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As is well known the Vlasov equation has microscopic
solutions corresponding to the exact solutions of the equa-
tions of classical mechanics*.

We shall consider now, also in the schemeof classical
mechanics a dynamical system of N identical hard spheres,
with diameter a and mass m, moving ina macroscopic
volume V .

The purpose of this paper is to demonstrate that the
Boltzmann-Enskog equation, which always was considered
as a low density approximation possesses also micro-
scopic solutions, corresponding to the exact movement of
particles.

Let us denote by ci’,( ) W (1) - the positions and
velocities of the centers ‘of our spheres at the time L,
Evidently they are functions of t depending alsc on their
initial values for t =0.

Denote by [I':

(0 0 (0 0
T = (q(l )‘“(l)-"“ q(N)‘ w(N))

the set of these initial values, which we shall consider as
a point in 6N -dimensional phase space.

Of course,we restrict the relevant domain of this
phase space by the conditions:

|qjl —qul > oa, for any j #j, 1

thus excliuding the unphysical overlapping configurations
of our spheres. :
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*This important remark was first fublished by A.A.VIa-
sov himself in the monography /1/ (1950).



We may write:

g, (0 = 4 (5T) 5

On the other hand we have identically:

-+ -+
j=1,..N. (2) -z Alg (1, w; (1) =
eow, (1, ) (1SIEN)
wy (t) wi(t, 1) =0=" (6)
Considei now arbitrary dynamical variables of additive . f -
- : : ALY 3 8(T-q,(0)8(3 - wy(1) drdv,
and binary type: (1<ISN) ]
agt) = S A(G (0, WD) . |
(1j<N) and because of the symmetry condition (4)
(3)
By - 5 B(E(V,¥, (Dd, (0¥ (1) S B(igly) =5 = B(igii,) =
(151, <gsNy 1 1 2 2 (184 <ip N 1<44E N
-3 -3 | igjz.éN
Here A(q,w ) is an arbitrary function of q, W, /
and B(q,w;q , %) is anarbitrary symmetric function ‘ 1174,
of (¢, W), {(§’, %) i
I - -r e - i H-;— E . B(ll;jz) 2 2 - B(]l,jl),
B(q,w, q,w") =B(q",w" q,w) . @ 155, SN (1<34SN)
1_ 1<j <N
Because of (2) the expressions (3) are also functlons | = 2=
of I , 50 more explicitly we may write: ‘ or, more explicitly:
(i) =G(t; ;80 = By {
We introduce now, in the phase space of points |, ! i< E < B(‘lj (v, “’j (1) *q; (t,w j (1) =
a probability distribution function D(T) ; (151y<1, 3N
[ D(IYAT =1, i . )
s T OB(q{h.w; (t); 0y, w, (t)) ~
which is sufficiently regular in the relevant domain e9) i 2 154, SN. (qjl() 11( ) .qu( )’_wlz( ))
and equal to zero outside of it (i.e., for overlapping 1‘
configurations). 12i,5N
Then the average values of dynamical variables (3)
may be defined as: 1 - - > -
. ‘ "“‘2" <£ <N B(qjl (t)’wjl(t);qjl(t)’wj!(t))=
< X (qJ() w (> = [ @(t, 1) D) dl 124,25
(1<_|<N)
(%)
1 > - -+ d B4 s a2 -
- -3 = ] = — . - -
< s B, (0., (057, (0¥ (0>=fBLODMAC g I BELVT Va3 P ey, (9% Wi,
KRS Rt h 2 Vs : s$i,eN
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x ) a(}’z-a’jz(t))‘a(?z_sz(t))_ B(F -7 5) 8(V,-V,) x
. )

(lgjz <N
(M
X p) 8(l qJ (t))a( 1-wj (t))ldrldv drzdvz
(1<i; <N
It is convenient to introduce the function:
f(t.ev:1y=nt % BE-q (B -wi(t) ,  (8)
(1< £ N)
where
r[ 7 e—

Y

is the particle density.

With the help of this function (8) the identities (6}, (7)
may be rewritten as:

G(e:T) = nfA(F, v ) E(e 7, ¥ T)Ydrdy

R(t, ) -

1 - - EY - ¥ - - - -+
=—i‘f8(rl’v]:r2’vz)lnzf(t$r]sv|;l‘)f(t ,r2 .V.z o l‘) -

~8() ~rg) 5v ~%)af(t,ry v ;[ )1diy &, dry dv,

and hence:

< 2 A - o .y _,'
(<i< N) (d ), %, (> =nJAF ¥ )(t,r\¥ ND(dTAVAT
< I OB@O, v 0:q, O,% () -

g <ips™) 1 ! 2 2 (9)
- = jB(r ,*,;52,?2” inzf(t,?l,*vl;r)f(t,?z,v;;r)_

~ 5 (7, -6 B(¥) = V)nf(t,F ¥ ;T ID(T)AT, dy,drydvydl
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Consider now, on the other hand, the usual reduced
one-particle and two partxcle dlstrlbutmn functions:

Fy(t5,9)s  Fp(b,ry Vi vy)

In virtue of their definition, we have:

< F A@G{O,% )5 =0 AT F LT, V)drdy
(1gjgN)
< 3 B(d, (,w, (0;q, , W, =
(< igiem (qll() w”() qiz(t) w}2(t))
n? -
=—2-fB( I’Vl 2,V2)F (t, r , l’ 2,v2)dr dv dr dv

By coxhparing these formulae with (9) we get:

F (e .r,v)=ff(t, ¢,v;r)D(dr

Fo(t, ), V)iry.%) =
(10)

< SEE, e v T gy vy 5 1) -

cn T S (F) =1y BV, -V (1T LV F DT
and, in particular:
Fo(t, 7, 1.‘2.v)-mt vy TR, v DD
for ' (11)
vy A Ta .
We shall utilise now the hierarchy for the reduced
distribution functions, which was established also in the

kinetic theory of hard spheres’ '2/ We need here only the
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first equation of this hierarchy, which will be written in
the form:

A F (t,1y,v)) '
1 L SR | d ) > >
vy ——-—_’—-Fl(t,rl,vl) -
at ar
1
—na2j(;2,lc?){l:2(t,;1,;]*;r*]+ac;,32*) - (12)
(v213)20
S By (.1, v, 51, ~ad, V,)dad v, = 0,
where

-3 -+ - -+ -* T -3 -» -3 - - ES

Vop =Va~Vyi vi=vy + q(vz’l-a); Vy=Vy =0 (Vz, o) (13)
5 is a unit vector and o integration is an angular
integration over the 3-dimensional unit sphere.

In (12) ao is being understood as (a+ 0)o.We thus
denote by

-3 e ed -

- B
F(v,r ,v r]iao,v’)

the corresponding limits
fim Fo(t,7),v ;7 £(a +e)o,v"),
e>0 -
€0
The values of F,{l,r;,V,F, v onthesurface [fy-fyl=e
are always taken here_,from the outside region |?l—?2|> a,
In the inside region |fy-rz|<a, F is zero.
The substitution of the expressions (10), (11} into (12)
yields:

- -3
I

I/E(t: I,VI;F)D(F)dF:-O’ (14)

where

(1, ¥y, VD)
at

- , a - >
+ V- f(t,rgp v ) =~
S |

E(t,ry,v1;T) =

-na%® | (32,1.&’)”“,?l,\Tf;r)f(t,?1+a3,$§;r)_
(v, s0)20 (1%)

w (b, ry, v T E(E T - 2 vp) ;1)1 dody, .

Since the function D(1") is arbitrary in the physical
region (1)of the phase space it follows from (15) that in this
region:

E(t,f;,v; 3 ) =00 (16)

We thus see that the nonlinear 'Boltzmann- Enskog
equation:

AE(b,Tr Vy) . L.
L | 17 + Vlaf_(.a..._.. f(t’rl’vi) =
at drq
2 - - 4+ o o o o (17)
=na® [ (vy o) lE(try,VY) f(t,ry + ao, v} -
(v, 1-&720

*

SE(t, TV ,) (6T —ad,vy) Hdodv,,

has not only usually considered solutions, corresponding
to the elementary low-density approximation, but
possesses also the »mircoscopic solutions’’ of the type
8)

- -

f —f(e,r, v; ) (18)

corresponding to the exact dynamics of our hard sphere
system.



This fact exhibits that the B.E. equation may serve
as a source” for obtaining higher approximations.

As an illustration of such a possibility we may also
quote here the paper/#/ by J.T.Ubbink and E.H. Hauge,
where they started from the nonlinear Boltzmann equation
and succeeded in obtaining correct long time behaviour
of the correlation functions for the low-density case ** .

In conclusion let us remark that our treatmentcan be
extended also to the situation where in addition to a hard
core interaction (that of hard spheres) we have also
»normal’’ binary interactions, described by a smooth
function ¢ (1) defined for ;> a and which weformally
continue for r< a by putting ~

® ()= 0 for r<a. (19)

Such a case was considered by Ernst, Dorfman, Hoegy
and van Leeuwen/2/ for the construction of pseudo-Lio-
wille operators.

* It is easy to see that the whole hierarchy equations
for the reduced distribution functions may be obtained
directly from (17), starting with the solutions (18). We

need only to express -d-d-- (1) .. f(s1) > by means of
t

(17) in terms of <f(L[}... f(s;)>,<f(1,1)... f(s+ k1)> and to notice
that Fs is a linear form of <f(L1)...f(j: ') (j<s) and
vice versa. We may also remark that these relations
between F, and averaged productsof f(j; 1) are in close
analogy with the relations between

W @) et FWFY (e > and <o " ) (1))t ) WA
in the second quantisation method’/3/ in quantum statistics.
ok
Note that in this case the terms :as  in (17) which
distinguish the B.E. equation from the ordinary B. equation

are not too relevant, when dealing with the first appro-
ximations.
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In this situation we need only to supply the left-hand
side of the equa_l:tion ng) with the term:
i d g (1‘1 - 1'2) 3

m

~ — E,(t,7, 7 355, ,v,)dr, d¥, 20
’F 3, PR AR 2 ©¥2.(20)

Then by literally repeating our reasonning we find
that the generalized Boltzmann-Enskog equation, supplied
with the ’Vlasov term’’:

af(e,r,vy) - 9
+v1° -

Jt arl

¢ -
(t’rl;vl) =

2 —» el -» > - d -
=na f(V2‘]-a){f(t,rl , VM, T vao, V') -

(V2 ia)zo

L4

(21)
-f(t,rl,vl)f(t,rl_aa,Jz)ideJz +
9 (r, -1, ) - ! "
en/m [ 2L 2 ,(c,r )dr . f(e,r ,v )
2 2 - ] 1
81'1 av]
where

P(t,f'z) = f[(t'sl?z:\?z) d{:z ’

also possesses microscopic solutions of the form (8), (18),
corresponding to the exact movement of particles in the
considered dynamical system.

Therefore the equation (21) can provide a basis for
obtaining higher approximations.

By substituting the microscopic solutions inthis equa-
tion the whole system of equations for F,F,...Fs... may
easily be obtained.
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