


INTRODUCTION

At the present time, interest in the =nm, "N and NN scatte-
ring processes in the energy region up to the second pi-me-
son creation threshold has been caused by the task of revea-
ling and taking into account the quark degrees of freedom in
the low—energy pion-nucleon interaction. For this purpose,
in refs/1-% the field-theoretical, phenomenological quark
models for the meson-nucleon vertex functions have been pro-
posed.

The most general field-theoretical approach, which enables
us to obtain the m#7,7N and NN scattering t-matrices making
use of the known meson-nucleon vertex functions, is the one
based on the Bethe-Salpeter equation or its quasipotential
reductions’4% . However, it is well known, that these reduc-
tions are not uniaue and one can obtain different quasipoten-—
tials and propagators in the resulting three-dimensional equa-
tions due to a different choice of the reduction prescription.
These equations differ from each other in the nonrelativistic
limit’% and it is necessary to use different phenomenologi-
cal parametrization of the vertex functions in order to repro-
duce experimental results. Furthermore, the quasipoten-—
tial is often derived with the use of additional simplifying
assumptions, which we shall consider, using, as an examfle,
the one-boson exchange model of the NN-interactions ’
obtained within the framework of the Blankenbecler-Sugar qua-
sipotential approach. It is well known that in this model for
nucleon-nucleon scattering the equation for the scattering
t-matrix has the form of the Lippmann - Schwinger equation
with the relativistic kinematics:
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where ¢ and q denote relative momenta of nucleons in_the c.m.
frame, E- is the total energy of the system: Ea _2\/m +q

G, (k; Ea )is the three- d1men3}onal propagator for th1s qua51—
potentlal equation, and V(q ;qQ ) is connected with the kernel




of the Bethe-Salpeter equationm K(q“q{P) in the following man-
ner:
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where q; and q, are the relative energies of nucleons in the
c.m. frame P=(E3;0) 1is the total four-momentum of -the sys-
tem and p, =(1/2)E”'q are the four-momenta of individual nucle-
ons.

In the one-boson exchange (OBE) model the following essen-—
tial simplifying assumption is made’ 7815 . the off shell
behaviour of nucleons is neglected and only the off-shell be-
haviour of intermediate mesons is taken into account. Thus,
in expression (2) for the qu331potent1a1 we must use p’
= ((1/2) P+q’ )21 ~ =m§ and p? =((1/2)P # OE - m% which

0

is equlvalent to the assumption Eg--E3 =0. It should be
pointed out that though the neglect of the off-shell behavi-
our of nucleons in expression (2) for the, qu351potent1a1 pro-
vides the hermiticity of the potential V(3°;q) in equation
(1), however, due to this approximation the retardation ef-
fects cannot be consistently taken into account in the diag-
rams which are included in the kernel K(q'.,q|P) of the
Bethe—Salpeter equation. Furthermore, in the OBE model’
unlike ref. 8/, the retardation effects are fully neglected
and the condition Ej., = E3 is used in the phenomenological
form factors as well as in the propagators in the potentials
of the NN interaction.

In this paper the Low equations for the #m, #N and NN scat-
tering obtained in ref. ’/ "are considered. Unlike the conven-
tional Low equation these equations explicitly contain the s ,
u,t 8,0 ,t channel contributions. These Low-type equations
are three-dimensional quadratically nonlinear integral equa-
tions, where the crossing symmetry of 7-mesons is explicitly
taken into account for the t-matrices of the 77 and 7N scatte-
ring, It is demonstrated that for the case of r7 and NN gcat-
tering the potential of the equations suggested is hermitian
and these equations can be reduced to the linear Lippmann -~
Schwinger—-type equations (1). The NN-potential obtained
will include the effects of the off-shell behaviour of indi-
vidual nucleons in the meson—nucleon vertex functions and
the intermediate mesons will remain on the mass shell,

1. THE LOW EQUATIONS

Let us consider the Low-type equations for the scattering
processes 1 + 2 » 1"+ 27, According to ref./g/, we have follo-
wing relations:
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where a, denotes the corresponding quantum numbers of the 1-th
particle,<n|J(w)|m>denotes the t-matrix for the m-particle
state to the n-particle state transition, e.g., for the t-
matrix for the n-particle state to the pion-nucleon state
transition we have:
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where ¢(x), ¥(x) and f(x) upa(x) denote the interacting
fields and plane waves’!l/ of a pi-meson and a nucleon, q,y =
= NPy ~M1P, is the relative four-momentum of pipn-nucleon
system: ny =1 -ng=my/(my+ My ); Pyg = (PY = @3 Pn): Pro =
= (ppo - @,P ) and 0(x>)"is the well-known step function. The
expression for the J(w) matrix can easily be related to the
Bethe-Salpeter wave function xn(q”N)
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(ab) in expression SB) denotes the crossing operator for a
and B particles, 4
appears in the particle crossing. The matrix Y in relations
(3) corresponds to the sum of equal-time commutators of field
sources J a(x)==f*(®[mx-+mi.T¢(x) for bosons and J,,(x) =
= a(O)[fvx-mN]p‘P(x) for fermion and the creation operators
of interacting fields
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Relations (3) connect the scattering t-matrix on the ener-
gy shell pf +pg =p{°+p3° with the product of the off-
shell t-matrices P, #pj] +P3 which contain all possible n-

particle intermediate states with the particles on mass shell.

In order to obtain equations from (3) for the scattering t-
matrices, we make, the following two assumptions.

1. In the sum over the intermediate states we take into
account only the states which contain not more than two par-
ticles. This assumption is necessary in order to derive the
closed system of equations from the relations obtained within
the quantum field theory. From the physical point of view
this corresponds to the assumption on the dominating role of
one- and two-particle exchanges in the particle interactions
in the low and medium energy region/1%/ .

2. Relations (3) are assumed to be valid off-energy shell
too, when Pi, = pj +pg # Pjg =P1°+ Py’ . This assumption is
necessary in order to obtain equations for the scattering
t-matrices from relations (3). It should be pointed out that
in the Low equation 710/ which is derived on the basis of the
t-matrix e1ement.<p1a1|Jpéaé ©) |pyapgayin> instead of the
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2, is the corresponding sign + or - which

R-matrix element R=8 -1, as in ref./g/, there is no need
in such an off-shell continuation. The equations given below
can be obtained from the t-matrix elements without the off-
shell continuation of relations (3) provided the two-loop
corrections in the vertex functions are neglected. However,
this way of derivation makes further calculations very compli-
cated; so we shall use relations (3).

Furthermore, under these assumptions for the t-matrix of
the NN-scattering from relations (3) we obtaint
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where we have omitted 8-channel contributions containing the
d and NN intermediate states which are supposed to make small
contributions to the NN interaction up to 1 GeV. From expres-—
sion (7.2) we conclude that the two~pion exchange terms of
the NN potential are determined by the <3’s’|F(w)|psp,ap -a">
N’>N +rm +rn° ‘transition vertex functions with the on -
shell pions. If the two-pion exchange quasipotentia1/7/ is
constructed, then the two-pion term in this potential will

be determined by the "N-matrix too. Consequently, within the
given approach to the constructing of the NN potential the
two-pion part of the potential should be much less than the
corresponding term that is obtained in the quasipotential
approach.
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ression for these matrix elements. In particular, for the 1
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where m = 0,p,w ,7 ,27,... and @= p°~ p° -P° or p°-p’° - In equat%or.l (9.1) we have pic':ked up all the terms that have
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In the expression for the NN potential (/.2) it is easy iu e plou—pion puieiital (7.4) Lie seagull teiws auu vune- .
to observe that unlike the NN potential, obtained on the ba- meson exchat.xge u,t,u,t terms are included. From the expli-
sis of the conventional Low equation 13/ with the use of cit expressions (9.1) and (9.2) one can conclt:tde that Fhe
cluster decomposition, the potential V (7.2) is hermitian crossing of any pi-meson from the out-s?ate with the pi-meson
provided the equal-time commutators Y are hermitian. The sea- from the in-state leaves the 77 scattering t-matrix unchan-
gull term is usually hermitian when it is calculated with the ged. Furthermore, the potential V (9:2) is hermit*%an. The her-
use of the simplest phenomenological Lagrangians/13/ . miticity of the potential V in.the given formulation of equa-
From relations (3) for the t-matrix of the mr scattering tion for the scattering t-matrices stems from the presence
we obtain of identical particles in the in- and out-states, leading to
- N N - R N I the hermiticity of the U+u and t+t channel terms in the
<pjaipyay|Tw =BS, ~PF)Ip,a pya,>=<pjajpyaylVipa pya,> - NN and 77 interaction potentials (7.2) and (9.2). It can easi-
ly be seen that in the case of 7N scattering the 7N interac-
do tion potential is not hermitian
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It is interesting to compare (10.1,2) equations for the

scattering t-matrix with the corresponding equation from

ref./* | It is easy to observe that taking into account the
off—shell behaviour of nucleons in the matrix elements (4)
leads to additional seagull terms and to the mN scattering
t- and t-channel ¢ ,? ,n7 meson exchange terms in the =N
potential. The #N potential is not hermitian due to the u-
and u-channel terms. The simplest way to obtain the needed
hermiticity of the potential of the #N interaction is to re-
place in these terms of expression (3) dp°-py - Py -w)
anda(p’° -p7 +P° +®) by (1/2)[8(p -py - P2 -w) +

+ 8(pyp -pN+P°+ w)] and (1/2)[6(PQ + @ + PY ~-P5 ) +
+-5(Pn -py - Py -w)l . This replacement does not change re-
lation (3) on the energy shell, however we have to make an
additional assumption, namely, we have to assume that equa-
tion (10.1,2) with the hermitian potential holds.

2. CONNECTION WITH THE LIPPMANN - SCHWINGER EQUATIONS

. 15/
From the quantum scattering theory/ we know that the
linear integral equation (1) is equivalent to the following
nonlinear integral equation:
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where V(4’,q) is the hermitian potential, ¢, and ¥ form the
complete set of eigenfunctions for the discrete and contlnuo—
us spectra of the corresponding hamiltonian and G (p E-*) is
the Green function for the noninteracting fields:

£ N N 1
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q P
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J (Q.QZEH ) is connected with the wave functions from the
continuous spectrum in the following manner:

(D2 2. B - (B V(S Ty <l w® 5 (E.o AT OIS
g (q.Q,Eq)_fd kV(q.k)<kl‘Pa >_(Ea Ea,)<q I‘l‘a >, (13)

Comparing equation (7.1) for the NN-scattering t-matrix
with equation (11), one can conclude that equation (7.1) is
equivalent to the Lippmann - Schwinger equatior’!/ with the
relativistic kinematics provided the hermitian NN potential
(7.2) has the single eigenstate in the discrete spectrum
which corresponds to the deuteron state.

The equation for the n7 scattering t-matrix (9.1) expli-
citly contains the m+ mm,7y transition matrix that is rela-
ted to the 77 scattering t-matrix. The terms with these scat-
tering matrices are included in the potential (9.2) and are
denoted by W(J*,J). Further, from equations (9.1,2) the
following connected system of linear integral equations can
be obtained:



(2) + + (%) 14
5L+1= w(F 'ji)+ v +[W(3i.31)-+V]G° gi' (14)
where V is the pion—pion potential defined according to ex-
pression (9.2). At the first step of the solution of equati-

ons (14)

W, . %) = o, (15)

is assumed.

If the converging procedure for solving equation (14) is
found, then the obtained solution represents the correct phy-
sical solution provided equation (9.1) holds, i.e., the re-
sulting Green function G:(G;l -V -W)"! has simple poles
at the masses inh,txnp and the left-hand and right-hand cuts
on the real axis of energy in the interval(-e, 2m,) and
(2m,., . oo) .

3. CONCLUSION

The integral equations (1) and (14) are the linear integ-
ral equations with the hermitian potentials (7.2) and (9.2)
for the NN and 77 scattering t-matrices.-These equations are
derived from the correcponding Low—twne equatiene (7 1) and
(9.1) for the NN and 77 scattering t-matrices. In order to
obtain a similar equation for the =N scattering t-matrix, one
has to change propagators in the u and u channel term of the
pion-nucleon potential (10.2) off-energy shell Px + Py
# Py +Py - Similar replacements are usually assumgﬁ in’t?e
quasipotential approach to the reactions I + 2 - "+ 2" in
order to achieve hermiticity. Unlike the quasipotential for-
mulations, the potentials obtained will be hermitian in the
case when the vertex functions are complex and there is no
need in taking into account of certain terms from the full
Bethe-Salpeter Green function.

The expressions of the #7 , 7N and NN interaction poten-
tials are determined by the Bethe-Salpeter wave functions
Tynm = <O T(Wy(x) ¥y()) IMin> and [ppy = <0|T(®g4{x) @, (y))|Miin>.
The construction of these vertex functions in the pheno-
menological quark field-theoretical model is equivalent to
the determination of the following vertex functions’?!

Tymi f[d4p ][d‘m]ﬁn(x, p)<O| T(¥y(x p) ¥y (Y, @) M;in>Uy(y, ) |
A (16
L™ Ta%p1[a%010, (%, p) < OIT(RgAx,p) D, (v, 01| M; in >V, (v, 0),
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where x, =% + p,, ¥y, = y+w, and ¥ p =3 w =0 denote
i i i i i i i i

the coordinates of the individual quark fields, from which
the nucleon and meson fields Wy(x,p) =T(q(x ) ao(x,)q4(xg))
and ®(x,p) =T(q(x)qp(y)) are built up, and U(x,p) are
the Bethe-Salpeter wave functions for the nucleon—-quark and
meson—quark systems. It is easy to observe that expression
(16) contains the quark—exchange effects between individual
nucleon and pi-meson fields. Let us point out that if these
quark-exchange effects between all four hadron fields are
taken into account in the full Green function, which serves
as a basis in deriving relations (3)’®", then we obtain the
NN, 77 and 7N potentials (7.2), (9.2) and (10.2) as well as
the corresponding terms with the meson and quark exchanges.
Consequently, in this formulation the meson and quark exchan-
ge interactions are contained in the potential additively
and independently from each other.
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