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1. In recent years, atom + field systems have been intensi ­
vely studied both theoretically and experimentally, see, for in ­
stance, review [11. For a theoretical description it is first ne­
cessary to const.ruct a perturbative theory (PT). The calculation 
by PT is conveniently made by the REDOOE system described in [2J. 

In our previous papers ([3,41) we made use of the syste. for 
calculating the energies and wave functions of a hydrogen ato. in 
an inhomogeneous electric field. In this note (as well as in pre­
liminary note [9]), we shall consider a homogenious field for 
simplicity. OUr purpose is to demonstrate the possibilities of the 
REDOOE for solving PT problems in quantum mechanics in the lan­
guage of the dynamic-s)'lllllletry group. Recall that for the hydrogen 
atom with no field it is the SO(4) group introduced by Fok ([6J). 

2. OUr approach ( [61) is based on the dynaaical group 
80(4,2) (see [7]) which takes the erternal field into acccxmt as 
well. A unitary irreducible representation of the algebra SO(.) 
is connected by a dilatation transforlllation with wave functions 
of the discrete spectrum of a hydrogen atom, and perturbations of 
a polynomial form are directly expressed through generators of 
the algebra SO(4,2). Therefore, the solulion of an initial spect­
ral problem is reduced to a pure algebraic procedure well 
adjusted for implementation with the help of REDla. tkllike 
standard PT, here corrections to eigenfunctions in each finite 
order are expressed by a linear combination of a finite number of 
the basis functions of a unitary irreducible representation of 
SO(4,2). Corrections to the eigenvalues and coefficients of that 
combination are given by polynomials of eigenvalues of a complete 
set of commuting generators of the SO(4,2) algebra characterizing 
the unperturbed problem. For the Stark effect such a set [n ~ m1 
is defined by parabolic quantum numberS [nl n2 m1: n = nl+n2+m+1 
is a principal quantum number; -a = n2 -n1 is a third projection 
of the Runge-Lenz vector; and m is a third projection of the 

-+ 
electron orbital moment on field r . 

3. This note presents a short account of an algebraic PT and 
the text of the program "STARK". This~ogram implell8nts the PT 
in the source language of the REDUCE system.. It allows us-to ob ­
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tain, in k-th order of PT, analytic expressions in the form of 
polynomials of three variables n, ~, and m for corrections to the 

energy and for coefficients ~t), -2k S s, t S 2k of the linear 

combination of basis functions corresponding to the k-th correc ­
tion to the wave function 

2k 2k 
(k) 

¥'nln~ s~ t~2kb~t)lst) 
where 1st) = Inl+s, n2+t, m) is a state vector in k-th order of 
PT. These corrections appear when a hydrogen atom with charge Za 
being in an arbitrary state Inln~) is placed in a homogenious 
field r. Hereafter we use atomic units. As a test we present the 

expressions for E(P) and b~r), p=1,2. The proposed procedure may 

be generalized to other polynomial fields and other systems, for 
instance, to a quantum-mechanical OSCillator in an external poly­
nomial field. In the latter case it is necessary to use an osci ­
llator representation of the group SO(4,2) or SO(2,1) ([71). 

When REDUCE is applied to problems like these, the need is 
arising to define an action of operators f(r,z) of two indepen ­
dent variables r,z on a state vector (r,zlst) = KET(s,t). Unlike 
the article [81, where similar operation in two-dimensional Gross­
Neveu's model is defined on the basis state 10), we define the 
action of an operator on an arbitrary state In1 n2 m). It allows 
us to realize degenerate PT shemes. 

4. Let us introduce the notation and recall basis properties 
of the group SO(4,2). The Lie algebra SO(4,2) is formed by 15 ge­
nerators L~ = -L~, where a,~ = 1, ... ,6: 

[L~,Lar1 = igaaL~, goa = (1111-1-1). (1) 

In the x-representation L~ are given by the relations 
{i,j,k=1,2,3}: 

Lij = XiPj - xjPi =eijkLk 

Li4 l/2(xi~ + 2iPi - ~Pi - Xi) =Ai 

Li5 l/2(Xi~ + 2iPi - ~Pi + Xi) (2) 

L46 = l/2(r~ - r), ~ = l/2(r~ + r), 

L45 = -i(l + ~), Li6 - r i, 

"Vibde-:.:;a;;1~ ihCft";·y' 
U~JliWX lii.C:Wl\~l'mm; -I:.LI.,S rilL j ,~, -,- "::!.l I,0..... It.,.~v , ~_, 1.1' .. 




where J\: = - i a/~, ~ and -\ are components of the momentum, 
orbital moment and the Runge-Lenz vector of the electron, res~­
tively, t = {l1 Xc:!Xg} are its coordinates, r = ext + x& + ~) /2. 
The operators (2) act in the Hilbert space of functions with the 
scalar product 

<fig) = Jd3X f*ei)r- l gCi}, (3) 

with respect to which they are self-conjugate. For the Stark: 
effect. we choose the basis to be formed of eigenfunctions of 
three commuting operators 1s6, ~ H L12 : 

1s6 I n1 n2 m> = n I nl n2 m> 

L34 n1 n2 m> = (n2 - nl)1 n1 n m> (')
2 

L12 nl n2 m> = m I nl n2 m> . 

Explicitly, the basis functions <xln1 n2 m> are given in [61. 
They differ from the Coulomb functions of the hydrogen atom by 
normalization and in that the argument does not depend on the 

~ _2EtO) - energy of an unperturbed atom, E(O) = -ZaJ(2n2), i.e. 
those fUnctions form the Sturm basis with a uniform asymptotics. 
Their normalization is determined by the scalar product (3), how­
ever, we mak:e use of nonnormalized functions 

Inlnzm> = Cn 
~ n m I nln-2m >
1 2 

(5) 

C = ~ { nl' n2'/ [(nl+m)!(n2+m)!1 }112.nlnzm 
The action of the operators L46 H 1s6 in this basis is defined by 
the relations 

(L46~L36)lnlnzm> = (nl+m)ln1-1 n2 m> + (nl+l)lnl+l n2 m> 
(6) 

eL46+L36)lnln2m> = (n2+m)lnl n2-1 m> + (n2+1)lnl n2+1 m>, 

This definition allows us to avoid half-integer degrees of poly ­
nomials when 	 we set the action of the operators L46 H L36 on the 
basis, to diminish the number of algebraic substitutions, and to 
shorten the run time considerably. 

The energy E of the hydrogen atom in uniform electric field 
F may be represented by the expansion 

ECF) = ECO) + l Fk:ECk:). 	 (7) 

k:=1 

4­
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Then the ScrOdinger equation is reduced to the following equation 
for the state vector I¢> ([el): 

{ Lsa - n -	 l Fk:y<k:) cx3,r} } I¢> = 0 (8) 
k:~ 

where 
y<1)Cx3,r) = { E(l)R - rZ }nlZa 

v(2}(x3,r) = { ECk:)r }nlZa 

X3 = (L36-L34)nlZ , r CLsa-L46)nlZa.a

Accordingly, 	 the solution to (8) is look:ed for 1n the form 
I¢> = In n m> + 1: I¢O:) >FCk:) , (9)

1 2 k:=1 
and instead of (8) we get the system of inhomogeneous equations 
for E(k:} and I¢>: 

L(n)ln1 n2 m> = {'Lsa-nJ)nl ri2 m> = 0 
(10) 

k:-l 
L(n)I¢Ck:}> = VCk:)Cx3,r)lnl ri2 m> + ~V(k:-P)(x3,r)I¢CP» s f(k:) 

~ 
Taking into consideration the relations (4), (6) and the polyno­
mial form of y<k:). we expand the right-hand sides of fCk:) and 
corrections I¢Ck:» over the state vector 

1st> = In1+s n2+t m>Cn n m' (11) 
1 2 

normalized so that 100> = Inln2m>: 
2k: 2k: 

f(k:) = ~ ~ f~t)lst> = k:-l 

s~ t~ VCk:)Cx3,r) 100> + ~ VCk:-P)I¢(P» (12) 

2k: 2k: 
b~) = 0, bCk:} = O. (13)I¢(k:» = s~ t~b~t)lst>, 	 s-s 

With the orthogonality condition of functions 1st> in the 
sence of (3) and the relation (4): L(n} 1st> = (s+t) 1st>, we 
obtain, instead of (10), 

CS+t)bCk:),st> 	= f(k:} 1st>st st 

f	 Ck:) 
(1') 

00 =0 
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In each order, starting from the first one. we subsequently obtain 
E(k+1) and bit+1). by solving an algebraic equation for 

f~+1)(E(k+1). ECp), bif) , 1~p~k) = 0 	 (15) 

b~t+l) = (S+tJ-1f;t+1)CE{P), 1~p~k+l. b~t). 1~1~) (16) 

The initial conditions for the recurrence procedure (15), (16) 

are given by 

E(O) = _Z2/C2n2) b{O) 0 (17)a . st 
Note that the procedure (15)-CI7) fixes the eigenvector I¢> up to 
the normalization. In the considered variant of PT the free para­
meter bb6) was taken zero. When necessary. the obtained vector 
I¢> may be easily normalized with the use of the definition (3J. 

In this work. the procedure CI6J-(17) 1s realized in the 
source language of the computer algebra system REDUCE as the 
program STARK. This program is adjuced in Appendix together with 
modifications necessary for inhomogenious field case. In the 
programm we use the following notation: 

X3 E x3' R E r. F:: fCk) • EE:: ECkJ 

B E b;t). 	 KETCstJ E 1st> 

N :: n, N1 E nl' N2 E n2' M:: m. D:: fl. 

Note that in the program the set of parabolic numbers [Nl N2 MJ 
in the course of calculations is replaced by an equivalent set 
[N D MJ. 

Appendix 

Program STARK 

COMMENT AT FIRST ONE NEEDS TO READ IN THIS PROGRAM FILE; 

OPERATOR X3,R.F.B.EE,KET; NONCOM X3,R; 

COMMENT CALCULATE THE PERTURBATION IN THE K-TH ORDER; 
PROCEDURE VCK.X.YJ; 

IF K < 1 THEN 0 ELSE IF K = 1 THEN 
SUBCX1=X,Yl=Y,EE(1J*YI-Yl*XlJ 

ELSE SUBCY1=Y.EECK)*Yl); 
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COMMENT CALCULATE THE RIGHT HAND SIDE OF THE ALGEBRAIC EQUATION 
IN K-TH ORDER; 

FOR ALL K LET F(KJ= 
N/ZA*{V{K,X3,RJ*KET{O,OJ + 

FOR Pl:=l:K-l SUM V{K-Pl,X3,R)*{FOR S:=-2*Pl:2*Pl SUM 
FOR TT:=-2*Pl:2*Pl SUM B(Pl,S,TT)*KET{S.TTJJ); 

COMMENT FORMAL SUBSTITUTIONS;) 	 LET X3=X3(J, R=R(); 
FOR ALL X.Y LET X3()*KET{X,Y)=X3CX.YJ, R{)*KET(X,Y)=R(X.YJ; 
FOR ALL X.Y LET RCX.Y)=C(N+X+Y)MKET{X.Y)­

l/2*«X+Nl+MJ*KET(X-l.YJ+ 
eX+Nl+1)*KETCX+1,YJ+ 
(Y+N2+MJ*KET(X.Y-l)+ 
(Y+N2+1J*KET{X.Y+l)))MNrZA; 

FOR ALL X.Y LET X3(X.Y)=(I/2*{-(X+Nl+MJ*KET(X-l.Y)­
eX+Nl+lJ*KET(X+l.YJ+ 
CY+N2+MJ*KETCX,Y-1)+ 
eY+N2+1)*KETeX,Y+l))­

CY-X-DJ*KET(X,Y))*NrZA; 

COMMENT CALCULATE THE ENERGY AND EXPANSION COEFFICIENTS OF THE 
STATE VECTOR IN K-TH ORDER; 


ARRAY CO); 

PROCEDURE FKCK); 


BEGIN SCALAR U,Ul,U2; 
U:=FCK); Ul:=DEN U; U:=NUM U; 
COEFFCU,KETCO, 0) ,C); 
U2: =cel); 
COEFFCU2,EEeK),C); 
U2:=-U2/C(l)+EECK); 
WRITE EECK): =U2; 
FOR I:=-2*K:2*K DO 

FOR J:=-2*K:2MK DO 
«U2:=IF COEFFCU.KETCI,J) ,C) NEQ 0 THEN Cel)/Ul 

ELSE 0; 
IF (I+J) NEQ 0 THEN WRITE B{K,I.J):=U2/{I+J) 

ELSE WRITE B(K,I.J):=O» 
END;\ 
COMMENT TRANSFORM NUMBERS Nt. N2 INTO N.D.M;j LET Nl=(N+D-M-l)/2, N2=(N-D-M-l)/2; 
FOR ALL X,Y.Z SUCH THAT X <= 0 LET BCX,Y,Z)=O; 
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END OF THE PROGRAM FILE; 

(J(}MIOOIT INPUT OF INITIAL DATA - READ THE DATA UP TO CK-1)-TH ORD; 
IN STARKIN; 

COMMENT 	 OUTPUT OF THE RmJLTS UP TO K-TH ORDER TO AFILE. SUBSTI­
TUTE AN INTEGER TO PARAMETER K; 

LINELENGTH(65l; OFF NAT,ECHO; OUT STARKOUT; 
FK(KJ; 
WRITE "END"; SHUT STARKOUT; ON NAT,ECHO; 

END OF RUN; 

COMMENT 	 M'IHfH THE CHANGES NEEDED TO FORM PROGRAM "MULT" CINHOK)­
GENIOUS FIELD CASEl; 

COMMENT ADD THE LINE: 
OPERATOR FAC,A; 
COMMENT ADD m DEFINITIONS: 
FOR ALL X LET FAC(X)=FOR I:=l:X PRODUCT I; 
PROCEDURE P(N.X); 

IF 	N<O THEN 0 ELSE IF N=O THEN 1 ELSE IF N=l THEN X 
ELSE C(2*N-IJ*X*PCN-l.X)-(N-lJ*PCN-2,X»/N; 

COMMENT REPLACE VCK.X,YJ PROCEDURE DEFINITION: 
PROCEDURE VCK,K.Y); 

IF K<=l THEN 0 ELSE SUBCKI=K,YI=Y,EECK)*Yl+ 
ZB*,-l)**'K-I)*Y**K*PCK-l.Xl/Yl»; 

COMMENT REPLACE THE DEFINITION OF FCK); 
FOR ALL K LET FCK)= NJZA*CVCK.X3.Rl*KETCO.O) + 

FOR Pl:=l:K-l SUM V(K-Pl.K3.R)* 
(CFOR S: =-Pl: Pl SUM ACP1.S. -S)MKETCS, -S») + 

FOR S:=-Pl;PI SUM 
FOR TT:=-Pl;Pl SUM BCPl.S.TT)MKETCS.TT»); 


COMMENt REPLACE FKCIO PROCEDURE DEFINITION: 

PROCEDURE FKCK); 


BEGIN SCALAR U.Ul,U2.Kl,Z,Zl; 

O:=FCK}; Ul:=DEN U; U;=NUM U; Kl:=K-2; 

COEFFCU,KETCO,O).C); U2;=CCl); 

COEFFCU2,EECK),C); U2:=-U2/C(1)+EECK); 

WRITE EE{K);=U2; 

IF K1>O THEN 


FOR S:=-Kl:K1 DO 
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«Z:=S; Zl:=-S; Ul: =Ul*DENCU); U:=NUM U; 
U2:=IF COEFFCU,KETCZ,Zl) ,C) = 0 THEN 0 ELSE CCI); 
U2:=IF COEFF{U2.ACKl,Z,Zl),C) = 0 THEN 0 

ELSE -U2/CCI)+ACKl,Z,Zl); 
WRITE ACK-2,S,-S):=U3»; 

FOR I:=-K:K DO 
FOR J:=-K:K DO 

«U2;=IF COEFFCU,KET{I,J) ,C) = 0 THEN 0 ELSE C(1)/Ul; 
IF CI+J) NEO 0 THEN WRITE BCK,I,J):=U2/{I+J) 

ELSE WRITE BCK,I,J);=O» 
END; 

COMMENT ADD THE CONDITIONS; 

FOR ALL X,Y,Z SUCH THAT X<=O LET ACK,Y,Z)=O; 

FOR ALL K,Y,Z SUCH THAT X=l LET B{X,Y,Z)=O; 


COMMENT CHANGE THE FILE NAMES IN COMMANDS "IN", "OUT" & "SHUT"; 

COMMENT M'IHfH END OF CHANGES ***** ; 


COMMENT 	 EXAMPLES OF RESULTS AS THEY HAVE WRITTEN TO THE FILE 
STARKOUT; 

EE(1) := C3*~N)/C2*ZA}S 

BC1,O,2) := CN**3*(D~ + 2*D*M -2*D*N -4.0 + M*M2 - 2~N - 4*M 
+ N~ + 4*N + 3»/{32*ZA**3)S 

EE(2) : = CN**4*,3*D~ + 9*M*M2 -17*N~ -19))/(16JEZA**4)S 

B{2.0,2) : = CN~CD**4 + 2*D**3~ + 2.o**3*N + 4*D**3 
+ D~~ '+ 6*~~N + 12*D**2*M - 3.o~*N~ - 6*D~*H 
- 5*D~ + 4ifD*M*M2*N + 8.o*M*M2 + 12*~MtIN + 16*D*M - 4*D*N**3 
-36*D*N~ - 92*D*N - 72.0+ 4~*N~ + 22*M*M2*N + 24~ 
- 8*MJfN**3 - 6O~N~ - 136~N - 96*M + 4*N**4 + 38*N**3 
+ 124*N~ + 162*H + 72»/(12B*ZA**B)S 
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A6pamKeBHq A.r., BHHH~KHH C.H., PocToB~eB B.A. E4-88-404 
PemeHHe 3agaq 06 aTOMe BOAopOAa 
B 9neKTpHQeCKOM none c Hcnonh30BaHHeM CHCTeMbI PEUh~ 

06c~aeTcH MeTOAHKa pemeHHH 3agaQ TeopHH B03~eHHH 
KBaHToBoH MexaHHKH Ha H3hlKe rpyrrnhl AHHaMHQeCKOH CHMMeTpHH 
KBaHToBoH MexaHHKH C nOMO~hW CHCTeMbI KOMnhwTepHoH anre6phl 
PEUhIDC. llpHBeAeHa nporpaMMa BbNHcneHHH B aHanHTHQeCKOM 
BHAe 9HeprHH H BonHOBb~ ~YHK~H aTOMa BOAopOAa B 9neKTpH­
QeCKOM none B npoH3BonhHoM nopHAKe TeopHH B03M~eHHH. 

Pa60Ta BhlnonHeHa B ITa60paTopHH BbNHcnHTenhHoH TeXHHKH 
H aBTOMaTH3a~H OHHH. 
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A technique of solving perturbation theory problems 
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is discussed. The program for analytical calculation of 
energy and wave functions of hydrogen atom in an elect:tic 
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