • Effect of the Pauli principle in two-phonon 

where terms (17) leads, as before, to the factor1+KJ(Al11,A2i2) in 
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(21) and shifts of the two-phonon poles .1w(A l i l ,A i ). A spe 2 2
cific description of 0+ states is presented in ref. 1 41 • For
mulae for charge-exchange states in doubly even spherical 
nuclei have a form similar to (20) and (21). 

It should be emphasized that with the use of finite rank 
separab l e interactions the rank of the determinan t (21 ) does 
not 	increase in comparison with simple separable interactions. 
The 	 inclusion of finite rank separable interactions , (p-h) ten
sor 	and (p-p) multipole, spin-rnultipole and tensor i nterac-

A . 

tions makes the expressions for fiW(A i ,A i ) and UA~1/2(Ji)


l l 2 2
more complicated in comparison with the case when (p-h) multi 
pole and spin-rnultipole simple separable interactions are ta
ken into account. This complication of the functions turns out 
to be unessential in computer calculations. 

CONCLUSION 

ttany characteristics of low- and high-lying states of sphe
rical and deformed nuclei have been calculated in the QPNM. 
High-lying states have been calculated by using the strength 
function method/1-4~ The obtained description of low-lying 
states of spherical and deformed nuclei is in agreement with 
experimental data. The predictions made for the structure of 
some states of deformed nuclei have been later confirmed by 
experimental data. In describing nonrotational states of de
formed nuclei the QPNM is more advantageous (see ref. /1BI ) 

over the interacting boson model 119 / . 

The QPNM was used to calculate the fragmentation of one
quasiparticle states, to describe neutron strength functions 
and wid'ths of giant resonances in spherical and deformed nuc
lei. The first calculations of y decay of a deep hole state 
were also made in the QPNM /20/. It is to be noted that the 
description of fragmentation of quasiparticle and collective 
motions is one of the central problems of nuclear theory. 
Fragmentation is being calculated in the QPNM, finite Fermi
system theory, nuclear field theory and by a direct diagona
lisation in the space of 2p-2h states. The results of these 
investigations are presented in a series of reviews, for in
stance, refs. /2 - 4 ,2l.24/. In the present paper we have obtained 
the basic QPNM equations for (p-h) and (p-p) isoscalar and 
isovector multipole and spin-multipole and isovector tensor 
finite rank separable interactions. The finite rank of sepa
rable interactions makes the RPA equations more complicated, 
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which i s un i mpor tan t in computer calculations. Most important 
is the f ac t t hat al lowance for the finite rank separable 
equations doe s not result in any essential complication of 
equations for calculating the fra gmentation of quasiparticle 
and collective motions. This implies that the QPNM may serve 
as a basis for calculating many properties of atomic nuclei 
and spectroscopic factors of nuclear reactions. 

In conclusion I should like to note that in solving comp
l ex problems as the nuclear many-body problem is, one should 
t ry to ex t rac t the most important de grees of freedom and to 
f i nd t he deci s i ve part of effective nuclear forces rather 
than to formu13te the problem in the most general form. 
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ConoBbeB B.r. 
YpaBHeHHR KBa3H4acTH4HO-~OHOHHOH MOAenH RApa 
c 3~eKTHBH~MH KOHe4Horo paHra cenapa6enbH~MH 
B3aHMOAeHcTBHRMH 

E4-88-737 

nony4eH~ OCHOBH~e ypaB HeH~R KBa3H4acTH4Ho-~OHOHHOH MOAenM AApa AOR 
KOHe4Horo paHra cenapa6enbH~x H30cKanRpH~x H ~30BeKTopHWx MynbTMnonb
H~X H cnHH-Myn~THnonb H~x H H30BeKTopH~x TeH30pH~X 4acTH4Ho-A~P04HWx 
H 4aCTH4HO-4aCTH4H~X B3aHMoAeHcTBMH Me*AY KBa3H4acTH~aMH. AnR 4eTHO
4eTH~X c~epH4ecKHx RAep nOKa3aHO, 4TO 3Ha4HTenbHoe ycnO~HeHHe,06ycnoB
neHHoe KOHe4H~M Dma & > 1 paHrOM cenapa6enbH~x B3aHMoAeHcTBHH, HMeeT 
MeCTO npH B~4HcneHHH OAH~OHOHHWX COCTORHHH B npH6nH*eHHH xaOTH4HWX 
~a3. Y4eT cenapa6enbH~x B3aHMoAeHcTBHH c D m&& > 1 He npHBoAHT K cy~ecT
BeHHoMY ycno*HeHH~ npH B~4HcneHHH ~parMeHTa~HH KBa3H4acTH4HWX H KonneK
THBH~X COCTORHHH. YTBep*AaeTcR, 4TO MOAenb Mo*eT cnY*HTb OCHOBOH AnR 
BW4HcneHHR MHorHX xapaKTepHcTHK cno*HWX RAep. 

Pa60Ta B~nonHeHa B ~a60paTopHH TeopeTH4ecKoH ~H3HKH OH~H. 

npenpHHT 061oeAHlU!HHOrO HHCTHTYTa lUlepHl>Ix HccnenoBaHJli:i . .Ily6Ha' 1988 

Sol ovlev V.G. E4-BB-737 
QuasIparticle-Phonon Nuclear Model Equations 
with Effective Separable Interactions of a FinIte Rank 

The quasIpartIcle-phonon nuclear model equations are obtained for 
the finite rank separable isoscalar and isovector multipole and spin
multipole and isovector tensor particle-hole and particle-particle 
interactions between quasiparticles. For doubly even spherical nuclei 
allowance for separable interactions of the rank Dmaz leads to a con
siderable compl ication of equations in the random phase approximation. 
Separable Interactions with n > 1 do not cause any significant commaz 
pI ication in calcul ati ng the fragmentation of quasipart Icle and col
lective states. It is asserted that the mode l can sqrve as a basis 
for calculating many characteristics of compl ex nuc lei. 

The investigation has been performed at the Laboratory of Theore
tical Physics, JINR. 
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