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1. In recent years, atom + field systems have been intensi -
vely studied both theoretically and experimentally, see, for in -
stance, review [1]. For a theoretical description it is first ne-
cessary to construct a perturbative theory (PT). The calculation
by PT is conveniently made by the REDUCE system described in [2].

In our previous papers ([3,4]) we made use of the system for
calculating the energies and wave functions of a hydrogen atom in
an inhomogeneous electric field. In this note (as well as in pre-
liminary note [S1), we shall consider a homogenious field for
simplicity. Our purpose is to demonstrate the possibilities of the
REDUCE for solving PT problems in quantum mechanics in the lan-
guage of the dynamic-symmetry group. Recall that for the hydrogen
atom with no field it is the S0(4) group introduced by Fok ([8]).

2. Our approach ([6]) is based on the dynamical group
S0(4,2) (see [7]) which takes the external field into account as
well. A unitary irreducible representation of the algebra SO(4)
is connected by a dilatation transformation with wave functions
of the discrete spectrum of a hydrogen atom, and perturbations of
a polynomial form are directly expressed through generators of
the algebra S0(4,2). Therefore, the solution of an initial spect-
ral problem is reduced to a pure algebraic procedure well
adjusted for implementation with the help of REDUCE. Unlike
standard PT, here corrections to eigenfunctions in each finite
order are expressed by a linear combination of a finite number of
the basis functions of a unitary irreducible representation of
S0(4,2). Corrections to the eigenvalues and coefficients of that
combination are given by polynomials of eigenvalues of a complete
set of commuting generators of the S0(4,2) algebra characterizing
the unperturbed problem. For the Stark effect such a set [n A ml
is defined by parabolic quantum numbers [n1 ny ml: n= n1+n2+m+1
is a principal quantum number; -A = n, -ny is a third projection
of the Runge-Lenz vector; and m is a third projection of the
electron orbital moment on field F .

3. This note presents a short account of an algebraic PT and

the text of the program "STARK". This_program implements the PT
in the source langugge of the REDUCE system. It allows us-to ob -
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tain, in k-th order of PT, analytic expressions in the form of
polynomials of three variables n, A, and m for corrections to the

energy and for coefficients hgf), 2k £s, t £2k of the linear

combination of basis functions corresponding to the k-th correc -
tion to the wave function

2k 2k
G b0 1sty
Wnlnam . st
g§=— =

where |st) = |n1+s, n2+t, m) is a state vector in k-th order of
PT. These corrections appear when a hydrogen atom with charge Za
being in an arbitrary state |n1n2m) is placed in a homogenious
field F. Hereafter we use atomic units. As a test we present the

expressions for ECP? and bgf), p=1,2. The proposed procedure may

be generalized to other polynomial fields and other systems, for
instance, to a quantum-mechanical oscillator in an external poly-
nomial field. In the latter case it is necessary to use an osci -
llator representation of the group S0(4,2) or S0(2,1) ([71).

When REDUCE is applied to problems like these, the need is
arising to define an action of operators f(r,z) of two indepen -
dent variables r,z on a state vector (r,zjst) = KET(s,t). Unlike
the article [8], where similar operation in two-dimensional Gross-
Neveu’'s model is defined on the basis state |0), we define the
action of an operator on an arbitrary state |n1 ny m). It allows
us to realize degenerate PT shemes.

4. Let us introduce the notation and recall basis properties
of the group S0(4,2). The Lie algebra S0(4,2) is formed by 15 ge-
nerators Laﬁ = _Lﬁa' where o, = 1,...,6:

[Laﬁ'Lay] = lgauLﬁy' 9pq = (1111-1-1). (1)
In the x-representation Luﬁ are given by the relations
{,j,k=1,2,3>:

Lij = %Py ~ x;p; = &5 5ly

Lig = 12x;8% + 2ip; - 28p, - x) = A

Lig = 1205, + 2ip; - 2tPp; + x) @
Lgg = 12r8° - 1), Lgg = LR20P° + 1),

Lig = -i(1 + I, Lig =-ry,
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where B = -i a/axk, L, and A are components of the momentum,
orbital moment and the Runge-Lenz vector of the electron, respec-
tively, ® = (% %%3) are its coordinates, r = (x12 + x% + )rg) 2
The operators (2) act in the Hilbert space of functions with the
scalar product

e = fa3x rXabrlgd, &)
with respect to which they are self-conjugate. For the Stark

effect, we choose the basis to be formed of eigenfunctions of
three commuting operators Lgg, Lgy # Lyo

ISG | n1 ﬁz m =n I nl ﬁz m>
Layg I'my n, m> = (ny - nyd) oy ﬁa m 4
Lla | n1 ﬁa m =m l n1 ﬁa m .

Explicitly, the basis functions <§|n1 ﬁa m> are given in [6].
They differ from the Coulomb functions of the hydrogen atom by
normalization and in that the argument does not depend on the

\/ ~2Emj ~ energy of an unperturbed atom, E(O) = —za/(anal, i.e.
those functions form the Sturm basis with a uniform asymptotics.
Their normalization is determined by the scalar product (3), how-
ever, we make use of nonnormalized functions

= 1 =
inlnam> = Cnlnzm | nynom >
5)

- 1
Cnlnam = V’E { ng! ot/ [Cn1+m)!(na+m)!] } /2.
The action of the operators L48 ® LSS in this basis is defined by
the relations

CL45*L35)1n1n2m> = (n1+m)|n1-1 no m o+ Cn1+1){n1+1 ns m

(6
(L4S+L35)|n1nam) = (na+m)]n1 n8~1 m + (n2+1}ln1 n2+1 m,

This definition allows us Lo avoid half-integer degrees of poly -
nomials when we set the action of the operators Lyg ¥ Lgg on the
basis, Lo diminish the number of algebraic substitutions, and to
shorten the run time considerably.
The energy E of the hydrogen atom in uniform electric field
F may be represented by the expansion
EF = E9 EFkE(k). g
k=1

Then the Scréodinger equation is reduced Lo the following equation
for the state vector [¢» ([81):

{1g-n- EFkV(k)(x:g.r) }ie =0 @
K5t

where

Vg, = {EDR - r2 oz,

VCZ)(x3,r) = { ALt }n/Za

X3 = (L35-L34)nlza, r = (LSG-L46}n/Za.
Accordingly, the solution to (8) is looked for in the form

1¢> = Iny fip m> + L jCKI Pk @

and instead of (8) we get the system of inhomogeneous equations
for EK? and |¢:

L(n) |ny ny m> = {"L‘:-,S—n}'}n1 fio m> = 0 o

Lem <Ry = VR exg, rainy iy m> + };v(k'p’(xg,r)m(% = (R
p:
Taking into consideration the relations (4), (6) and the polyno-

nial form of V<k?, ye expand the right-hand sides of fK) and
corrections |¢(k)> over the state vector

Ist> = Ing+s nott m)Cnlnam, an
normalized so that 00> = |n1n2m>:
& 2
Tl Zk Z‘(fg‘{’lso - et
s=-ck t=7 V2 (xg,r3 100> + Z; VP 1Py 12
p:
& 2
167> = g{ tgb’(‘{) Ist>, b§’ =0, bk = as
§=- ==

With the orthogonality condition of functions [sty in the
sence of (3) and the relation (4): L{n)Istd> = (s+4i)|st), we
ocbtain, instead of (10),

(s+t2b{K7 sty = £ st

a0 (14)
foo =0

[#1]



Il(:kf.ﬁ:h ordex(*].(+'.1;§arting from the first one, we subsequently obtain COMMENT CALCULATE THE RIGHT HAND SIDE OF THE ALGEBRAIC EQUATION
E and bgy "7, by solving an algebraic equation for ' IN K~TH ORDER;
) o(k41)  o(p) (P FOR ALL K LET F(K)=
f (E , EVPY, piPl ) 1gpsi) =
00 of psk) = 0 s N/ZA%CVCK, X3, RI®KET(0,0) +
(k+1) _ ~1pCk+1), o(p) e8] FOR P1:=1:K-1 SUM VCK-P1,X3,RI%(FOR S:=-2xP1:2%P1 SUM
b = (s+t) 7 f (E'P’, 1%psk+t, , 151%
st st pk+l, bgy”, 1<1<k} (16 FOR TT: =-2xP1: 2%P1 SUM B(P1,S, TTI*KET(S,TT)));

The initial conditions for the recurrence procedure (13), (18) COMMENT FORMAL SUBSTITUTIONS,
are given by LET X3=X3(), R=RQJ;
(O o —Zgl(ana), bég) =0 an FOR ALL X,Y LET X3C)=KET(X,Y)=K3(X,Y), ROI*KET(X,Y)=R(X,Y);
FOR ALL X,Y LET RCX, Y)=C(N+X+Y)»KET(X,Y)~
Note that the procedure (18)-(17) fixes the eigenvector J¢> up to 1./2%C (X+NL+MD*KETCX-1 . Y0+
the normalization. In the considered variant of PT the free para- CX+N1+1)KETOX+1, Y2 +
(L) . ’

meter bsgs” was taken zero. When necessary, the obtained vector (Y+N2+M)%KETCX, Y-1)+
|¢> may be easily normalized with the use of the definition (3). CY+N2+1)%KETCX, Y4100 D3N/ ZA;

In this work, the procedure (18)-(17} is realized in the FOR ALL X,Y LET X3(X,Y)=(1,2%(-C(X+N1+M)*KET(X-1,Y)-
source language of the compuler algebra system REDUCE as the CX+NL+1)%KET(X+1, Y3+
program STARK. This program is adjuced in Appendix together with CY+N2+MI%KET(X, Y-1)+
modifications necessary for inhomogenious field case. In the CY+N2+1)KETCX, Y+1)) -
programm we use the following notation: CY-X-DI#KETCX, 1) I%N/ZA;

X3=x3, R=r, F=f¥, pg=pk

B=bl?,  KECsL = s> COMMENT CALCULATE THE ENERGY AND EXPANSION COEFFICIENTS OF THE
STATE VECTOR IN K-TH ORDER,
N=n Nl =n, N=n, M=m D=A ARRAY CC1);

Note that in the program the set of parabolic numbers [NI N2 M] PROCEDURE FK(K3;
in the course of calculations is replaced by an equivalent set BEGIN SCALAR U,Ut,U2;
[N D M]. U:=F(K); Ul:=DEN U, U:=NUM U;

COEFF(U,KET(0,0),0);

Uz =C(13;

Appendix COEFF(U2,EE(K),C);
U2: =-U2/C(1I+EEC(K);
Program STARK WRITE EE(K):=U2;

FOR I:=-2%K:2xK DO

COMMENT AT FIRST ONE NEEDS TO READ IN THIS PROGRAM FILE; FOR J: =-2%K: 2%K DO
<<U@; =IF COEFF(U,KET(I,J3,C} NEQ O THEN C(1)-U1
OPERATOR X3,R,F,B,EE,KET; NONCOM X3,R; ELSE 0;
IF (I+J) NEQ O THEN WRITE BCK,I,J):=UR/C(I+J)
COMMENT CALCULATE THE PERTURBATION IN THE K-TH ORDER; . ELSE WRITE B(K,I,J2:=0>>
PROCEDURE V(K,X,Y); | END;
IF K < 1 THEN O FLSE IF X = 1 THEN COMMENT TRANSFORM NUMBERS Ni, N2 INTO N,D,M:
SUB(X1=X, Y1=Y,EEC1)%¥1-Y1%X1) J LET N1=(N+D-M-1)/2, Ne=(N-D-M-1)/2;
ELSE SUB(Y1=Y,EECK)»Y1); FOR ALL X,Y,Z SUCH THAT X <= 0 LET B(X,Y,2)=0;
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END OF THE PROGRAM FILE;

COMMENT INPUT OF INITIAL DATA - READ THE DATA UP TO (K-1)-TH ORD;
IN STARKIN;

COMMENT CUTPUT OF THE RESULTS UP TO K-TH ORDER TO A FILE. SUBSTI-
TUTE AN INTEGER TQ PARAMETER K;

LINELENGTH(65); OFF NAT,ECHO;, OUT STARKOUT;

FK(K3;

WRITE “END"; SHUT STARKQUT; ON NAT,ECHO;

END OF RUN;

COMMENT sowoex THE CHANGES NEEDED TC FORM PROGRAM “MULT™ (INHOMO-
GENIOUS FIELD CASE);
COMMENT ADD THE LINE: )
OPERATOR FAC,A;
COMMENT ADD TWO DEFINITIONS: :
FOR ALL X LET FACCX)=FOR I:=1:X PRODWCT I;
PROCEDURE P(N,XJ;
IF N<O THEN O ELSE IF N=O THEN 1 ELSE IF N=1 THEN X
ELSE ((2xN-1)»XxP(N-1,X)-(N-1)=P(N-2,X))N;
COMMENT REPLACE V(K,X,Y) PROCEDURE DEFINITION : ;
PROCEDURE V(K,X.1);
IF K<=1 THEN O ELSE SUB(X1=X, Y1=Y,EE(K)xY1+
ZBx( ~1)2nC K1) %Y xxKxP(K-1,X1/Y1));

COMMENT REPLACE THE DEFINITION OF F(KJ;
FOR ALL K LET F(K)= N/ZAxCVCK, X3,RI®KET(0,0} +
FOR P1:=1:K-1 SUM V(K-P1,X3,R)x
(CFOR S:=-P1:P1 SUM A(P1,S.~S)KET(S,~8)) +
FOR S:=-P1:P1 SUM
FOR TT:=-P1:P1 SUM B(P1,S,TT)=KET(S,TT)));
COMMENT REPLACE FK(K) PROCEDURE DEFINITION :
PROCEDURE FK(K):
BEGIN SCALAR U,U1,U2,K1.2.21;
U:=F(K); UL:=DEN U; U:=NUM U. Ki:=K-2;
COEFF(U,KET(0,0),C); U2:=C(1):
COEFF(U2,EE(K),CY; UZ: =-12/C(1)+EE(K)
WRITE EECK): =lR2;
IF K1>0 THEN
FOR S:=-K1:Ki DO

{KZ:=8; Z1:=-8; Ul:=UL=DENCU}; U:=NUM U;
U2: =IF COEFF(U,KET(Z,21),C) = O THEN O ELSE C(1):
U2: =IF COEFF(UR,A(K1,Z,21),0) = O THEN O

ELSE -U2/C(1)+A(K1,2,21):
WRITE ACK-2,S,-S):=U3»;
FOR I:.=-K:K DO
FOR J:=-K:K DO

<<U2: =IF COEFF(U,KET(I,J),0) = 0 THEN O ELSE C(1)/U1:

IF (I+J) NEQ O THEN WRITE BCK,I,LJ): =U2/CI+])
ELSE WRITE B(K,I,J):=0>>
END;

COMMENT ADD THE CONDITIONS: :
FOR ALL X,Y,Z SUCH THAT X<=0 LET A(X,Y,2)=0;
FOR ALL X,Y,Z SUCH THAT X=1 LET B(X,Y,2)=0;

COMMENT CHANGE THE FILE NAMES IN COMMANDS “IN“,“QUT" & "SHUT";
COMMENT ssotex END OF CHANGES ssooux ;

COMMENT EXAMPLES OF RESULTS AS THEY HAVE WRITTEN TO THE FILE
STARKOUT;

EECL) = (3xDxN)/(2xZA)%

B(1,0,2) := (Moax3x(Dun2 + 2uDxM -2xDuN ~4xD + M2 ~ 2uMuN - 4xM
+ N2 + 4xN + 3)) A 32x2A%%3)S

EEC2) := (Namda(3xD2 + OuMaun2 173w -10)) /(16xZA%x4 )8

B(2,0,2) = (NwxnGx(Dsexd + 2uDsox3uM + 2uDax3xN  + 4xDwxn3

+ Das2adbinZ + GuDaaZaMuN + 123Dxx2aM - InDiouNanz - ExDaxxN
- S5uDse2 + 4xDxMoxN + BxDaMwn2 + 12xDaMaN + 163D%M — 43DxNwn3
~30xDuNas2 - G2xDuN ~ T2xD+ 4o + 22xMocN + 24Mwxd
- BuMuin3 - BOxMuNMnS - 13GwMxN - OGxM + 4adbexd + 38xNxx3

+ 1240lxn2 + 162xN + 72)) A 128B%ZAwnE) $
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A6pamkesuu A.T., Bununxuit C.HU., PocroBues B.A. E4-88-404
Pemenue 3amau o6 aTome Bogopopa
B 3JIEKTPHUECKOM IIOJIe C HCIOoJib30BaHHeM cucTemsl PEIBXC

O6cyxpmaeTcss MeTOOHKA pemeHHs 330ady TeOpHUM BO3MYymEeHHMH
KBAHTOBOH MEeXaHHKH Ha f3biKe TPYIIbl JHHAMHYECKOH CHMMEeTpPHH
KBAaHTOBOM MeXaHHKH C I[IOMOmMBLI0 CHCTEMhl KOMITBIOTEPHOH aireo6psl
PEOBYC. IpuBenmeHa mporpamMMa BbIUHCJIEHHA B aHaJIHTUJYECKOM
BUe SHEepPrud M BOJIHOBHIX GYHKIHMH aToMa BoAopoda B SIIEKTpH—
YeCKOM IOJjIe B NIPOH3IBOJILHOM MOPAOKE TEOpPHH BO3MYMEHHH.

PaBora BhmoOsHeHa B JlaGopaTOpHH BhUHCIHTENBHOH TEXHHKH
¥ aBTomaTusauuu OUAU.
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Abrashkevich A.G., Vinitsky S.I., Rostovtsev V.A.
Solving Problems on Hydrogen Atom E4-88-404
in Electric Field by Means of REDUCE

A technique of solving perturbation theory problems
of quantum mechanics in the language of the dynamic sym-—
metry group by means of REDUCE computer algebra system
is discussed. The program for analytical calculation of
energy and wave functions of hydrogen atom in an electric
field in arbitrary order of the perturbation theory is
presented.

The investigation has been performed at the Laboratory,
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