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Recently a lot of attempts have been made in order to investigate

quantum systems under the influence of external time-dependent
fields ~/1-7/. The question behind that 1is how dynamical chaos
might occur not only in the rather well understood classical
case but also 1n a quantum mechanical system. Dynamical chaos
1s a random (unpredictable) motion of a completely deterministic
mechanical system whose equations of motion do not contain any
random parameters or any noise /8/. One problem 1in this field 1s
the relevance of classical chaos 1in the corresponding quantum case
studied in highly excited systems as a kicked rotator 9/ or,
more physically, a hydrogen atom in electro-magnetic fields -1,2/.
It was found ~10,117 that the classical diffuse behaviour asso-
ciated with chaotic time evolulion is greatly suppressed in the
quantum system. The wave packet remains localized all the Lime -1,
9/. Ancther field is the study of simple, pure quantum mechanical
models as a spin-1/2 system 5,6/ in order to look for mechanisms
which could be capable to weaken the mentioned quantum suppression
of dynamical chaos 74,6-/. Recently first attention has been paid
to the exact incorporation of Lhe continuum ~12- within a schematic
quantum system kicked with periodic pulses The aim of our paper 1s
Lthe presentation of a similar simple quantum model, a separable
one-term potential, kicked by an arbitrary modulated external
force Such a potential well known in few-body physics
describing only one partial wave [s of course nol very realistic
but it simplifies Lo a large extent practical calculations. [t
contains Lhe interaction of a particle with one set of quantum
numbers 1n a spherical symmetric (leld but includes only one bound
state and a continuum of scatlering states [L has been applied,
for example, as a subsystem in more complicaled dynamic models in
heavy-ion physics 7137 and 1n [issioning systems ~14-. With a sel
of such separable potentials [t {5 possible to approximabe rather
complicated local polentials (see (or example rel /197, The
parameters of Lhe separable potential can be chosen in such a  way
Lhat any given bound state energy, spread of Lhe wave (unction,
or  phase shifts for a scatbering process can be reproduced, The
exacl incorporation of Lhe continuum seems Lo be an advantage of




this medel and in this sense the model might be considered as a
new tool for the investigation of the ionization behaviour of a
quantum particle in external time-dependent fields -1,2,7/.

We consider the problem of a quantum particle with mass m in
a separable potential 1including only one term |B> with kicked
strength (period T) described by the Hamiltonian

0
H=H, + g F(L) T 6t /T-v) |B><B]|>» (n
0 v=-m

where g 1s a constant strength parameter and F(t) an arbitrary
chosen modulation function. For F(t)=const eq. (1) reduces to a
periodically kicked quantum system and for a time-periodic
function F with period = it covers the case of a
quasiperiodically driven system, too. The unperturbed Hamiltonian
for Lhe particle with momentum p reads (h=1 throughout the paper)

Ho= pS/2m + Vo 184l . @

The unperturbed system (2) possesses only one bound state |&p> with
energy Eg and a continuum of scattering states |wk‘> for incomming
plane waves |k> (see for example -13/). These elgenstates can be
expressed 1n terms of Lhe freeGreen operator Gg(z)=(z-p sem) 1L by

lag> = n Gy(Eg) | &)
1,H = 1o+ Ao Gy'kEem | (4)
with , ,
n = Bl G,2(Ep |@ 17 (5
and

AK) = Vo <l AL - Vg Bl Gy'tem 1B, (8

where the usual notation GO'(zJ Golztie) has been used. The set of
eqs. (3) and (4) 1s orthogonal and complete so thal we are able to
expand the wave function after the v-th kick in the unperturbed
basis:

lywd)> = ag” |gg> + § dk a¥(k) |8, "> . (7

On the other hand the wave function just before the v-th kick is
given by /67

“HT _-1gT FC-DT) @<

lpv)> = e JpCv-1)>. (8)

Employing the expansion (7) and using the operator idendity

1a|B><3] la
e =1+ |p<pl e =-1), (D

one finally gets the quantum map between the states beforethe v-th
and (v-1)-th kick

1ERT i .
e B ag¥ =ag’t v P eplap 1D
+ PV g v (10
-
ik=2m T . . -
e a¥o = a¥ o e agt v ey caypim
+ VL qpp 1Vl (11)
with TF
u -1gT FCCw-1)T)
P ls 1 (12)
and
IU'l = | dk au'l(k) ({”@k’)‘ (13)

The practical calculation of the unknown coefficient “BU and Lhe
unknown function a’(k) starts with the computation of Lhe remalning
matrix elements<f|ty> and <A|#>. Since Lhe operator G, appearing
in both of them, involves only Lhe momentum operator, it is

convenient Lo work tn momentum representation. If one supposes the
state | Lo be a harmonical oscillalor stale Inlm» with the
radial node number n, angular quantum numbers |,m and oscillator

parameler b, all arising mabrix elements in eqs. (3) - (13) can be
ovaluated analylically (see lor example Appendix A of ref. /1592
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One should note that due to the action of GO in egs. (3) and (4) the
asymptotic behaviour in space representation of the eigenfunctions
of Hy corresponds to the correct behaviour for finite depth
potentials -157

What is left to do in practice at a computer is mainly the
calculation of the, in fact one-dimensional, integrals I”"1 in
eq.(13). As an advantage, their integral kernels are proportional
to complex conjugated oscillator functions <@lk> (see egs. (4) and
(6)) which are for large values of the magnitude of k rapidly

decreasing functions ( o e—(ka/aba) ). Consequently, the
numerical integration after the analytical evaluation of the matrix
elements of q3+ makes no serious trouble. So we conclude that the
problem of the kicked quantum system (1) and (2) with full
inclusion of the continuum has been solved for simple form factors
to a large extent analytically for an arbitrary modulation function
F (for example periodical, quasiperiodical or stochastic
modulations J.

First numerical investigations have been performed for the
particularly simple case n=0 and 1=0. As the initial state we
choose a stationary bound state of Hy, 1. e. aBO=1 and & (kD=0
The parameters have been adjusted to typical values of the nuclear
physics describing a weakly bound valence nucleon: EB=*8.3 MeV and
b=3 fm. The modulation function F at time t=vT has been chosen as

FCuT) = cos(Znwx) , (14)

where x=T/t 1s the ralio of the two periods of the
quasiperiodically driven system The special case x=1 refers to the
pure periodic excitation of the system. In order to characterize
the period T of the kicks , a parameter 6§ has been introduced by
6=en 11 /lqil which 1s just the ratio of the exlernal kicking
frequency and the binding energy. The physical quantities after the
v-th kick like the total ionization probability Wy, the probabil ity
for Lhe occupation of the bound state WB. the differential emisston
spectrum de/da for particle emission with energy c=f sém, and the
total energy E are defined, following the usual procedures, as

[s4]
W= L PG s
Wy = |an|2 (16)
dwp/de = (@m372 172 la¥ccene) 178y |8 aun
[49]
E =Wy Ep + J de & dWsde . (18)
0

For irrational x values (incommensurate case) compared to rational
x values (commensurate case) 1t has been found 1in a
quasiperiodically driven two-state model 5,6/ that the rapid
decay of the autocorrelation function defined 1in ref. 7167 could
be a strong signal for the onset of quantum chaos.In the spirit of
these investigations it is convenient to introduce a similar
correlator as in ref. /6 including the continuum

N w
I (Caghh* ag”™¥ « £ dk K Cabtid™ aV*Haol |
N (19)

Clv) = | lim 1I/N
N+ M

With the above definitions of the physical quantities we have
examined the system for all parameter combinations with
x=1,1/3,1/n and 6=0.01 (very subthreshold ifonization),3,n,3.5 and
for a small - compared to the binding energy - intensity parameter
of the external field g=1 MeV and for an extremely large field
parameter g=400 MeV. The calculations were done with a mesh in
k-space of 0.01 fm! and a maximal k-value of 2.0 fml. These
values ensure the conservation of Lhe norm wI ! WB = 1 within an
error smaller than 10"B for all considered time. The maximal kick
number in Lhe calculations was N=10000. All calculations have been
performed at the CDC-B500 computer at Dubna,

As a general fealture concerning Lhe total fonization
probability we found in accordance with ref. /67 Lhat Lthe product




p=gT 1is the main control parameter for two quite different regimes
in the dynamical behaviour of the system. For small values of p (in
the order of 1) it does not matter whether x is a rational or
irrational number.The total emission probability exhibits a rather
regular, oscillating shape in time as it can be seen, for example,
in the upper part of Fig. 1. for the special case 6=3. The main
difference between the results for x=1/3 and x=l/n are only
quantitative differences in magnitude and shape of the smooth
functions in time. The magnitude of the oscillations of Wi depends
on the parameter combination and reaches values between 0.05 and
0.98 for the parameter values under consideration. This situalion
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Fig. 1. Depenaence of the tonization probability on the kick number
for two {requency ratios x (4=3.). Upper parl: “regular”
regime (gl ~ 0.3), lower part: "irregular" regime (gT ~
100.).
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Fig. e. Differential ionizatfon probabilily versus oemission
energy after 500 kicks in the "irreqular" regime (lower
part of Fig 1.).

changes drastically If one adjusts p to be of an order of 100
either by increasing the external field strength or diminishing the
frequency of the external field (enlarging of T, nolt shown {n the
{igures), Now the emission probabilily jumps from O to 1 after a
few kicks for the incommensurate value of x. For larger times Cup
Lo 10000 kicks) wl remains in the vicinity of 1 (full curve in the
lower part of Fig. 1). On the other hand the response of the system
for commensurate ratios of Lhe characteristic frequencies and large
p values does nol differ qualitatively from the case pal (dashed
curve In the lower part of Fig. 1).




These two different regimes can be observed even more clearly ) X =1/8t .
in the differential emission probabilities. For low p values in all —--X=1/3
performed calculations and for high p values with commensurate v — . -
frequency ratios the differential emission spectrum is governed by 1.0 g=1MeVv |
one or a few extremely narrow peaks with fixed positions in time. I
But in the "irregular" regime with high p values and incommensurate :
frequency ratios the spectrum exhibits a broad band behaviour with 095-LJ J.
a lot of peaks and with complicated structure. As an example, in L U
Fig. 2. two spectra after 500 periods of the kicking potential are
demonstrated for the same parameter values used for the lower part 09 : %
of Fig. 1. While for x=1/3 (dashed curve) only two peaks exist at 10 ‘g= 1MeV |
0.02 MeV and 8.5 MeV (please note the inset in Fig. 2. for the very
low energy region), the spectrum for x=1/n (full line) is
dislocalized and covers the energy region from O to 20 MeV. An
adequate feature could be stated for the autocorrelation functions
C(v). In Fig.3. one can see that in difference to the bound spin
12 system 5,6/ all correlations are damped with time. But again
there are big qualitative and quantitative differences in the 0 ]
Lime-behaviour. While for low p values (two upper parts of Fig. 3.) |
the more or less quasiperiodic autocorrelation functions are damped
only weakly, in the “irregular” regime the correlator decays
smoothly and very rapidly. This interesting property should be
examined more carefully in further investigations.
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Is the stated transition in the dynamics of the considered i 4
model system controlled by the dimensionless parameter p from a ]
“regular” regime characterized by an oscillating emission [
probability, a spectrum  with a few sharp resonances and a weakly
decaying autocorrelation function to an “frregular" regime
characterized by a fully lonized system,a broad band emission

spectrum and strongly decaying autocorrelation function a signal of 0 ,10 20 30 L0 50
dynamical quantum chaos? At first sight one might. think @ yes, 1t
could be. But a very important physical quantity, the Ltotal energy
of the particle, has nol shown in our calculations an increase in
Lime as it has been assumed to be essentially for a chaolic regime
in refs. ~1,3,6/. The energy in the “irregular” case up to very
large time is limited and does nol exceed a certain value. Such a

g = LOOMeV

Fig. 3. Auto-correlation functions in the "regular" ( two upper
parts) and in the "irregular"” regime Clower part). Tho
parameters are the same as In Fig. 1.
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