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1. Introduction

The formation of order out of chaos is one of the most interest-
ing problems in present timel. Although it is a general problem it
should be discussed carefully in some special cases which are proved
experimentally in detail. Such a case might be the atomic nucleus the .
properties of which are investigated for more than fifty years.

The nucleus is a physical system consisting of particles which
are all of the same type. Every nucleus appears in different states
which can be excited and investigated by means of different nuclear re-
actions. Two types of nuclear reactions induced by, e.g., low-energy
nucleons are very well known for a long time: the fast direct reaction
process and the slow resonance reaction process. While in the first
case, information on the target nucleus can be obtained, the resonance
process contains information on the compound nucleus. For both proces-
ses, mathematical methods are worked out the results of which are in
good agreement with the experimental data. Although the methods used in
both cases are completely different from each other, a regular motion
of the nucleons inside the nucleus is proposed in both cases. Neverthe-
less, nuclear physicists hold often the idea that nucleons in nuclei
move chaqticallyz’}.

It is the aim of the present paper to discuss this problem on the
basis of numerical results obtained from microscopic calculations.

2. Bound and isolated nuclear states

The basis of the microscopic nuclear structure calculations is
the shell model in which a rcegular motion of the nucleons is assumed to
take place in a conservative field of force. The basic equation is the
Schrodinger equation in a function space (g space) in which all nucle-
ons occupy bound and quasibound single-particle states,
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with the Hamilton operator
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and HQQ = OQHQ. Here, Q is the projection operator onto the Q space
which is the total function space in nuclear structure calculations

(Q = 1). The wavefunctions of the many-particle nuclear states are
identified with the eigenfunctioné (b ?ﬂ while the real eigenvalues EsM
are assumed to be the energies of the states. The Hamilton operator is
proposed to be Hermitean since the system is considered to be limited
to the Q space. The wavefunctions
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are mixed in the basic wavefunctions (fi’ the energies qu are real.

The results of the microscopic nuclear structure calculations de-
scribe successfully the low-lying bound nuclear states as well as the
stateg at higher excitation energy which are isolated due to their small
decay widths or (and) their large distance from other states with the
same spin and parity. The results of the nuclear structure calculations
represent the real nuclear theory proved by many experimental data,
sometimes in a "revolutionary" manner” as, e.g., by the discovery of
isobaric analogue resonances and of Gamow-Teller resonances. It must be
concluded, therefore, that the nucleons move inside the nucleus with
some regularity which is, obviously, dictated by the Pauli exclusion
principle.

It is, however, very well known that the wavefunctions cb gM of
the nuclear structure calculations do not have the true asymptotic be-
haviour and that the finite lifetime of the nuclear states cannot be
calculated within the model. The point is that the nucleus is treated
as a closed system (Q = 1) in nuclear structure calculations although
most of the nuclear states can decay by particle emission since they
lie above particle decay thresholds. The system, included in the Q
space, is, in reality, coupled to the continuum (P space) and must be
treated as an open system: The nuclear states are "guasibound states
embedded in the continuum" (QBSEC)S.

Recently, a method has been worked outs’6

for treating the nu-
cleus as an open quantum mechanical system. The basic Schrodinger equa-
tion H qJ= Etp is linear in the whole P + Q function space (P + Q = 1),
but nonlinear for the system confined in the Q space:

(g - B Y = -Hp (4a)
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As a consequence, correction terms to the Hamilton operator

eff (+) H
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as well as to the wavefﬁnctien
- (+)
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appear by which the coupling of the O subspace to the P subspace is
taken into account. The wavefunctions
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are exeanﬂed in terms of the shell model wavefunctlonscb R The wave-
function Jl has the true asymptotic behaviour. The Hamilten eperator

HgéI is non-Herm1tean Its eigenvalues are complex,

iy - G -4 Fod, (®)

~

describing the pesitions E% as well as the widths f‘R of the nuclear
states. The widths [.R are inverse proportional to the lifetines?; of
the resonance states.

It has been shawn on the basis of this model that the spectro-
scopic properties of the different nuclear states can be described by
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the standard nuclear structure methods to a good approximation as long
as the nuclear states are either bound or well isplated. In such a
case, the additional forces via the continuum, which appear in the open
system, are small. As a consequence, the nuclear states may be consid-
ered as conservative structures, to a good approximation. The coeffi-
cients bRR’ in the expansion (7) fu1f111 approximately the condition
RR' = JRR' The energy shifts ER - ER are small but nonvanishing
even for bound states. The finite lifetime TR of the resocnance states
follows immediately from the non-Hermitean part Hgéf - QQ of the
Hamilton operator.

The equations of the open quantum mechanical nuclear system in
the O space are nonlinear, egs. (4). Further, strong -cooperative ef-
fects are known for a long time2 to exist ia the nuclear system. Self-
organisation is expected therefore, from a mathematical point of view,
to take place in the nuclear system.

The regular motion of the nucleons supposed in all nuclear struc-
ture calculations can be, indeed, understoodB as a consequence of the
strong cooperative effects existing between the individual nucleons. A
common potential ”o is formed by the -nucleons themselves. The residual
interaction V.lk between the nucleons is relatively small. The different
many-particle states of a nucleus differ by the different occupation of
the single-particle states with nucleons in the common potential. Only
in the ground state, all the nucleons occupy the lowest single-particle




states. In the excited states, some of the nucleons occupy higher-lying
single-particle states, which are still bound, by leaving holes in the
low single-particle states. If these states of the many-particle system
lie above particle decay thresholds, they have a finite lifetime
against decay into the open chanrels.

Thus, the regular motion of the nucleons in bound and isolated
nuclear states is not in contradiction to the existence of strong coop-
erative effects between the nucleons, as proposed in ref.z, but is
caused by them. The description of the nuclear structure by restricting
to the Q space is a good approximation according to the slaving princi-
ple which is universal in synergetics9. Further, the different nuclear
states should be considered as dissipative structures formed by self-
organisation far from equilibrium in accordance with the definition of
dissipative structures in open systemsl’m.

3. The transition from isolated to overlapping resonance states

In contrast to the success of nuclear structure calculations at
low level density, the experimental results at higher level density are
not described satisfactorily.They raise a number of questions which are
on the interface of reaction theory and nuclear structure and force us
to rethink our assumptions in dealing with nuclear reactions on sever-
al points. ’

In standard nuclear reaction theory, the motion of the nucleons
is assumed to be a chaotic onel. The nuclear states are proposed to be
statistically independent although this assumption could not be proven

experimentally, e.g.ll, and all the nuclear structure studies point to
strong cooperative effects.

In order to clarify this problem, microscopic calculations in an
open nuclear system have been performed in dependence on the degree of
coupling between the system (G subspace) and the environment (P sub-
space). The method used is the Rossendorf continuum shell model (CSM)
sketched by egs. (1) to (8), for details see refs.s’e. The degree of
coupling between the two subspaces has been varied by hand. The calcu-
lations are performed in the following manner.

(i) The shell model problem (1) is solved for the compound nucleus
160 with basic wavefunctlons tf out of the configuration space
(p3/501p1 /), Has) p,105,)t and (s )" py ey )7
(251/2,1d5/2) The 76 states with J¥ = 1~ (mixed isospin) are
mixed in the basic states ¢y ea. (3), six of which are of
(1p-1h) type and the remaining ones are of (2p-2h) type. The
potential used is of Woods-Saxon type with standard parameterslz.

(ii) The shell model problem (1) is solved for the residual nuclei 15N
nd 190 within the configuration space (lp}/2 1 and (lpl/z)'1 by

using the same parameters as for 16f.l.

(iii) The Schridinger equation (8) with the mon-Hermitean operator (5)
is solved in an energy region where the 03/2 single-particle
resonance is not important, with 29 or 30 out of the 76 resonance
states which are used as basic states in the coupled chamnel cal-
culations (8). The 29 resonance states have small components of
the basic 1lp-lh configurations. In some calculations, another
resonance state has been added to the 29 ones with the main com-
ponent ¢p; = (1p3/2)'1 1dg ,, either T = 0 or 7.= 1. The nunber
of channels taken into account in the calculations is 1 (corre-
sponding to the ground state 1/2° of 15N), 2 (corresponding to
the two states 1/2” and 3/2" of 1°N) or 4 (corresponding to the
two states 1/2” and 3/2” in both nuclei “°N and °g).

In figs. 1 to_3, the dependence of the inelastic cross section
and of the widths F on the degree of overlapping <" > / < D) of the
resonance states (where £> =T is the mean width and <D> = 0 the
mean distance) is shown. The overlapping has been varied by solving
eq. (8) with input values E?’ obtained as solutions of eq. (1) as well
as with other values ERSM changed by hand in such a manner that the
differences A ER between the energies of the different shell model
states are reduced. The wavefunct10n5¢ R of the shell model states
used as input in eq. (8) thereby remain unchanged. Such a procedure to
vary the degree of overlappmg is justified because the eigenfunctions
¢R and eigenvalues ER - —F of the operator (5) depend only weakly
on energy. The parameters of the Woods-Saxon potential and of the re-
sidual interaction remain unchanged in this procedure (for details see
ref. 13).

The degree of overlapping <I">/<0Y of the resonances corre-
sponds to the strength of external mixing, involved in egs. (7) and (8),
which is given by the non-diagonal matrix elements

KBTI ol PR Y = (R Hge 68 Mgl > -

The more the resonances overlap, the larger are the matrix elements .
The results shown in ﬁgs.. 1 to 3 illustrate therefore the behaviour of
the nuclear system in dependence on the degree of external mixing of
the resonance states via the contmuum.

The eigenfunct1ons¢ R of HQQ’ eq. (3), as well as the eigen-
functions R of Hl] , eq. (7), are the more mixed in the corresponding
basic functmns P andd)R the stronger the residual interaction V is

5




s[mb] Fig.1.

30 L] (RIS -1 . { The inelastic cross
Nip,p') N3’2 I =% section 15N(p,p’) in
| dependence on the de-
‘gree of overlapping
<M /¢D). The calcula-
tion has been perfor-
med with two channels
and with 30 resonance
states, 29 of which
have dominant 2p-2h
nuclear structure
(correspondin% to
Fig.1 in ref.13)
and 1 state has do-
minant I1p-1h nuclear

4

5 . — 35.0 ! ! L . 3'35 structure and T= 1.
2 IHOKD> = 1 ]
10}- _
EN 32 e % E3
205 <1<y =02 7
ﬂ( E
= 2 . :

k7 «

EL®! [igy]
in the first case and the non-diagonal matrix elements (9) at fixed re-
sidual interaction V in the second case. Strong internal mixing corre-
sponds to large coefficients ap, with R # i in the expansion (3) in the
same manner as strong external mixing leads to large coefficients bRR'
with R # R' in the expansion (7). The coefficients ap; are real while

the coefficients bRR' are complex since the operator H_ . is Hermitean

and the operator (5) is non-Hermitean. «

The basic wavefunctions qpi of the shell model problem (1) de-
scribe a regular motion of the nucleons in the central potential which
is dictated byAthe Pauli principle. If the eigenfunctionscbgM are
mixed strongly in the (fi' i.e. no main component in the expansion (3)
can be found, then the motion of the nucleons is usually considered to
be a chaotic one. Another representation, e.g. by taking into account
the collective aspects in the interplay between the constituent parti-
cles from the very beginning, is more adequate in this case. This fact
is very well known from the numerous nuclear structure calculations for
heavy nuclei.

In a closed system, a chaotic motion of the nucleons (from the
one-body point of view) corresponds to the formation of an equilibrium

state: the different basic states are excited with a probability which
is about the same for all (Fi, and the lifetime of the nuclear state is

infinite by definition, An equilibrium state of the system will be
reached therefore if the system is closed and if the residual inter-
action is not too small.
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In the open system, the external mixing creates also an excita-
tion of the basic statesd)[?‘| which is more or less the same for all
d)gM if the external mixing is not too small. But in contrast to a

closed system, the open system has to organise itself in such a manner
that the lifetime of the states reached is as long as possible. Other-

wise, the state reached cannot be considered as an equilibrium state.

The results shown in fig. 3 illustrate this behaviour of the open
nuclear system. Instead of the lifetime of the resonance states, their

widths are considered. As long as the resonance states do not overlap
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The ratio of the sum of the two and three, resp., largest widths to the sum
of the remsining widths for the 30 resonance states shown in Figs. 1 and 2
and for the 29 resonance states shown in Fxgs. 1 and 2 of ref.l3 in depend-
ence on the degree of overlapping 7 /b.

(KI"'>/<B» < 1), it halds bre+ = SRR" The motion of the nucleons
in the eigenstates of Hﬂé is therefore of the same regularity as in
the corresponding eigenstates of HQQ As soon as the resonance states
begin to overlap, the system tends to reach an equilibrium state by
means of the external mixing: The expansion (7) contains many terms the
weights bRR' of which are of almost the same magnitude. Additionally,
the widths of most resonance states are reduced, i.e, their lifetimes
are enlarged. This reduction of the widths must, however, be compen-
sated in the open system due to the condition6

% M = % Mz, (10)
where qu are the widths of the resonance states R obtained by taking
into account the external mixing (eigenvalues of Hggf.accord1ng eq. (8))
and I‘R are their widths calculated by neglecting the external mixing
(diagonal matrix elements of ngf) The numerical results show that the
compensation takes place by an enlargement of the widths of a small num—
ber of states. The stronger the external mixing, the larger is the dif-
ference between the widths of the many long-living states and those of
the few short-living states. The redistribution of the widths starts
rather suddenly at <UD/ ~1.

The matrix elements <¢ 1 H \§ > of the operator Hy, between

the wavefunctions ¢>R of the 0 space and the scattering wavefunctlons

E of the P space are involved in both expressions for the w1dthr'R as
well as the excitation probability of the resonance state R in nucleon
induced reactions. A long lifetime TR’ corresponding to a small width
rk, is correlated therefore with a small excitation probablhtya Con-~
sequently, the equilibrium states with a long lifetime are excited with
a small probability in nucleon induced reactions.

"The few other states of the system which appear due to the condi-
tion (10) in an open system together with the many “equilibrium" states,
are far from equilibrium. These states have a large width, correspond-
ing to a short lifetime, and will be excited in nucleon induced reac-
tions with a large probability. They can therefore be simulated by
single-particle resonances in relation to the target nucleus, i.e. by
changing the central potential. In this representation, the short-living
resonance states consist of one unbound nucleon in relative motion to
the target nucleus which consists of A - 1 bound nucleons. The motion
of these A - 1 nucleons is a regular one in the central potential cre-
ated by the nucleons themselves.

In an open system the equilibrium state with a chaotic motion of
the nucleons can, therefore, not be reached immediately. On the way to
the équilibrium, another state far from equilibrium appears which be-
comes soon the overwhelming one due to its large and fast probability
of excitation. This state can be represented by a regular (and not
chaotic) motion of all but one nucleon.

The two extreme cases of reaction mechanism at low and high level
density are very well known in nuclear reaction theory. While informa-
tion on the nuclear structure of the resonances in the A nucleon system
can be obtained at low level density, this information is lost at high
level density. According to the chaotic motion of the nucleons, the
resonance states can be seen at high level density as fluctuations
around an average value only. This average value is determined by the
fast direct process which contains the information on the environment
(motion of a nucleon relative to the target nucleus). The correlation
between the system (Q space) and the continuum (P space) is so strong
at high level density that the consideration of the nucleus as an open
system (in the Q space) looses its sence. The properties of the system
at high level density are determined mainly by the P space in which the
motion of only A - 1 nucleons is a regular one.

‘It is worthy of note that irreversibility on a microscopic levelB
exists still at high level density in the long-living states, but is



hidden partly by the fast direct scattering process which is reversible
as a whole in the P + Q space. The scattering process is described by
a Hamilton operator which is Hermitean in the closed P + Q space.

It can be seen from fig. 3 (see also ref.lG) that the transition
from the resonant process to the direct one takes place at
<I>/<B> =1, independently of the nuclear structure of the reso-
nance states and of the number of channels taken into account in the
calculation, The addition of a resonance state with mainly lp-lh nucle-
ar structure and with isospin T = 0 or T = 1 does not change the final
result discussed above. The resomance state with mainly lp-1h nuclear
structure can be identified in the cross section at low level density
but not at high level densitylA. The number of channels taken into
account in the numerical calculation is correlated with the number of
shart-living resonance states at high level density as it is to be
expected from calculations in a schem;tic modeils. The general picture
of the transition from one type of regular motion to another one is,
however, independent of the number of channels. It is, obviously, the
sharper, the larger the continuum is, i.e. the larger the number of
channels is (ref.l6).

4. Summary

The transition from the resonance reaction mechanism at low level
density to the direct reaction mechanism at high level density has been
investigated in this paper by means of numerical results obtained from
microscopic calculations for nucleon induced reactions. In the teso-
nance reaction mechanism, a compound nucleus is formed the properties
of which can be described by standard nuclear structure calculations.
The nucleons move in an average potential in a regular manner. The sec-
ond part of the Hamilton operator (5) is small in comparison with the
first part. In the direct reaction mechanism, the nucleon is scattered
in thé field of the target nucleus @s a whole. All but one nucleon move
in an average potential in a regular manner. The second part of the
Hamilton operator (5) plays an important role.

The numerical calculations give the following results

(i) The transition from resonant to direct reaction mechanism takes
place rather sharply at <T">/{D e« 1. The transition is the
sharper the larger the continuum is, i.e. the more channels are
taken into account in the calculation (ref.16).

(ii)  The second part of the Hamilton operator (5) creates both an
information loss on the nuclear structure of the compound nucle-

10

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

clear

us and an information gain on the nuclear structure of the open
channels, i.e. on the nuclear structure of the target and resid-
ual nuclei.

At high level density, two types of motion of the nucleons exist
simultaneously: a motion in long-living states which are near
equilibrium, and a motion in short-living states which are far
from equilibrium. The long-living states are excited in nucleon
induced reactions with a small probability while the short-living
ones are excited with a high probability. Furthermore, the reac-
tion via the short-living states is very fast. Due to their
large widths, these states overlap the long-living states, and
the nucleus behaves more or less as a whole.

From the point of view of the compound nucleus, the nucleons move
chaotically in long-living states at high level density. These
states appear in the cross section as fluctuations around an
average value.

From the point of view of the target and residual nuclei, the
motion of the nucleons at high level density of the compound nu-
cleus is represented by a regular motion of all but one nucleon
in the average field of the target and residual nuclei, resp.
The average value of the cross section is determined by the
scattering of a nucleon in the field of the target nucleus as a
whole.

The numerical results show that order out of chaos takes place
only in the open quantum mechanical nuclear system. In a closed
system, there are no forces to introduce a new order. If the
equilibrium state is reached in a closed system, it can exist a
long time without any distortion,

There exists a strong correlation between the finite lifetime of
the states near equilibrium in an open system and the formation
of states far from equilibrium. In the states far from equilib-
rium, the target‘nucleus behaves as a whole, i.e. the many-body
aspects play a subordinate role in the P + O space.

The finite lifetime of the nuclear states creates an irreversi-
bility on a microscopic level. This irreversibility continues to
exist at high level density although the main process (scatter-
ing of a nucleon on a target nucleus) is, of course, reversible.

Although most of the discussed results are very well known in nu-
physics for a long time, a direct experimental test has yet to

11



come (for a detajled discussion see ref.a). The most direct way is to

investigate the lifetime of the compound nucleus states in dependence
on the excitation energy and the correlations between the resonance

amplitudes. In both cases, deviations from the assumptions of standard
nuclear reaction theory result if the nucleus is considered as an open
system,

In this paper, only nucleon channels have been considered. The

results hold, however, in an analogous manner also for, e.g., alpha

particle channels and for the coupling to the electromagnetic field.

References

1.

2.
3.

10.

11.

12,
13.
14,
15.
16.

I. Prigogine, I. Stengers, Order out of chaos (London 1984 and
Moscow 1986) .

N. Bohr, Nature 137 (1936) 344
H.A. Weidenmiiller, Comments on Huclear and Particle Physics 16

(1986) 199; Nuclear Structure 1985, ed. by R. Broglia et al.
(North-Holland 1985), p. 213; and references therein

. E. vogt, Intern. Conf. on Spin Excitations in Nuclei, Telluride,

Colorado, 1982, TRI-PP-83-17 (TRIUMF 1983)

. H.¥. Barz, I. Rotter and 3. Hohn, Phys. Letters 378 (1971) 4;

Nucl. Phys. A275 (1977) 111

. I. Rotter, Fiz, Elem, Chastits At. Yadra 15 (1984) 762 (translation

15 (1984) 341 and ZfK-508 (1983))

. 1. Rotter, Phys. Rev. C27 (1983) 2261; C29 (1984) 1119;

H.R, Kissener, I. Rotter and N.G. Goncharova, Fortschritte der
Physik (1987) ' .

. 1. Rotter, 3. Phys. G12 (1986) 1407; Fiz. Elem. Chastits At. Yadra

(in press; translation ZfK-598 (1986))

. H. Haken, Synmergetics (Springer 1978); Advanced Synergetics

(Springer 1983)

I. Prigogine, fFrom Being to Becoming (San Francisco 1979 and
Moscow 1985)

E.P. Kanter et al., Hucl. Phys. A299 (1978) 230;

8.H. Chou et al., Phys. Rev. Letters 45 (1980) 1235; W.K. Wells
et al., Z. Phys. A297 (1980) 215; J.F.Jr. Shrimer et al., Z. Phys.
A305 (1982) 307

P. Kleinwdchter and I. Rotter, Nucl. Phys. A391 (1982) 137

P. Kleinwachter and I. Rotter, Phys. Rev.C32 (1985) 1742

P. Kleinwdchter and I. Rotter, to be published

V.V. Sokolov and V.G. Zelevinsky, private communication

I. Rotter, to be published

Received by Publishing Department
on February 26, 1988.

12

Porrep H. : : 7 E4-88-141
CaMoopranusammsa M aToMHHe smpa

TIpn noMomM YMClIeHHHX Pe3yRbTATOB, MOJYYEHHHX HS MHKPO-—
CKOIIMYECKHX pacHeTOB peaKmuii, BH3BAHHHX HYKJIeOHaMH, pac-—
CMATPHBAaeTCA Iepexo] OT Pe3sOHAHCHOTO MeXaHHsSMa DpeaxKuHi
TNPH HUSKHX IUIOTHOCTAX K NPAMOMY MEeXaHHSMY NDH BhICOKHX
WioTHoCTaX. Ilepexon oGHapyxuBaerca npH <I>x<D>, korpa
CYmeCcTBYNOT ORHOBDEMEHHO ABAa THIIA OABHXEHHA HYKJIOHOB: JON-
TOXMBYWHE COCTOAHHA, HaXoQAmHecCs NOYTH B paBHOBeCHH, H
KOPOTKOXHMBYIHE COCTOSAHHA, YRaJleHHHe OT paBHoBecHs. [loaB-—-
JIeHHe mnopAAgka H3 Xaoca HaGmomaeTcs TOJBKO B OTKPHITON KBaH-
TOBOMeXaHHuecKoH saAfAepHo#l cHcreMe. OHO ABJIAETCA CIIeOCTBH-
€M KBaHTOBBIX GUIYKTyauui uepes KOHTHHYYM.

PaGoTa BrmonHeHa B JlaGopaTopuy TeopeTHUecKO# GHSHKH
OHUAH.
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The transition from the resonance reaction mechanism
at-low level density to the direct reaction mechanism at
high level density is investigated by means of numerical
results obtained from microscopic calculations for nucle-
on induced reactions. The transition takes place rather
sharply at <>=<D>. Here, two types of motion of the nuc-
leons exist simultaneously: a motion in long-living sta-
tes which are near equilibrium and a motion in short-1li-
ving states which are far from equilibrium. A formation
of order out of chaos takes place only in the open quan-
tum mechanical nuclear system. It is caused by the quan-—
tum fluctuations via the continuum.
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