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INTRODUCTION

In most of the calculations within the quasipartic1§—pho-
pon nuclear model (QPNM)/!1~% the use was made of the f1rst.
rank separable multipole and spin-multipole particle-hole in-
teractions between quasiparticles. The QPNM allows for the
tensor forces’Y and particle~particle interactions’s‘s’.'The
mathematical formalism of the QPNM is based on separable in-
teractions between quasiparticles.

As is known, nucleon-nucleon potentials can be represented
as separable ones. Thus, sepaﬁable representat%ogg/are const—
ructed for the Reid potential , for the Paris and
Bonn’® potentials. Separable representations of rank.nmaxg 5
provide a satisfactory approximation for these potentials.

In paper’?/ the standard Paris potential has been compared
with its separable representation for nuclear matter and 1?
was concluded that the separable representation of the Pa¥1s
potential is sufficient for nuclear matter calculatiqg%/w1th—
in the Brueckner scheme. It has been asserted in ref. that
the first rank separable interactions written in a proper way
are equivalent to the density-dependent stationary Skyrme
forces in the random phase approximation (RPA). It should be
noted that in calculating the properties of nuclei and nu?lear
reactions, formulae include matrix elements of effective in-
teractions between single-particle states. The results of cal-
culations of nuclear properties are less sensitive to the ra-
dial dependence of forces in comparison with the calculations
of two- or few-nucleon systems where the use is made of sepa-
rable representations of nucleon-nucleon potentials. TheFe—
fore, we can conclude that the use of separable interactions
of a finite rank in calculating characteristics of complex
nuclei is justified. Efficiency of separable interactions in
nuclei is to some extent due to the Hartree-Fock-Bogolubov
approximation which plays a key role in solving a nuclear ma-
ny-bedy problem.

Calculations of the structure of complex nuclei in the
QPNM or other microscopic models are usually made with pair-
ing and particle-hole interactions. Sometimes, particle-par-—
ticle interactions are essential. Thus, the role of particle-

particle interaction is important in describing first 2% and
31 states in spherical nuclei’/®!1 double B decay /12/
Gamow-Teller B8* decays of spherical 713,14/ 454 deformed/lélnuc—
lei and strength functions of the Gamow-Teller (n,p) transi-
tions 714/, Therefore, general QPNM equations are to be deri-
ved for particle-hole and particle-particle interactions.

In the present paper we present a general formulation of
the QPNM for the finite rank separable isoscalar and isovec-
tor multipole and spin-multipole and isovector tensor partic-
le-hole and particle-particle interactions.

l. THE MODEL HAMILTONTAN

The QPNM Hamiltonian includes a mean field of neutron and
proton systems as the Saxon-Woods potential, superconducting
pairing interactions and effective interactions between quasi-
particles. Effective interactions include isoscalar and iso-
vector multipole and spin-multipole and isovector tensor par-
ticle-hole and particle-particle interactions. They also in-
clude charge-exchange interactions. Earlier, effective inter-
actions were used in a simple separable form (ng,, = 1). The
constants are found from the corresponding experimental data.
In this procedure equations neglected in the Hartree-Fock-
Bogolubov approximation are partially taken into account. The
constants of effective interactions depend on the number of
single-particle states included.

We introduce separable interactions of a finite rank. Con-
sider, for example, the central spin-independent interaction
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We expand it over multipoles and write it in the second quan-—-
tized form
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where Rx(r)=rk or RA(r) =d/dr V(r) , where V(r) is the central
part of the Saxon-Woods potential. If one uses a separable
interaction of the rank n_ ., in the form
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for the particle-hole interaction and in the form
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for the particle-particle interaction, expansion over multi-
poles takes the form
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The first term allow for the particle-hole (p-h) interaction,
the second term allows for the particle-particle (p-p) inter-—
action, the third and fourth allow for the charge—exchange
(p-h) and (p-p) apteract%ons and the last for the.two—nucleon
exchange. Here kg and K] are the isoscalar agd isovector
cogstants of the p-h interaction of multipolarity A ; Gy and
GMare the p-p interaction constants, r=p for protons and 7 =
=n for neutrons. Introduction of a separable interaction of

a finite rank np,, in comparison with n .. =1 results in.an
additional summation over n. Introduction of a separable in-
teraction of a rank np,y 1is justified if npey 1is much less
than the rank of the determinant of the RPA secular equation
for a nonseparable interaction. Note that a simple separable

interaction
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structure. The functions Rﬁ(r)are constructed from physical
considerations and corresponding experimental data.

Consider excited states of doubly even spherical nuclei.
Then, transform the Hamiltonian consisting of the Saxon-
Woods potential, pairing and effective interactions between
quasiparticles. For this purpose we perform the canonical Bo-
golubov transformation

, )}—m +
a = u,a, + (- !
*im = Y %m YT Vi%—w

and introduce the operators
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as well as the phonon creation operator
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Single-particle states are characterised by quantum numbers

jm, i= 1,2,... are the roots of the RPA secular equation.
Perform the same transformations as in refs./}34/ and re-

present the QPNM Hamiltenian as
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where ¢ is the quasiparticle energy on the subshell j. Here
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Here K’(\)L and x’\lL are the isoscalar and isovector constants

of the spin-multipole (p-h) interaction, Gf and G,.L are the
constants of the multipole and spin-multipole (p-p) interac-

tion; K!f ,Gk is the constant of the tensor (p-h) and (p-p)
interaction. Then,
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37 means summation over single-particle levels of the neutron
1’
at r = n or proton at 7= p systems.

Note that for the RPA solutions the condition is fulfilled
under averaging over the phonon vacuum
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Therefore, Hamiltonian (3) has no terms ~ Q+ + and Qpu{Qxyj-

The calculations within the QPNM were mgﬁe 1n three steps.
The first step is the calculations within the independent qua-
siparticle model: single-particle energies and the wave func-—
tions of the Saxon-Woods potential are found and the super-
conducting pairing correlations are taken into account (see
ref/18/ ), As a basis, the QPNM uses not single-particle but
one-phonon states including collective, weakly collective and
two—quasiparticle states. Therefore, the second step is the
calculations in the RPA of one-phonon states forming the ba-
sis. At this stage all the QPNM constants are fixed. The third
step is the inclusion of the quasiparticle-phonon interaction
responsible for fragmentation of quasiparticle and collective
motions and thus for complication of the nuclear state with
increasing excitation energy.

2. RANDOM PHASE APPROXIMATION FOR STATES OF AN
ELECTRIC TYPE

Now we derive equations for calculating in the RPA the
energies and wave functions of one-phonon states

+
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where W4 is the ground state wave function of a doubly even
nucleus which is determined as a phonon vacuum. Normalisation
(9) has the form
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To describe one-phonon states of an electric type, i.e.
states with A"= 1=, 2% 37, 4% ..., we use the following part
of the Hamiltonian (3):

m 4 jmom Ev'® (10)

Now we find an average value of (10) over the state (9) and
using the variational principle
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are derived from equations (13) and (13')
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Equations (12)-(13"') include the functions (14'') with L =A
and A’=A and €, =¢ +ege,

Frax equations élZ), (12%), (13), (13') and the equation
for D we derive the secular equation for the one-phonon
energles w); as an equality to zero of the determinant of the
rank 12 n . With the use of separable interactions of the
rank np,, , the rank of the determinant increases Npgx times
in comparison with simple separable interactions. If one does
not take into account spin-multipole interactions with L = A,
the rank of the determinant equals 6 ng,,. If particle-par-
ticle interactions are disregarded, the rank of the determi-
nant is 40pzy . With the inclusion of multipole p-h interac-
tions the rank of the determinant is 2nmax. The phonon amp-
litudes ¢j and ¢ M are calculated by using the condition

@y, !

3. RANDOM PHASE APPROXIMATION FOR STATES OF A
MAGNETIC TYPE

To describe one-phonon states of a magnetic type, i.e. sta-

tes with L= 1%,27,3% 47, ... we use the following part of the
Hamiltonian (3)
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We find an average value of (15) over (9) and using the varia-
tional principle in the form (11) we get for A = L + | the
following system of equations: B
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The functions X ,/(7) are determined by formulae (14'").

From eqs. (16), (16"), (16'"') with A = + 1, 7=pand 7 =
= n we get the seculgr equation for w;; as an equality to zero
of the determinant of the rank 12 n ... Tensor interactions do
not increase the rank of the determinant. It is determined by
spin-multipole interactions. If the p-p interactions are neg-
lected, the rank equals 4ng,, . In many papers the calcula-
tion has been performed with A = L-1; then, the rank of the
determinant is 2 Dpgag.

If the RPA secular equations for states of electric and
magnetic types are solved and the energies ®); and phonon
amplitudes ¢ and ¢ M, are found, the Hamiltonian (3) ap-
pears to be Uniquely détermined. It contains no any free
parameters and no unfixed constants.

Equations for charge—exchange one-phonon states can be de-
rived in a similar way. For simple separable p-h interactions
they are given in ref.’? ; for the (p-h) + (p-p) Gamow-Teller
interactions they have been derived in ref./14/ .

4, BASIC EQUATIONS OF THE MODEL

In the QPNM the excited state wave functions are given as
a series in the number of phonon operators; in odd nuclei
each term is multiplied by the quasiparticle operator. The
approximation implies break off this series. In the calcula-
tions performed earlier, except for ref./!7/ | the wave func-
tions consist of one- and two-phonon terms.

The excited state wave function of a doubly spherical nuc-
leus 1is

13
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where v is the state number with given JM, and <AjpjAgpug|IM>
is the Clebsch-Gordan coefficient. Allowance is made for the
fact that phonons consist of quasiparticle operators, and the-
refore, satisfy complicated permutation relations’/3:%/ . In-
deed, averaging over the phonon vacuum we have
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Following refs.”34/ | the diagonal terms K7 denoted by K’(Ai,
Ag,ip) are considerably larger than nondiagonal ones. In the

diagonal in K approximation the normalization condition
(17) has the form
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An average value of the Hamiltonian (3) over the state (17)
in the diagonal in K’ approximation is
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wﬁiz has the form (4'') for states of an electric type and
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(5') for states of a magnetic type; UAglg
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functions V¥ (1), Vol (i), V¥ Gy, vl a.

Using the variational principle
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Then, the secular equation for the energies n, of the states
described by the wave function (17) becomes
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From eqs. (ZOK.and condition (18) for each value of n, we
: i
find Rl and Pklll. The form of eqs.(20) and (21) coincides
2°2

with that of eqs. for simple h1max= 1) separable interac-
tions 745/ | Effect of the Pauli principle in two-phonon
terms (17) leads, as before, to the factopl+—KJ(A11hA212) in
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(21) and shifts of the two-phonon poles Aw(Ayiq,Apip)- A spe-—
cific description of Ot states is presented in ref. /4’ . For-
mulae for charge-exchange states in doubly even spherical
nuclei have a form similar to (20) and (21).

It should be emphasized that with the use of finite rank
separable interactions the rank of the determinant (21) does
not increase in comparison with simple separable interactions.
The inclusion of finite rank separable interactions,(p-h) ten-
sor and (p-p) multipole, spin—-multipole and tensor interac~
tions makes the expressions for Ao(A i,A,1,) and Uhl? (Ji)

2°2
more complicated in comparison with the case when (p-h) multi-
pole and spin-multipole simple separable interactions are ta-
ken into account. This complication of the functions turns out
to be unessential in computer calculations.

CONCLUSION

Many characteristics of low- and high-lying states of sphe-
rical and deformed nuclei have been calculated in the QPNM.
High-lying states have been calculated by using the strength
function method/!-4. The obtained description of low-lying
states of spherical and deformed nuclei is in agreement with
experimental data. The predictions made for the structure of
some states of deformed nuclei have been later confirmed by
experimental data. In describing nonrotational states of de-
formed nuclei the QPNM is more advantageous (see ref./18/ )
over the interacting boson model 719/,

The QPNM was used to calculate the fragmentation of one-
quasiparticle states, to describe neutron strength functions
and widths of giant resonances in spherical and deformed nuc-—
lei. The first calculations of y decay of a deep hole state
were also made in the QPNM/29/ | Tt is to be noted that the
description of fragmentation of quasiparticle and collective
motions is one of the central problems of nuclear theory.
Fragmentation is being calculated in the QPNM, finite Fermi-
system theory, nuclear field theory and by a direct diagona-
lisation in the space of 2p-2h states. The results of these
investigations are presented in a series of reviews, for in-
stance, refs.,’2-421-24/ Ip the present paper we have obtained
the basic QPNM equations for (p-h) and (p—p) isoscalar and
isovector multipole and spin-multipole and isovector tensor
finite rank separable interactions. The finite rank of sepa-
rable interactions makes the RPA equations more complicated,
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which is unimportant in computer calculations. Most important
is the fact that allowance for the finite rank separable
equations does not result in any essential complication of
equations for calculating the fragmentation of quasiparticle
and collective motions. This implies that the QPNM may serve
as a basis for calculating many properties of atomic nuclei
and spectroscopic factors of nuclear reactions.

In conclusion I should like to note that in solving comp-
lex problems as the nuclear many-body problem is, one should
try te extract the most important degrees of freedom and to
find the decisive part of effective nuclear forces rather
than to formulate the problem in the most general form.
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Conosves B.T. EL4L-88-737
YpaBHeHWA KBa3uuaCTUHHO-OOHOHHOM MOAENM RAPA
C 3PPEKTUBHLIMM KOHEUYHOrD paHra cenapabenbHbiMu

B3aUMOAEWCTBUAMKU

NonyyeHn OCHOBHHE YPaBHEHWA KBA3MUACTUUHO-POHOHHOM MOAENM ARpa ANA
KOHEUYHOro paHra cenapabensHbiXx M3OCKaNAPHBX M WM3OBEKTOPHHX MYNbTHNONL=
HBIX M CNUH=MYNbTUMONLHBX U MSOBEKTOPHBIX TEH3OPHBIX YaCTUUHO-ABIPOYHBIX
M YaCTHUYHO-YACTUUHLIX B3aUMOAENCTBMM MEWAY KBasudacTuuyamu. [Ana ueTHo-
YETHuIX CHepUYEecKux AAep NoKasaHo, UTO 3Ha4YMTENbHOE YyCriokHeHue ,o6ycnos-
nNneHHoe KOHeWHwM Dp.. > 1 paHrom cenapabenbHbix B3aWMOJEWCTBWA, wMeeT
MECTO NpU BHYUCNEHUM OAHOPOHOHHBIX COCTORHWUA B NPUENUKEHMM XAOTHUUHBIX
¢a3. Yuer cenapabenbHelx B3aMMOAENCTBUM C Doy > | HE NPUBOAMT K cywecT=
BEHHOMY YCNOKHEHWI0 NPU BLYUCNEHWM QParMEHTAUMM KBA3UUACTHUUHBIX U KONJeK=
TUBHBIX COCTOAHUW. YTBEpwAAETCA, UTO MOAENb MOXET CNYXUTb OCHOBOW ANA
BHIYMCNEHUA MHOTUX XAaPAKTEPUCTUK CIIOKHBIX AAEpP.

Pabota BunonHeHa B JlaBopaTopuu TeopeTUueckon o¢uankn OUAW.

Ipenprst O6BenuHEHHOr0 HHCTHTYTA ANEPHLIX HCCJIEAOBAHHA. ZIyGHa' 1988

Soloviev V.G. E4-88-737

Quasiparticle-Phonon Nuclear Model Equations
with Effective Separable Interactions of a Finite Rank

The quasiparticle-phonon nuclear model equations are obtained f9r
the finite rank separable isoscalar and isovector multipole anq spin-
multipole and isovector tensor particle-hole and particle-particle )
interactions between quasiparticles. For doubly even spherical nuclei
allowance for separable interactions of the rank ng,; leads to a con-
siderable complication of equations in the random phasg approximation.
Separable interactions with n_ .. >1 do not cause any significant com-
plication in calculating the fragmentation of quasiparticle and col-
lective states. It is asserted that the model can sgrve as a basis
for calculating many characteristics of complex nuclel.

The investigation has been performed at the Laboratory of Theore-
tical Physics, JINR. T
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