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Introduction
Efficiency of the muon cataly51s of the nuclear fusion
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as an energy source is determined by the sticking probability cos
of the muon to helium/q/. First theoretical estimates of the probabi-
lityl&% have been made in refs./2-4/ by the so-called sudden-~pertur-
bation method/5’6/ which is essentially a simplified version of the
Born approximation. Later it has been found that the estimates are
considerably higher than the experimental value of LQS /7’8/. The
obtained discrepancy between the theoretical and experimental data
on CUS upon the recalculatlon/g/ of the observed Wy (1nclud1ng the
correction for stripping of the muon with 4He) to the bare u) shows
the necessity of a more accurate computation of the wave functlon of
the mesic molecule in the initial channel and consideration of the
influence of a nearthreshold resonance 5f/e (%/2 . The use of

th in refs.

0"13/ h?s diminished the value of aJs by about 25% as compared
2=4

}?ore accurate wave functions of the me31c molecu
, which allowed one to approach experimental data more clo-
sely/7’8/. What is the accuracy of the Born approximation itself in
the problem (1) is still an open problem.

The problem (1) is multiparticle, with long-range interactions.
Therefore, a complete answer to the question concerning the accuracy
of the Born approximation can be found by considering all the system
of six particles (the muon and five nucleons) as a unique object.

At modern computers it is difficult to perform sufficiently accurate
calculations of a six-body problem, especially as it is necessary to
solve the scattering problem with two and more clusters in the final
state when the sticking probability is determined. At present, nume-
rical calculations with a sufficient accuracy are being made for
systems consisting of no more than three particles. Therefore, for
reaction (1) it makes sense to employ tine model in which only three-
-particle systems are solved numerically. Just this model is inves-
tigated in this paper. Based on that model, we propose an exact de-
finition of the sticking probability (Lg and formulae more accurate
than 1n/4/ and/gl for its computation,
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In the considered model, reaction (1) is described by the Hamil-
tonian with three bound channels corresponding to certain stages of
the reaction. The Hamiltonian parameters may be fitted from the data
on the reaction o+ i‘—',v 4 €+, accurring without muon. If from the
three-channel Schr8dinger equation we eliminate the components cor-
responding to the initial ( Atw_) and intermediate (5//; ) c¢hannels,
the final channel (‘@?e, n{/«._) will be described by a three-particle
equation with energy-dependent potentials. On its basis we construct
the Faddeev equations and study the form of asymptotic boundary con-
ditions for the wave function of the final channel and its Faddeev
components 1w/ . The sticking probability 055 is expressed in terms
of the amplitudes of spherical waves in the coordinate asymptotics
of the wave function. For the amplitudes, the integral representati-
ons are found in terms of the wave functions describing the scatter-
ing in the asystem 4 e +1n + . Approximate relations for calcu-
cation of 605 without numerica} solution of the Faddeev equations
follow from the exact formula Qg wupon substitution into the integ-
ral representations, including the scattering-wave-functions, Born
approximations instead of the functions themselves. The final formu-
lae follow from the expansion of the wave function of of of the
initial channel that is considered to be known by means of
the muon Coulomb functions of the 5//6 intermediate channel. The
obtained formulae may be compared with the expressions for (J);
proposed in/g/ and/13/. Thus, the integral representations we have
constructed for the amplitudes allow us in principle to estimate the
inaccuracy of the Born approximation for the sticking probability (:Js.

The paper is organised as follows.

In the first and second sections,we introduce the notation and
formulate the three-channel model for reaction (1).

In the third sect., we consider the fit of the model parameters
. from the data on the resonance 5/6@’(%)* . With this aim the
resonance parameters are calculated within the corresponding three-
-channel model of the reaction of+ 1t — He+n .

In sect.4 the decay of the mesic molecule c/?/é—'is analysed.
The resonance shift of the energy and decay width are calculated in
the first- and second-order perturbation theory in the channel coup-
ling constant,

In sect.5, integral and differential Faddeev equations with ener-
gy-dependent potentials are formulated for the exit channel.

In sect.6, the Fredholm nature of the integral equations is
proved for the generalized Green function of the final channel and
some coordinate asymptotics are described.

In sect.?7, asymptotic boundary conditions are formulated for
the final-channel wave function and its components. In termsaof these
asymptotic conditions, exact definition of the probability Wy is
given.

In sect.8, the Born approximation for tae sticking probability
dbs is studied on tne basis of the integral representations for

scattering amplitudes.

1. Three-Channel Hamiltonian

Reaction (1) will be described by the energy operator

H‘/ 5(2 0
H B Ba,/ IL/Z 523 (2)

O Bss Hs
with three coupled channels. The Hamiltonian of the first channel /74
describes the system(dt/»{); that of the second channel //2 s the
system 3, e*/‘u.); and the third-channel Hamiltonian /L/.5 is the energy
operator for the final stage (4//e,n, g_) of reaction (1). The opera-
tors 5/;' 5,2.-. B,’; , and 523,525-_- 5;; do cou;zling between the chan-
nels. Now let us describe the operators Jy L=1,2,3 in a greater
detail.

In the first (initial) channel the clusters d and t will be
considered structureless particles with internal energy fd ==2,225
MeV ancléf. =-8.482 iieV, resp. The Hamiltonian H., is defined by the
equality

¢) ¢ " N < ¢ :
Hi= Hy'+ Vatp * Vag * 20, Vd7<= Vot l/*/"’L e ¢

where /‘/o({) is the kinetic-energy operator of tne relative motion in
the system clt H V;t , Vdc , and th« are Coulomb potentials of
the particle interaction; an/:. d"t' is the nuclear potential of the
deuteron-tritium interaction. The quantity A4 denotes tne aain
threshold of the first channel, Ay=&y+E¢ - x

In the second channel, the compound nucleus 5Hc(5/e)+ will be
considered a structureless particle with intermal energy 2,=X +64
KeV/m./ The damiltonian /'/0(2) will be taken in tae form
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where /7; is the kinetic-energy operator in the system /%;AL and
V;; igs the Coulomb potential of the interaction between the muon
and 5yﬁ; nucleus.
The third channel will be treated analogously. We shall consider
the 47ﬁ2 nucleus to be a particle with a fixed internal energy
Az =-23.297 MeV, and the Hamiltonian of the system 47ﬁe,na/c is as

Zollows
@)
H3=Ho -+ V4c +23,
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where //o is the kinetic-energy operator, V“/'/e and V"//en are resp.
the Coulomb and nuclear potentials of the interaction of the 4}&3
nucleus with the muon and neutron.
Relative disposition of the main theresholds Ay, A, , and A
of the channels of reaction (1) are drawn in Fig.1.

2. Coordinatesg

We shall use the reduced Jacobi coordinates/14/ to describe the
considered system of particles. The choice of coordinates will be
dictated by the channel number.

In all the three channels the muon will be a particle of the
first number. Numeration of other particles will be as follows (see
Fig.2): in the first channel the deuteron will be particle 2 and
triton, particle 3; in the second channel containing only two par-
ticles, the nucleus 57%2 will be particle 2; in the third channel
the neuteron has number 2 and the nucleus 4¥ﬁ5 , number 3. The num-
ber of a pair in the initial and final channels coincides with the
number of an extra particle.

For channels 1 and 3 the reduced relative coordinates 3C{andaﬁ
are given by the formulae

xXy= v ET”M (re-r3), J“" 2m1(mz+m3)(n_ m,r2+m5r;,)
2+ M3 Mg+ my+ my my + My
the remaining coordinates Id,g‘ s k =2,3 follow from X4 and 44
by cyclic permutation of indices.
The only reduced relative coordinate in channel 2 will be de-
noted by g+ o Y= \/2"'4”’2 (ry-1,)+ Note that the physical nmeaning

. m
of the coordinates ,3674* fs the same for all the three channels

Ay
Az

A

Fig.1. The thresholds %i, i=1,2,3 of the initial 1, intermediate
2, and final 3 channels of reaction (1).

Y Y, Y,

Xy X4

t d SHe* tHe n

Fig.2. Reduced Jacobian coordinates of initial 41 intermediate 2
and final 3 channels of reaction (1).
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Fig.3. The effective Coulomb potential V:?* created by the muon
in the initial channal (1) of reaction (1) replaces the
repulsion Coulomb potential \4§t in reaction (2). The
nuclear potential Vul in the same channel of reactions (1)
and (2). The dashed lines represent nondegenerated energy
levels of the mesic molecule oH:)A .



(see Fig.2); the distance from the muon to the centre of the complecs
3P+2n , with almost the same coefficient:

\[2mCmermd) [ 2mumsug Vem,'(m,ﬁmmel
My + my + mJof Mt + Msye My + My + Mige
In channels 1 and 3 the relative coordingtes X« and Ju will
be combined into vectors X= {xd,aﬁ },XGIR. All the particles
participating in the reaction will be considered spinless.

The energy operators of the channels /L/( and //3 act in the Hil-
bert spaces ?f, and % , Tesp., jll=(7'/3 =Zz(k6)whereas /'/2 in
?/2= Zz (Raﬁ) The total Hamiltonian /L/ acts in the sum ?f:
= J{"._ of channel spaces D’{‘_‘ , 7 =1,2,3. The scalar product in7/£
! will be denoted by (.,.). The kinetic energy operators °
and Hf)rorm a gix-dimensional Laplacian —Ax , the operator //?’ is
a three-dimensional Laplacian —Ay, . All the potentials in (3) are
two-body potentials and act on the corresponding variables X, . The
Coulomb potential in (3) are of the form

VE Cxcud = nw 1t
dere Ny = ¢; g,j[zm;md-/(mﬁmj)_]‘/% where { and § are numbers of
particles in a pair «£ , q,; and q,' are their charges. The mesic
atomic units are chosen . The Coulomb potential of interact-
ion between the mmon and SHe" in (3) has the form

C
vs"'"*/“(d"’)= jf;dw‘ | St e @)

MSHe + Mp

L=

3, Fit of the operators of couplinz of channels

As a matter of fact, the muon in reaction (1) creates an effec-—
tive potentia1/17/ in which the deuteron and triton are under the
barrier approaching each other at a sufficiently short distance (see
Fiz. 3).

In the subsequent fusion

d + t — 5/L/e*(3/2)+—> 4He +h (%)

the muon as an electromaznetic particle does not participate. In view
of the above-said, it is natural to assume that the operators of
coupling of channels BQ and 623 are determined by the interaction
in the system 2p+3n, and the influence of the muon Coulomb interact-
ion of the parameters of these operators is sma.ll/16/. Therefore we
shall describe reaction (5) with the Hamiltonian

h, B, O
h= [ s b, Bs, | , (6)
0 DBs, hs

where the operators A, =-A +\Q:+ Vd'; +Ay and 115:-qu+ V;;fent)‘é

act in the channel Hilbert Bpaces s, and 7{, » Tesp., with X,=
=H, =L2(K;r4)' The operator h,‘, of multiplication by the constant 2,
operates in = . The scalar product in the spaces }A{L- will be
denote by <-, '>1'. s i =1,2,3. The operators of channel coupling By,
and 523 are chasen as in (2).

‘Thus, the parameters of the operators B may be fitted from the
experimental data of reaction (5). Ubviously, the analysis of the
Hamiltonian (6) is much more easy than (2) because in this case the
operators h{ and hz are two-particle operators. Note that a Hamil-
tonian like (6) was first considered in e/
its parameters. a A

The most s}mple but quite reasonable is to take 5,2,5, . %»%
and 552. 532.' 31/2» J/5 as separable operators of rank I operating
on a complex number Uzéjfe by formulae

(’512 UZ)(xf) = pu; P(xq),
C(Pazuy ) (xe)= ¥y, X(x,),

A
where ¥ and 7( are fixed functions, Y€ 7{4 and )(E 7/3 with com-
pact supports ch and bx . The supports ,‘b,, and %x are re-
gions of the "phase transition" (i.e. the regions of the reaction
d+t->5f/;- in Ril of the systemd_t into a compound state 5He~( l)*
and the analogous region for the system “He +# . We put II'«P"=KKIZ1_
The parametersf and x represent constants of coupling of the
channels. The dependence of the moduli squared I‘P(Z’C{)lz and (7((14)‘
of the functions Y and 7( on the coordinates =<{ specifies, as a
matter of fact, the relative probability of reactions d+t *SHQ*
and 5”&—» He +n y resp. at a point Xy , of tne configuration spaces
RZ’-, of the first and third channels. The rate of the considered
reactions will be determined by the constants A and ¥ .

#e will now apply the model (6) to compute the parameters of
the resonance 5He‘(3/2)+ , the energy ER and half-width P/Q , as
functions of the bare energy ), and coupling constants and § ,
which allows us to determine the values of {5 and \’ from experimen-
tal data.

From a mathematical point of view, the resonances are poles

where fit was made of



of the Green function 3(2):(}1-3)_4 of the operator L) on the second
sheet of the Riemannian surface of energy Z . Consider the starting
equation(h-z)g(Z)sl for the Green function g(z) written for
components gg(z):

h‘_z P‘«(’ 0 3” 312343 L‘ 0 0
<"‘P>4 )2"2 <.’X>3 gl‘ 322 323 = 0 Iz 0
0 ¥yx hy-z J31 §32 §a3 D 01,

with I‘-' » an identical operator in an i-th channel. Upon eliminating
the components g"d . J =1,2,3, this equation reduces to the sys-
tem of integral equations with a degenerated kermel with respect to
the unknowns J‘J. and 35,] .

. «(2)¢
33+ TS Pt o 144 0] 5y guce)e 5y EEL
J5 + _3_32 i——(i)z’( [F,<§4j-, P+ ¥<gs ;(>5] - 534.33(2)4, S‘j Kia_(‘:)?f’

-1 -4
where .(z)-(ln‘-z) and gs(z)a»(hs-z) are the Green functions
of operators hy and 3 » Tesp. We make also use of the notation:

<j‘,{ N ‘(’Z = j’Jx gy-(x,-, 2)9(x), <<?°J . 7(% = ydxgaJCx,-.z) (=) .
From the system it is seen that the unkmowns ¢;; , L =1,2, are
expressed in terms of the functions K{ = F (J‘J. ‘o (P>4 and
QZ'5= X<g°j ‘y X>5 (we consider | fixed in computations). The prob-
lem of finding the latter is purely algebraic. To construct equations
for a, and &'b » it suffices to multiply (7) with Y ana ﬂ)Xas
scalars. Poles of the Green function (2) are roots of the determi-
nant 'D<Z) of the resulting system of equations for ,Q, and % .

1 2 2

DE-1+ 55 [ @0 + Yi<gs )05 ]
The complex roots of'])(z) are resonances. They can be calculated by
the perturbation theory if and ¥ are small (more exactly, small
should be the products P’(gq(z)\(’. >  and ¥<4(2) X, 7(>3),
We are interested in the roots in the vicinity of 7, . The existence
of roots of that type at a distance of an order of I‘bz or Xz is ensu-
red by the Rushet principle. To determine those roots with am accu-
racy up to 0( 2)a.ud‘ O(b’z), we rewrite the equation :’)CE)=0
in an equivalent form

Z= Do <G - g (XA (@

and in the right-hand side replace- Z by Q2x{(0 . As a result, we
+, -
obtain two resonances Z (?52) and Z(A2),

Z )= Py + At i Telly + A £ Tin/2, (9)

where the shifts A¢e+i.|"¢z/2 =—[§<g4(a2-i0)‘4>, 9> andAin+ iMnf2=
=-x2<gs(22-i0))(,f>3 correspond resp. to elastic a?d inelastic
channels. Here Aef=- Re 2<J,(>,+io)&g4’2 and [og = 2Tm p(q,(2,+10)4,93,
The quantities A;,,. and ﬂn/z are determined analogously. Both the half-
widths l"d/z and r',',,. /2 are expressed through the jumps g;_(?«z+i_0)-
- 3;(7\2-1‘.0) of the corresponding resolvents JL(Z) , 1=1,3,
when passing across the cut. These jumps are explicitly expressed in
terms of the wave functions (Ho(k,x) and %o (k,x) of the continuous
spectrum of operators l14 and h5 , resp. And finally, we have for%:

2 u 2= A4 P . 2

!;e2+ﬁn - p fwz’“ Ldk <%°(\1,\2-x,'l<),w>4\+
2 - A 2
e P | <, (o ), X3

L.
2

/167,

are to be taken into account. For

In reality, the coupling of channels 1 and 2 is not very smal
and in (9) terms of the order
this aim equation (8) should be written in the form

Z= - pI<g (i)Y, ¥ -
- Pza'ii<<7‘(2*w)cp’¢>4 ,=£Z'>‘2)+ O(F’G)' (10)
- X< ga O iOX XD, + 0%

and account is to be made of the fact thatz: the expression
Im(g,(z*()‘z))‘?,?z is of an order of O({5 ) . solving (10) for

and taking terms of an order up to O, 4)into account we get for Z(Ag):
~ . .~
Zi(kz)= AZ + Aee + L‘;‘e + A'Ln x "Sw

’

where
e Aet(l\z) ~ _ r;l % A
Aee:h—d » [—'Cp‘ 4_d' 1 ALH—W ’ (11)
N. _ (Min _ _ _0’_ A b ]
PLH' 4_4- ’ d— = [4 d} ee() A-Xz.

Formulae (8)-(11) allow us to fit the parameters ‘5 and X from
the experimental data.



n,’ Decay of the mesic molecule GH;HV (perturbation theqr_y)

The energy levels of the mesic molecule oH: , even the lowest
ones, are clos_e to the threshold 24 of the initial channel. Their
shift relatively the threshold is of an order of several KeV. When
the coupling between channels is switched on, i.e. when Bﬂ_# 0
and 532#0 in (2), the discrete spectrum of the operator H4 trans-
forms into resonances. If the discrete spectrum is multiple, the
transformation into resonances may be only partial, This should be
carefully verified/ 18/ . ‘

d#e shall describe the transformation of the discrete spectrum
into resonances using as an ‘example a nondegenerate state 43‘()()
of the mesic molecule o”.‘/{ with energy & y & <>\4 « In what follows
we shall consider CP , <4>e:H4 at two states with J=0, v=0 or
J0, V=4 which are nondegenerated’mB/. The case of degenerated
states uay be considered following/qs/.

4e now do not study, as it has been made in sect. 3, the Green
function of the operator H and analyse its behaviour on the second
sheet because dispersion relations of the type (8) determining the
poles of the resolvent on the unphysical sheet can be obtained imme-
diately from the spectral problem H 0u= = "U . Analysis of
this problem within the perturbation theory appears to be less com-
plicated tnan the study of the Green function.

30, consider the equation HQJ:zU for eigenvalues of the
operator . In the representation of elements 4157{ ,‘U={u.ulu5}
as vector-columns this equation reduces to the system

(Hr‘ Z)Ui+ B2 U, =0,
Bouy + (Hz‘z)uz* B, Uy, =0, (12)
Baz U, + CH3‘*—')'“5 =0

witn the second and third equations we express U, and Uy in terms
of Uy and eliminate U, froa the first equation of (12). The result

is tae equation for the only component U, equivalent to the whole
systea (12):

[He- 2+ Wezys W, (2 u=0. 13
dereafter we mite use of tae notation WH(Z), ‘x/7 7{;—-— 2{’-' l:d‘zl,s

for energy-depzaisnt potensials of the fora

W;d'(Z) = - B“_g GZCZ) Bz}

10

: -4
where Gz (Z>=(IL/2— Z) is the Green function of the operator
/> . The energy-dependent potential Mst (z) is given by

Maa (?> =-Wa(=2)R(=) Wiy, (z),

where R(Z) is the generalized Green function of the third channel,

R(z) = [Hy-z+ W )]

The potentials D«d(z) are integral operators with the kernels

/

Wey (XX 2D = = b ) by GG, gy 752 )0
where 4:45 LP and {35‘5 f are functions of the coupling of channels,
GZ is the Coulomb Green function of the second channels, and X=
=4x,)y4} X/={I1/)<74,§ . As the function bk C:c;) has compact
aupports%bk (see sect.3) k =1,3, the potential \X/Ld asd)a functiorzl'
of the variable is concentrated in the cylinder Q’ =%L X P?'l
and as a function of the variable X/, in the cylinder Q:Jiﬁ-"“lip-
That potential is separable in the variable X{ and is an operﬁtor
of the type of the contraction over the variable é‘ . At L=J"‘
it may be considered as an extra two-body potential in channel 1
belonging to the subsystem

WSS Cz) may be considered an extra rapidly decreasing potenti-
al in the system 4He’ h,/( belonging to the pair 4He_,n . The
dependence on the variable Y4 of the relative motion of the third
particle in (14) signifies that these potentials are threeparticle
potentials. rotentials of that sort always appear when the intrin-

. Analogously, the operator

sic structure of particles is taken into account in many-body prob-
1ema/18/ and/qg/.

When the coupling between channels is assumed to be weak
(Pi ¥3 )<< 1 , the second potential in (13), \X/lM , is of a .
higher orde¢r of smallness <~,626'2) than the first one W}(2), 6/5 ),
therefore, it is just the potential\X/“(z) that mainly contributes
to the level shift € . e shall look for that shift within the
perturbation theory.

We pass from (13) to the integral equation

U == G @) [ Walz)r W G we 15

where Gy (Z) is the resolvent of the operator ,L/, , CMZ):(M-zjf
To apply the perturbation theory to the leading order in small para-
meters /52 and §? , in the vicinity of Z= & in the kernel G (7)
it suffices to take into account only one pole term (‘,4’)4@/(6-2).
This is justified if the levels of the mesic molecule dt/u._ are



2
well separated, i.e. the parameter is sufficiently small as com-

pared with the distances between levels. So, instead of (15) we will
consider the approximate equation

U =-Ce~25 ([ W)+ Wia, @] us, P, P (16)

from which it immediately follows that 'U4=&‘¢ where 3{ is a number.
In accordance with (16) the equation for % is as follows:

[2-e-MN@P¢),- W @P,P),Tx=0. «n

For equation (17) to have a nontrivial solution it is necessary that
the function D(Z) :

D)= z- € - (WP, P, - (W )b, ),

turns into zero. With the explicit form of the operators 5;4 , We
shall write the equation '-])(Z) =0 in the follawing form

2 -~ T 2 2 I A~
2=&-p (@R P)-pI(GEXRON,GEEP) s
where CP_—<CP, cﬂ>{ igs a result of averaging of the wave function
of the mesic molecule a{‘f" over the function ‘P that realises
the coupling between channels 1 and 2. Retaining in the r.h.s. of

(18) only the terms of O(/b‘) and 0;&’&’2}% obtain(see sect, 3)

the resonances

c Tt
%+ 3
z% = 6+A,,({),_:t —2—#”

(the plus stands for the upper halfplane; the minus, for the lower
halfplane), where

Aue=p G@EP) [1-p* L (6 %fg)z /Z=£ I-
- PR (6, )< Reesion, X3 6E0B B, +0FHY)
[ = 557 (6, (e <Tom Rz 40N, X2, 6, (D F, B,

Note that the fourth order of smallness (~/52J2) of the width
/7# is caused by the absence of direct’coupling of the initial
and exit channels. The coupling of these channels is realized only
through the intermediate resonance channel 2.

5. Inhomogeneous Faddeev equations for the final channel

The sticking probability for the muon to helium in the reaction
(1) can be obtained by solving the spectral problem HQJ = Zﬂ

12

on the second sheet of the Riemann surface of the parameter Z and
integrating the coordinate asymptotics of the component u3 of the
solution W corresponding to the resonances Zt . Here it may be
assumed that the coefficients of different asymptotic terms of the
type of spherical waves in R‘ and R are the amplitudes of proces-
ses, resp., with three (4He+n+/,() and two (“Heﬂ +n) par-
ticles in the final state. The "spherical waves" are exponentially
growing functions. The procedure for studying equations for functi-
ons of that sort is not yet developed. To avoid this difficulty, we
make a natural assumption that the component U4 of the solution Q/'
= {‘u4 U 'U_g} of system (12) does not much differ from the initial’
wave function of the mesic molecule oH’, /16/. The function <1>
can be found by solving the Schrbdinger equation (H4 - e)¢> =0
for channel 1. We assume“> to be known for instance, calculated in
15/. Instead of the complex energy of
the resonances Z‘t we take initial real-valued energy & . Recall
that in this approximation we admit inaccuracy 0( 2) (see sect.4).
In this way, we leave only two equations of the system (12):

(Hp-z)u, + By uy = - Bor P, (19
552 U + (/{3‘3)2{; 0. (20)

Eliminating’ the unknown ’Uz from (20) by means of (19) we obtain for
the third channel one equation with the energy-dependent potential
%3 and inhomogeneous term E}{ = Wi, (2) P.

(Hs+ Waa(z)- =)oy = - Ws (=) P 1)
The inhomogeneous term 64()(.2) ig localized in the cylinder @
(see (14)) and is factorized owing to the factorf in the potential
Was . The functionf3s can be written in the term G,(&?):X(x,)?@),
where ‘}-()/4) = "SA-T-: dys P G (Y4, ¥y, B-22) PCX),

As the function of the mesic molecule is exponential-
ly decreasing, the asymptotics in_g4 of q-(g,) is easily calculated
and to the leading order represents a spherical wave in YE";Q

a
Z,¥1) . EXW
g-( 4)‘§ M_ex i Z- l _‘”2— - E

4 4r 144l P{[ A'\ZJA ITESN QGE X"J‘ }.
where -F(Z,E)=-QI..J” a(x,)q)()\li@'-) "k,x,), and Wc is the eigenfuncti-
on of the continuous spectrum of the operator H2 + For Z=E& and
& <29 the function ?— is exponentially decreasing.

As the binding energy £ of the mesic molecule dt/.‘ lies above

the adiabatic approximat ion/

13



the disintegration threshold )3 into three particle in the final
channel, it makes sense to use in the numerical calculations, inste~
ad of (21), modified differential Faddeev equations for which asymp-
totic boundary conditions are more simple in form. c
c To derive these equations, we split the Coulon potential V, =
v"He in (21) into two terms/qu/, V:(xz)s Vz (x)+ v:‘(x),
The first Vz describes the interaction of the muon and 4He nucleus
when they are not very far from each other, i.e. in the region Qc,
where 12,1 <Q(4+ lyzl)v, V(}’z- The second term V;s represents phe
Coulomb background and in the region QCA var‘lishes. The terms Vz
and V:s are given by the relations Ve(X)= ?(X) V;(X) and
Vg“(X)"' V:(Iz)_\é()(),where ?(X) is a smooth function equal to
unity in $2%and zero outside that region (see Fir.4)
poxy= § o Palatimt, ,
0, 13l >a’C+ A1), wev<¥ ,a<a’,

Introducing the notation Y,(g)for the total potential of in-
teraction between 4Hc and h

V4 (2) = V:Hen + Wba(Z)'

Wwe rewrite eq. (21) in the form

c
[P -Ayx+V,+ V,CZ)-':']U3=—‘W34CZ)CP_ (22)
Then we transfer the short-range potentials \/2 and V4 into the
r.h.s. of (22)

[Mm-Ax+V, - z]u,= [\:/z V(@) ] uy - Wy P

as as as
and invert the differential operator H -Z, H = 13—Ax+ Vz »

Uy =- R*(2) [ \A/z + \&(z)]u35 _E“S\)(/M(z)cp’

as a -1
where R (Z)"'(H iz) . #e consider the parameter & arbitrary
and Im=Z # O ; at the end we take the limit Z+£1200..
The Faddeev components are introduced by the formulae

u's - R¥(@)Vi@)us - R**(z) Wy, (2) &

A
ut= - R*(2) V, u,

(23)

(24)

ag
Considering that U5= 'U‘-l- u? , we apply the operator H -Z to
both the sides of (23) and (24) obtain the sought-for differential
Faddeev equations

14

[-A,+ V, %4 V, (2) 4 >y - z]u'=-V, (z)yut- W@ P, 25

A
<A c : 2 4 (28)
[-4x+V, +2a- 2] ul=-V, u .
The integral Faddeev equations for U‘ and U? follow from (25) and
(26) if we invert the operators in the left-hand side

u's - R@)V,G)u? - R, (2) W, ()P
"u2= —RZCZ)OZ u.49 -4 -4
where R, (Z)= [—Ax+ V;‘+ Vi(z)+ 23-21 s R2(2)=[‘Ax+ V:*’\.’a'z].

To determine the physical solutions to the Schrddinger equation
(22) and the Faddeev equations (25), (26), it is necessary to for-
mulate the asymptotic boundary conditions for the wave function l/3
and its Faddeev components U?' and U? | The amplitudes of spherical
waves in the asymptotics define the sticking probability of the
muon to helium (see sect.?). The asymptotics of “5 will be obtai-
ned by using eq. (21) in the integral form

Uy = - R(z) W,,(2) P 27)
From tnis equation it is seen that the asymptotic behaviour of the
. . . ’
functions Us is determined by the kemel(RWy)(X.x, Z) . Conse-
quently, it is first necessary to investigate the Green function
and the product of its with the energy-dependent potential R(?)WQSZ)
this will be made in the next section.

’
6. Asymptotic properties of the kernel RW34 (xnx, Z)

In this section, we will show that the asymptotic behaviour as

(X: X'—>oo) of the product of the ireen function with the poten-
tial,(R WM)(X,X:Z), is analogous to that of tue same product in

a three-body problem with conventional enerzy-independent potentials
(see 14/). This problem is nontrivial as the analytic in eaergy =
properties of the potential W34(Z) are ratiner couplicated being
defined by the properties of the resolvent Gg (Z) « Specifically,
it will be shown that the continuous-spectrua branch of the operator
Hz , fAz .400) y influences neituer the solutions to eqs.
(21), (25,25), nor the product R Wa,(Z) . The spectrum branch
[2z,+%0) of the total Hamiltonian H would yield extra slowly
decreasing terms, unusual for the three-body problem, in the -C

15



-asymptotics of the wave function Uy and its components which
should be taken into account (if the energy is above the threshold
A2 ) in the numerical solution of the differential equations (21)
and (25,26).

To investigate the kernel RW34 y We construct the integral
Fredholm equations for the Green function R(Z) using the method

given in’™/, e rewrite the initial equation [H3—2+W33(z)] R(®-=1,

for R(Z) so that only the "nonperturbed"” Hamiltonian be kept in the
l.h.s. and invert the operator Has— P4 . Then e introduce the
components R' RS Ra5V4(2)R and R?%=- Rassz and write
for them the following Faddeev equations

RY(=) = Ri(2) - R(2) Vu(z)R(®)
R’CZ) = - R, (z) \Alz (z) R‘(‘Z) . (28)

Asymptotic properties of the kermels of thesg equations are as
follows: The properties of the kernel Rz(z)\/2 are quite simple as
the Green function Rz (Z) corresponds only to the Coulomb po-
tential V2 sz) . The variables Xy and )’2 in the opetrator,
25—Ax+V2 , are separated, and the Green function may be represen-
ted by the contour integral

R (X, 2) = 1 | A5 43Cm xRt - )

in terms of the two-body Green functlongs(Z) [sz* Yz Z] cor-
responding to the Coulomb forces in the system 4He . The free
Green function in R3 |, is given by r,,(y,yz)sexP{uﬁly-yl}ly-yf&he
contou.r£ embraces the spectrum of the operator “3‘ ‘Ax,i- Vz

Considering each of the contributions of the discrete and
continuous spectrum af the operator l‘\ 3 separately, we write the
Green function Rz as a sum, Rz Rz + Rz . The term Rz »

R, X xz)e 2 v (xz)“V(iz) (YZ.Yz,z BeE]) (@)

described the dlscrete spectrum; Y: and & ! are resp. the Coulomb
wave functions of the discrete spectrum of Aand the corresponding
energy levels. The teram Rz describes the contrlbutlon to Rz(!)
from the continuous spectrum of the operator hs . Its asympto-
tics when Xy +» o0 is computed by the stationary-phase method and

is of the form
- ex {'NZ =2 Ligg + i Wa(Cks,x,)
R (sz) L 5“52;2 == 1} c( 2 z)(BO)
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where the eikonal Lzo and the 'Coulomb phase w,_ are given by

Loo= Va0 y),  WaCkd= - g lu(alilixl),

A
where the "momentum" kz-VE X_; ‘11‘ Xy \VG) is the wave function
of the continuous spectrum of the operator ha , and Cl is as

follows
C =_i_(_ iqZ ?’/2
LT Yy

The second kernel R4 V4 of the system (28) is generated by
the two-channel Hamiltonian

ﬁ Ha - B

E>32 Has+ VzHe/\-(
acting in the sum 2‘\"203*3 of the second and thjrd channels. If
we denote components of the resolvent (2’) (/‘/ Z) operator
by 5‘13 . a.,L =2,3, the Green function R(: is obviously the

component 33 .
The ¢ -asymptotics of the kermel R,(X X, z) are studied by
the same scheme as for the Green function Ras (Z) in , viz.,

on the basis of the locality principle a "bare" function is to be
constructed that represents a good approximation R;ﬂ(z)to &(!)m the
sense that the discrepancy A(X X Z) in the equation

R) (Hos+V(z)-2)=1+A (31)

be a rapidly decreasing function of the variables X and XI . The
degres of decrease of the kernel A(Xx z)should be such that the
equation for R4 , R —A R‘:’ , following from (31) be
the Fredholm oquat:.ons. The only difference from the consideration
in 4 consists in that it is necessary to take into account the
potential M3Cz) entering into the potential V4 being
energy-dependent. It is important here that the Hamiltonian for
Y*U has no longer the continuous spectrum branch L_Zz, c0) that
is present in the chamnel Hamiltonian H2 . To prove this, we neg-
lect the difference (about 0.4%) between the masses msHE

and M4ye . So, in the potential (4) we change M e to
Muye + and instead of (4) we use in (3) the Coulomb potential

~ —
VC (Y4) - $5Hg ?‘/‘4- 2 Cm4He+ mn)m,.«_. i (32)
SHepc Iyl MiHa + Mn+ Mpe o
Owing to that change, the variables in the Hamiltonian' | are asym-

17



J ,
ptotically (for 54—»00 Jxd<atnl, Qtl/z,agc.ﬁst) separated because
C

~ ~, : - ¢ 3 :
;S(X)J‘_‘”: SHew (0« Near the cylinder RY=Vxx R, , i.e.
for 1x,(< alyql‘: o< the operator can be represented by the

sun ~ - o c
HezH =holy, +I®h
° Y 2,
(33)
o hy By, N P2

where h = Baz ha , is the identity operator in ‘', ® ':1"{3
and hcz_ =-Ay, + V;He (Y%i)-_As Mg is not the point of the discrete
spectrum of the opergtor h (see sect. 3), the operator M, has no
continuous spectrum branch [7\2, 00) , and hence the operator
as well. All other its properties coincide with the properties of
the Green functions Ifor energy-independent po/’centials. The ker-
nels R4 \/4(3) (X,X) and Rq Wy(Z)CX.X) , owing to the se-
paration of variables (33), also have asymptotic properties analo-
gous to the properties of similar kernels for energy-independent
potentials (see/18/, p.63). In parti’cular, when X4 —~0  the
asymptotics of the kernel Ry V4 O(,X.Z‘)to the leading order is

described by the formula
(Z- Ay Lot i Wi

R, Vi (X,X:Z)'%VCZ‘% expl 5/2

} FCxX2) |

10
where F;(X.X:Z) is a slowly oscillating function, the eikonal
L4°=\,|I‘[ﬂ(y4_y”)2 ! and the Coulomb phase 4] is given by
Wi = Lio h, {'xZ‘qu«I”le‘i' (x2- Sy )’4/, x,) }
)=
ZJZ’)‘-’» lxz—Sz(\/:l [, - St Y“l52.Y4'l*(3:g-5“‘,’4/,5,4)'4') ‘

The coefficient 9,, stands in the transformation from the coor-
dinates Xy,Ys to X2, Ye

Xe=CoyXu+ Spr¥Wi, Y2=-5uX4+Cays .

The kernel R4 \X/M (z) also possesses an analogous asymptotics out
of special directions. We will not describe the asymptotics in
igzc;ial directions defined solely by the Coulomb interaction (see

Y.

From the relations (29), (30) and (34) it follow that the
equations are Fredholm 4 . Indeed,Ait suffices to-consider only
one equation, R‘= Ri+ Ry V1(2)R2 Vg R‘ , obtained upon elimi-
nating the coaponent Rz from (28). From that equation it fol-
lows that the asymptotic properties of the product R(Z)W-“ &-))
are determined by the properties of the product R, WM and the
kernel R4 . c A e

Note that were the potential V5Helu not changed by VSHe/u ’
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the separation of variables (33) would not occur. In this case the
scheme of studying the resolvent RCZ) is to be modified.

7+ The coordinate-asymptotics of the wave function and
the sticking probaoility of the muon to helium

Upon studying the system of equations (28) it may be shown
that at Z= E +£D,E>')5 the C -asymptotics of the wave function-
of the third channel is described by the expression

Us =, A, (X yexpl i VE-ny Ix] +iW°(X',E)}lX|—5k+
+ Zd Ad():2> \% (x2)exp {'z'. \’_E—)\—B_V-i-%-z\gﬂ} uz\"’ (35)

where the Coulomb phase is of the form
1X1

W, (X,E) = - e "‘;z‘ e (2VE-25 1X1)

The functions ﬁo()?) and Ad'(hz) are scattering amplitudes: $,
when the muon gets free, and A; when the result of the reaction
is the mesic atom 4He/L_ with binding energy éj .

Analogous are asymptotics of the wave-function components U
o =1,2

utz= A (K)exphiVEny Il iw. (x, E)} i %

. v N P T1(53)
+ S“-ZA Ad ()’z) qg'(:x:z')leP Ql E -t 39;‘ Lyzl I’wz‘ .
where ) ﬂo + Q: = ﬂo.
@ The Schrédinger equation (21) with the asymptotic conditions
(35) has a unique solution, U, .

@@ The Faddeev equations (25) and (26) with the conditions (36)
have unique solutions W' ana U , and u's u's U,.

To determine the sticking probability of the auon to helium,
we shall calculate the total flux of the probability. se take tne
surface through which the flux J is passins to be the surface S,
a cylinder &, ,lY:{=r when |xg|<l>lzlv, Y< ¥z ani a spnere Sg ,
IX{=R, st , when lx1|>/[y2]',(see RN i.e.S=SRU&r_

The fluxJ when R —>vo is deterained by tae exnression

4 - 9 -
J=&m—,‘:gsd5[u3%u5—u$’b ‘Us =

o
»

R>co ~ on 7
oLk g 2 2
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%

Fig.4. The reglon of definition of the short-range V2 and long-range
v2 parts of the Coulomb potential \/C (x2) .

A

Fig.5. The surface S in fR‘ formed by a sphere SR and a cylinder
ér appearing in the determination of the probability

flux of

20

The change of the function Us in (37) by its asymptotics (35)
leads to the expression

J =2VE-» S dxX | 4,00) % 2Z\JE %] go*y,IA(y,)l (38)

where S and s represent unit sphere in R and R s respecti-
vely. From that equality it follows that the sticking probability
<

Wg of the muon to helium is given by the formula

JS /J ) 2
A A
whers Js = 2 ZJ dE—%s‘*ﬁ; gs'z. "'YlIAd(yﬂ)l

The W¢ should be computed at E=& .

To complete the sectiogl, we report some integral identities
that allow us to estimate Wg . To this end we shall make use of
the Green-function asymptotics for

R(x,X’, E+0) 5Cg., IX I-%exf LilE-x X1+ w 0 BN, (RX)s
w7 el exp 1iVE -2+ FF 11} U (xz)qf(g Xy
Hereqll (P X) P=—QTX is the wave function of the continuous

spectrum of the system 4He describing scattering with three
free particles in the initial state. The wave functlon of the c':on-
tinuous spectrum q}r (7 X) ?' = -v E- )34— describes
scattering in whlch the muon and helium mltlaily constltute a
mesic atom in the state &V whereas the neutron is free,

The substitution of the asymptotics (39) into the integral rep-
resentation (27) for the wave function Uy leads to the integral
representations

A, (X) = CE—)«5 (W, (E+i0) P, W, (P))s,
A (){1)_ 4,", CW54(E+LD)¢‘ W(?d)>3 (40)

for the amplltude &0 and A

(38")

8. The stickin, robability in the Born approximation

(-4
For approximate estimation of Ws , the wave function Qif in
(40) can be replaced by a distorted Coulomb plane wave Uo(P, X):
= \Ps,c(:rz,kz)exp {1 CPz )’z)} P:{k sz and the continuous-spect-
rum wave functions (?J by bound :zlane waves U] (%,X)—
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‘%‘(Iz)exrii(%‘» 7’2)} . To this approximation,
$.(R)= Ceory (WoiCE+i0)D, UuCPYs  com "

}
Ad'(;/,): ;"n—'\ (M,CEHO)#D,UJ(%))A, (42) g )

whereE and q> are resp. the energy and wave function of the bound Supp\.?
state of the mesic molecule ol'tj&. .

Note that within that approximation the sticking probability
e is independent of the model parameters and ( . Really, ac- Supp X
cording to (14) W3| (Z)=—PX<'9“P>4XGI( ). With this expression
inserted into (41), (42) and then into (38), the factors /52 X2
appearing in the numerator and denominator of (38) cancel out.

Je shall now analyse expressions (41) and (42) for ﬂa and A'
in greater detail. To this end, using (14) we rewrite the amplitude
A' in the form

—pd il /4

<o/

——-x' _5

Fig.6. Distribution of the probability densities: the functions 4
and_x connecting tne initial d+t + and final l'He+h+/‘u
channels with the intermediate channel 5Helu_ and the

- A x s . unctions W o e mesic a om 4H in the final channel.
'44'(?[)“' %T (d:q(yl)')(’gz(gﬂo),Ud.(%,))a, w5 funct J&2) ot th t €M in the final 1

where E= £ , ‘%()’1) is the averaged wave function of the mesic

molecule dt with the form factor ¥ :‘P\,(y‘)=<¢(',)’4),q’4 and

Gz ()= (P{;:Z-‘ is tne Coulombd Green function of the intermedi-

ate channel SHe . Integration in <'f,Ud"(@')>3runs only over Suppf
(see Fig. 6). To determine the behaviour of the factor (X,]}J(b)}sy

when <‘f{—r>o y, one should pass from the coordinate system of the

final channel xz,gz , corresponding to "sticking" of the muon

to 4He and production of the mesic atom, to the system 3:«,44 of

the same channel, corresponding to "shaking~off" the muon‘He-Hl-v/A-

(see Fig.?7):

1(4;, ¥2) ¥
Uig))= ¥ bir o) _
1C ',‘3212(244-(.'24 4)

= w'(Cmn*Szar« )& ‘h J © (44) Y,

: -0 S, (954 (%,Ca1 ¥4) x

o e 24 ?J’ ) ('Pd(ézqﬁ) e ?’d’ y , 03 1 _@

(Xl <& =comst, |J4|>>|Iﬂ ’ . n
He
. mymy Y 2 _ 53 ‘
where C24 = ( (ma+rmadCimp+ma) » Su=4-Czy, 52¢>0, Fiz.7. The Jacobi coordinatas Y and XY, of ta: final channel(3)
azf'e coefficients of the transition from sz)’z to Xidt (see in which shakinz off and stickin; of the auon occur, resp.
Fig.7). Then, with (44) tne amplitude AJ(?’J) assumes the form N
22
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A <)/,ua( )>3 [ —
AJ ($J)= —FX '—T?J— S“"d1 d}jd ng (524<74) x

NG G Pery,

where Uo(?x')- exp [-1 524(%'”“)} . We transform the integral in
(45) using 4:he spectral expansion of the Green function

<., Y& g & { f < WES
. L d— e L dp e,
Ga(z> dZ ~2 -2 (2M)P P P*+ - 2 (46)

2]

where W( ,()’4) are Coulomb eigenfunctions of the discrete spectrum
2 . . v 11 - L]t c

= {-2%1 of the Hamiltonian H,: Hz.. H2 % VS +),,

3d( ﬁz)J 0 L8
Visiteps= Y417 G e 45X (e )yt e v} WGP ave wave fudoti-

ons Jdf the continuous spectrum . C H) = CO,e=).

We shall make also use of the wave function 43 of the mesic
molecule oH: ‘in the adiabatic reprosentation/zo/ associated with
the Jacobi coordinates {334,)’4} ;

P(X) = ﬁ—F.F = nZ-H(x«,)’i>'Fn(zc4)+
iy + Cdp FComy ) Fp .

is a frame in the Hilbert fibre space with the basis
(szsx‘ and typical fibre K= La(RA") and—)c=(_}”) are the
expansion coefficients of the i‘unctionct2 _over a mov:r.'ng frame—F
whose dynamics is generated be the Hamiltonian
<

H(‘I4>= -Ay1 + Ny + de/4 -+ Vt/u_- (48)

The expansion (47) induces the corresponding expansion for cbq; :

S Q’J‘ a{(’:'f, Y T /14 > 0
~ X o) Lf9a>

(2)
Here we mac};.) use of the known property: F(X)mpoqj(ﬂ’ where
an)= q’);,) . Inserting (46) and (49) into (45) we obtain
the follow'ing expression for the amplitude:

47)

(49)

A -3k -1Ces (4,
A= S [an vy (€0,

A (50)
AT T4+ o [ TGt
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Tn (fd) =- FX <)(’w°(q'4')>3 <'F‘n, ’~P>4

’

—®2 4+ A, -E -iD (1)
<X.Uo(‘i/’)> <‘F ,\P>4_
T (g)=-p Pt + = 50 52

dere we took advantage of the functionms L}é‘(sz,)ﬁ)in (44) being pro-

portional to the wave functions \Y, ()’4)1 Q/J('524Y4)= 52".% ‘VJ ).
Now we will represent the amplitude ﬂo in a form analogous

to (50). To this end we write the wave function UJ (X, P) in terms

of the coordinates 1}X1, }’4} . For |l < & =const and ‘34\»

il we get

-3 A
V,(x,P) ~ 'suAcsz (Y e xpd (Cailpa, ) FUeCeiy P (53)

where

’L(o(:)C‘,;“P)z exp b S21(Cz lkz‘)’a‘Pz, 354)} ;

)
In this representation, the amplitude acquires the form
A _.3/2
— , A
ﬂ"(P)' Sai CE‘“a g"(é‘”‘é‘ <X Ue (40, P I (55)

X ka,qoe"iC“C”W‘)Gz(g4,g{,s+i0)%(yf) .

- -3
where the numerical factor 52‘% ¢ Yy, (5,4 Yi)= 52/2 q»k v
Utilizing the expressions (46) and (49) we obtain 2

5)- ot —{Co(pa i
Ho(P)= Sa¢ Cg-n, S‘Jy sz (u) € Coc(p2yt)

X

A 4o €\ (56)
« [ Z T PH)wedr )+ (-‘2—?-53 (AT, D) el
where A A
T. G ) =-prg SELORPIRED IR (o)

- 3(:-‘- Az~ E-10
T (A - <X! uo(%’P)>5<¥P’\P>‘ ’

g Yf:P)=—P3 'z+ %Z—E-iﬂ (58)
The Born approximation for (:05 in terms of the amplitude AJ and ‘ﬁo
will be obtained by substituting (50) and (56) into (38).

In conclusion, we would like to note the following.
1. The factor exp IL-iC“cq,,)’)} in (50) and (56) corraes-

ponds to the known lMigdal notion of a "rider" . So, for instance,

C24 (‘h, J(ﬁ(ﬂ)%)\dhere
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"

q. __'Tti'__—- F’ [’5 _ g ?_(Q—Ed')mn(m,&mme) %
J Y“f‘+|"4Hc 4’ d (}nfb + Mp4 Myge % ’

')7{ l( m/‘,+m.‘+MAHe ‘ }4{” ,
~ 2 mu(Mn+ MiHe)

P& is the relative moEs?tum of the mesic atom 4’4e and neutron h
in the c.m.s., E: =-®; is the energy of the mesic atom 4He/4..
and Q=E-)\3 is ihe energy release in the reaction under conside-

ration.

2. Singularities of the amplitudes-r" and—Yrin energy are on
the real axis and have no characteristic Breit-Wigner structure.
This is due to the Born approximations used for qy‘ and QK, . The
Breit-vWigner structure with a nontrivial resonance width may only
be obtained by calculatinz the amplitudes A and ﬂo on the exact
three-body wave functions %V' and 641 . Therefore the schemes of
computation/9’21/ based on the Born approximation to any order for
qy‘ and Qh witih a simultaneous change of the energy S -function
by a resonance Breit-JWigner factor like A/CE-ER-i%)are not
in agreement in the accuracy of approximation and no hold true.
dowever, for qualitative estimates the use of the Born approximation
may be useful.

3, For the mathematically correct computation of the sticking
probability EOSwith the inclusion of the resonance channel 5}4;
within the proposed model one should calculate the wave function ,
of the Jt}&_ bound state, fit parameters of the model (P;X, \P,X
from tne data on the reaction, and then calculate the amplitudes
andgqo on the basis of the solution of the Faddeev equations (25)
and (26) with the boundary conditions (36). Solution of the latter
problea may be realized with a required accuracy be the methods
developed in/22/ ana/?%/,

4. The problem of applicability in the considered problem of
the scheme (2) of the couplinz of Hamiltonians H' and the choice of
a separable approxiamation of rank T for the operators of the channel

coupling W,_d(z) rejuire special consideration. This investigation
can be made within ta2 aethods of local adiabatic expansionslzo/ for
a 5-body problez wita th2 use of the Feshbach projection method 24/.
That approach «ill allow us to obtain exact representations in par-
ticular clusterizations (olt/i..,‘He H/LL> in a 6-th-body system for

the enerzy-dependent potentials VQQ'(Z), to estimate the contributi-
on of polarization affects of the clusters lp_ol- , t ’ 4He, }‘ and
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specifically, to solve the proBlem of making the potentials vo%(z)
separable. These problems will be dealt with in a separate publi-
cation.
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MoToBmnoB A.K. u gp. E4-88-291
YpaBHeHHe QaaneeBa C HOMOJHHUTEJIBHRM pPe3OHAHCHBIM

KaHaJOM B peakllHH MOOHHOI'O KaTallusa

B paMkax TpexkKaHallbHOH MOMesH MoJjiyueHb HeOoOHODOJHule
HHTerpanbHele W nubbepeHIManbHbie ypaBHeHHsA (QanneeBa C 3Hep-|
rosaBHCHMEIMH NOoTeHHHanaMmu. llokasana ¢peAronbMOBOCTH HHTe-
I'PaJIbHBEIX ypaBHeHuﬁ IJaHo TOuHOe omnpepeyieHHe KoabdunHeHTa
MpUIHNIAHHA m B TepMHMHax aMIUIHTyd cdepHYECKHX BOJH B
aCHMIITOTHKe nonuoﬁ BOJIHOBOI $YHKIHH BHIXOOHOI'O KaHana. QPH-
BeleHO COOTBETCTBYyWIEee HHTerpajbHOe MpencTaBlIeHHe ONA o,
Yyepes BOJIHOBhe GYHKLHH HeENpephHBHOr'O cHeKTpa. B nmepBoM 60Dp-
HOBCKOM MPHGMIDKEHHH [JIA BOJIHOBHIX dyuxumit 3TO mpencTrasie-
Hue [aeT ABHOE BhIpaxeHHe IOJIA @y 4Yepes KO3¢hdHIMEHTH pas-—
JIOXeHHsI BOJIHOBOH GYHKUHH (dtuf' BXOOHOrO KaHana.

Pa6oTa BunonHeHa B Jla6opaTOpHH TeopeTHUYeCKOH ¢HSHKH

OHAH.,
Ipenpur O6senHHEERHOro HRCTHTYTA AREPHLIX Hccnenosanuil. llyGua 1988

Motovilov A.K. et al.
Faddeev Equations with an Extra
Resonance Channel in Muon Catalysis

E4~88-291

A three-body model is applied to derive inhomogeneous
integral and differential Faddeev equations with energy- .
dependent potentials. The integral equations are shown
to be Fredholm equations. The stricking probability w'
is determined in terms of the amplitudes of spherical
waves in the asymptotics of the ex1t—channe1 wave functi-
on. The integral representation for aﬁ is given in terms
of the continuum wave functions. To the first Born appro-
ximation for the wave function, this representation
yields an explicit expression for 3. through the expan-
sion coefficients of the wave function of dty of the
initial channel.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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