ОБЬЕАИНЕННЫЙ ИНСТИТУт
 ค $\triangle E P H$ DX
 ИССАЕАОВАНИЙ

AYБHA

$$
12 / v-75
$$

$B-71$
E4-8789
N.N. Bogolubov

MICROSCOPIC SOLUTIONS
OF THE BOLTZMANN-ENSKOG EQUATION
IN THE KINETIC THEORY
OF HARD SPHERES

E4 • 8789

N.N. Bogolubov

MICROSCOPIC SOLUTIONS
OF THE BOLTZMANN-ENSKOG EQUATION
IN THE KINETIC THEORY
OF HARD SPHERES

Submitted to TMD

As is well known the Vlasov equation has microscopic solutions corresponding to the exact solutions of the equations of classical mechanics*.

We shall consider now, also in the scheme of classical mechanics a dynamical system of N identical hard spheres, with diameter a and mass m, moving in a macroscopic volume V.

The purpose of this paper is to demonstrate that the Boltzmann-Enskog equation, which always was considered as a low density approximation possesses also microscopic solutions, corresponding to the exact movement of particles.

Let us denote by $\vec{q}_{j}(t), \vec{w}_{j}(t)$ - the positions and velocities of the centers of our spheres at the time t. Evidently they are functions of t depending also on their initial values for $t=0$.

Denote by Γ :

$$
\Gamma=\left(\vec{q}_{1}^{(0)}, \vec{w}_{1}^{(0)}, \ldots \vec{q}_{N}^{(0)}, \vec{w}_{N}^{(0)}\right)
$$

the set of these initial values, which we shall consider as a point in 6 N -dimensional phase space.

Of course, we restrict the relevant domain of this phase space by the conditions:

$$
\begin{equation*}
\left|\overrightarrow{\mathbf{q}}_{\mathrm{j}_{1}}-\overrightarrow{\mathbf{q}}_{\mathrm{b}_{2}}\right| \geqslant \mathrm{a}, \quad \text { for any } \mathrm{j}_{1} \not \mathrm{j}_{2} \tag{1}
\end{equation*}
$$

thus excluding the unphysical overlapping configurations of our spheres.

[^0]We may write:

$$
\begin{align*}
& \vec{q}_{\mathbf{j}}(t)=\vec{q}_{\mathbf{j}}(t ; \Gamma) ; \\
& \vec{w}_{\mathbf{j}}(t)=\vec{w}_{\mathbf{j}}(t, \Gamma) ; \tag{2}
\end{align*}
$$

Consider now arbitrary dynamical variables of additive and binary type:

$$
\begin{align*}
& \mathscr{G}(t)=\sum_{(1 \leqq j \leqq N)} A\left(\vec{q}_{j}(t), \vec{w}_{j}(t)\right) \tag{3}\\
& B(t)=\sum_{\left(1 \leqq j_{1}<j_{2} \leqq N\right)} B\left(\vec{q}_{j_{1}}(t), \vec{w}_{j_{1}}(t) ; \vec{q}_{j_{2}}(t), \vec{w}_{j_{2}}(t)\right)
\end{align*}
$$

Here $A(\vec{q}, \vec{w}) \quad$ is an arbitrary function of $\vec{q}, \quad \vec{w}$, and $B\left(\vec{q}, \vec{w} ; \vec{q}^{\prime}, \vec{w}^{\prime}\right)$ of $(\vec{q}, \vec{w}),\left(\vec{q}^{\prime}, \vec{w}^{\prime}\right)$:

$$
\begin{equation*}
B\left(\vec{q}, \vec{w}, \vec{q}^{\prime}, \vec{w}^{\prime}\right)=B\left(\vec{q}^{\prime}, \vec{w}^{\prime} ; \vec{q}, \vec{w}\right) \tag{4}
\end{equation*}
$$

Because of (2) the expressions (3) are also functions of $[$, so more explicitly we may write:
$G(t)=\mathbb{A}(t ; \Gamma) ; B(t)=B(t ; \Gamma)$.
We introduce now, in the phase space of points Γ, a probability distribution function $\mathrm{D}(\Gamma)$

$$
\int D(\Gamma) d \Gamma=1
$$

which is sufficiently regular in the relevant domain (1) and equal to zero outside of it (i.e., for overlapping configurations).

Then the average values of dynamical variables (3) may be defined as:

$$
\begin{aligned}
& <\sum_{(1<j \leqq N)}^{\sum} A\left(\vec{q}_{j}(t), \vec{w}_{j}(t)\right)>=\int \mathscr{G}(t, \Gamma) D(\Gamma) d \Gamma \\
& <\sum_{\left(1 \leqq j_{1}<j_{2} \leq N\right)}^{\sum} B\left(\vec{q}_{j_{1}}(t), \vec{w}_{j_{1}}(t) ; \vec{q}_{j_{2}}(t) \vec{w}_{j_{2}}(t)>=\int B(t, \Gamma) D(\Gamma) d \Gamma\right.
\end{aligned}
$$

On the other hand we have identically:

$$
\begin{align*}
& \sum_{(1 \leqq j \leqq N)}^{\sum A\left(\vec{q}_{j}(t), \vec{w}_{j}(t)\right)=} \tag{6}\\
& \int A(\vec{r}, \vec{v}) \underset{(1 \leqq j \leqq N)}{\sum} \delta\left(\vec{r}-\vec{q}_{j}(t)\right) \delta\left(\vec{v}-\vec{w}_{j}(t)\right) d \vec{r} d \vec{v},
\end{align*}
$$

and because of the symmetry condition (4)

$$
\begin{aligned}
& \underset{\left(1 \leqq j_{1}<j_{2} \leqq N\right)}{\sum} B\left(j_{1} ; j_{2}\right)=\frac{1}{2} \underset{\substack{1 \leqq j_{1} \leqq N \\
1 \leqq j_{2} \leqq N \\
j_{1} \neq j_{2}}}{\sum} B\left(j_{1} ; j_{2}\right)= \\
& =\frac{1}{2} \sum_{\substack{1 \leqq j_{1} \leqq N \\
1 \leqq j_{2} \leqq N}}^{\sum} B\left(j_{1} ; j_{2}\right)-\frac{1}{2} \underset{\substack{\left.1 \leqq j_{1} \leqq N\right)}}{\sum} B\left(j_{1} ; j_{1}\right),
\end{aligned}
$$

or, more explicitly:

$$
\begin{aligned}
& \quad \underset{\left(1 \leqq j_{1}<j_{2} \leqq N\right)}{\sum} B\left(\vec{q}_{j_{1}}(t), \vec{w}_{j_{1}}(t) ; \vec{q}_{j_{2}}(t), \vec{w}_{j_{2}}(t)\right)= \\
& =\frac{1}{2} \underset{\substack{1 \leqq j_{1} \leqq N \\
1 \leqq j_{2}<N}}{\sum_{2}} B\left(\vec{q}_{j_{1}}(t), \vec{w}_{j_{1}}(t) ; \vec{q}_{j_{2}}(t), \vec{w}_{j_{2}}(t)\right)- \\
& -\frac{1}{2} \underset{\left(1 \leqq j_{1} \leqq N\right)}{\Sigma} B\left(\vec{q}_{j_{1}}(t), \vec{w}_{j_{1}}(t) ; \vec{q}_{j_{1}}(t), \vec{w}_{j_{1}}(t)\right)= \\
& =\frac{1}{2} \int B\left(\vec{r}_{1}, \vec{v}_{1} ; \vec{r}_{2}, \vec{v}_{2}\right) \underbrace{\Sigma}_{\left(1 \leqq j_{1} \leqq N\right)} \delta\left(\vec{r}_{1}-\vec{q}_{j_{1}}(t)\right) \hat{\rho}\left(\vec{v}_{1}-\vec{w}_{j_{1}}(t) \times\right.
\end{aligned}
$$

It is convenient to introduce the function:

$$
\begin{equation*}
f\left(t, \vec{r}, \vec{v} ; l^{\prime}\right)=\mathbf{n}^{-1} \sum_{(1 \leqq j \leqq N)}^{\sum} \delta\left(\vec{r}-\vec{q}_{j}(t)\right) \delta\left(\vec{v}-\vec{w}_{\mathbf{j}}(t)\right), \tag{8}
\end{equation*}
$$

where

$$
n=\frac{N}{V}
$$

is the particle density.
With the help of this function (8) the identities (6), (7) may be rewritten as:

$$
\left(\mathbb{G}\left(\mathfrak{t} ; \Gamma^{\prime}\right)=\mathrm{n} \int \mathrm{~A}(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{v}}) \mathbf{f}(\mathrm{t}, \overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{v}} ; \Gamma) \mathrm{d} \overrightarrow{\mathrm{r}} \mathrm{~d} \overrightarrow{\mathrm{v}}\right.
$$

R $(t, \Gamma)=$

$$
=\frac{1}{2} \int B\left(\vec{r}_{1}, \vec{v}_{1} ; \vec{r}_{2}, \vec{v}_{2}\right) / n^{2} f\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right) f\left(t, \vec{r}_{2}, \vec{v}_{2} ; r\right)-
$$

$$
-\delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \delta\left(\vec{v}_{1}-\vec{v}_{2}\right) n f\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right)\left\{d \vec{r}_{1} d \vec{v}_{1} d \vec{r}_{2} d \vec{v}_{2}\right.
$$

and hence:

$$
\begin{align*}
& <\sum_{(1 \leq j \leq N)}^{\sum} A\left(\vec{q}_{j}(t), \vec{w}_{j}(t)\right)>=n \int A(\vec{r}, \vec{v}) f(t, \vec{r}, \vec{v} ; \Gamma) D(\Gamma) d \vec{r} d \vec{v} d \Gamma \\
& <\sum_{\left(1 \leqq j_{1} \leqq j_{2} \leqq N\right)}^{\Sigma} B\left(\vec{q}_{j_{1}}(t), \vec{w}_{j_{1}}(t) ; \vec{q}_{j_{2}}(t), \vec{w}{ }_{j_{2}}(t)\right)>= \tag{9}\\
& =\frac{1}{2} \int B\left(\vec{r}_{1}, \vec{v}_{1} ; \vec{r}_{2}, \vec{v}_{2}\right) \times\left\{n^{2} f\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right) f\left(t, \vec{r}_{2}, \vec{v}_{2} ; \Gamma\right)-\right. \\
& \left.-\delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \delta\left(\vec{v}_{1}-\vec{v}_{2}\right) n f\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right)\right\} D(\Gamma) d \vec{r}_{1} d_{v_{1}} d_{r_{2}} d_{v_{2}} d \Gamma .
\end{align*}
$$

Consider now, on the other hand, the usual reduced one-particle and two-particle distribution functions:

$$
F_{1}(t, \vec{r}, \vec{v}) ; \quad F_{2}\left(t, \vec{r}_{1}, \vec{v}_{1} ; \vec{r}_{2}, \vec{v}_{2}\right)
$$

In virtue of their definition, we have:
$<\sum_{(1 \leqq j \leqq N)} A\left(\vec{q}_{j}(t), \vec{w}_{j}(t)\right)>=n \int A(\vec{r}, \vec{v}) F_{1}(t, \vec{r}, v) d \vec{r} d \vec{v}$
$<\underset{\left(1 \leqq j_{1} \leqq j_{2} \leqq N\right)}{\mathbf{E}\left(\vec{q}_{j_{1}}(t), \vec{w}_{j_{1}}(t) ; \vec{q}_{j_{2}}(t), \vec{w}_{j_{2}}(t)\right):=}$
$=\frac{n^{2}}{2} \int B\left(\vec{r}_{1}, \vec{v}_{1} ; \vec{r}_{2}, \vec{v}_{2}\right) F_{2}\left(t, \vec{r}_{1}, \vec{v}_{1}, \vec{r}_{2}, \vec{v}_{2}\right) d \vec{r}_{1} d \vec{v}_{1} d r_{2}^{\prime} d \vec{v}_{2}$.
By comparing these formulae with (9) we get:

$$
\begin{align*}
& F_{1}(t, \vec{r}, \vec{v})=\int f(t, \vec{r}, \vec{v} ; \Gamma) D(\Gamma) d \Gamma \\
& F_{2}\left(t, \vec{r}_{1}, \vec{v}_{1} ; \vec{r}_{2}, \vec{v}_{2}\right)= \tag{10}\\
& =\int f f\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right) f\left(t, \vec{r}_{2}, \vec{v}_{2} ; \Gamma\right)- \\
& -n^{-1} \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \delta\left(\vec{v}_{1}-\vec{v}_{2}\right) f\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma \mid D(\Gamma) d \Gamma\right.
\end{align*}
$$

and, in particular:
$F_{2}\left(t, \vec{r}_{1}, \vec{v}_{1} ; \vec{r}_{2}, \vec{v}_{2}\right)=\int f\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right) f\left(t, \vec{r}_{2}, \vec{v}_{2} ; \Gamma\right) D(\Gamma) d \Gamma ;$
for
$r_{1} \neq r_{2}$.
We shall utilise now the hierarchy for the reduced distribution functions, which was established also in the kinetic theory of hard spheres ${ }^{\prime 2 /}$. We need here only the

$$
\begin{align*}
& \times{ }_{\left(1 \leqq j_{1} \leqq N\right)}^{\left.\sum_{1} \delta\left(\vec{r}_{1}-\vec{q}_{j_{1}}(t)\right) \delta\left(\vec{v}_{1}-\vec{w}_{j_{1}}(t)\right)\right\} \overrightarrow{d r_{1}} d \vec{v}_{1} d_{r_{2}} d \vec{v}_{2} . . . ~ . ~ . ~} \tag{7}
\end{align*}
$$

first equation of this hierarchy, which will be written in the form:

$$
\begin{align*}
& \frac{\partial F_{1}\left(t, \vec{r}_{1}, \vec{v}_{1}\right)}{\partial t}+v_{1} \cdot \frac{\partial}{\partial \vec{r}_{1}} F_{1}\left(t, \vec{r}_{1}, \vec{v}_{1}\right)- \\
& -\mathrm{na}{ }^{2} \int\left(\overrightarrow{\mathrm{v}}_{2,1} \vec{\sigma}\right)\left\{\mathrm{F}_{2}\left(\mathrm{t}, \overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{v}}_{1}^{*} ; \overrightarrow{\mathrm{r}}_{1}+\mathrm{a} \vec{\sigma}, \overrightarrow{\mathrm{v}}_{2}^{*}\right)-\right. \tag{12}\\
& \left(\vec{v}_{2}\right)^{\vec{\sigma})} \geqq 0 \\
& \left.-\mathrm{F}_{2}\left(\mathrm{t}, \overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{v}}_{1} ; \overrightarrow{\mathrm{r}}_{1}-\mathrm{a} \vec{\sigma}, \overrightarrow{\mathrm{v}}_{2}\right)\right\} \mathrm{d} \vec{\sigma} \mathrm{~d} \overrightarrow{\mathrm{v}}_{2}=0,
\end{align*}
$$

where
$\overrightarrow{\mathrm{v}}_{2,1}=\overrightarrow{\mathrm{v}}_{2}-\overrightarrow{\mathrm{v}}_{1} ; \overrightarrow{\mathrm{v}}_{1}^{*}=\overrightarrow{\mathrm{v}}_{1}+\vec{\sigma}\left(\overrightarrow{\mathrm{v}}_{2,1} \cdot \vec{\sigma}\right) ; \overrightarrow{\mathrm{v}}_{2}=\overrightarrow{\mathrm{v}}_{2}-\vec{\sigma}\left(\overrightarrow{\mathrm{v}}_{2,1} \cdot(\vec{\sigma})\right.$,
$\vec{\sigma}$ is a unit vector and $\vec{\sigma}$ integration is an angular integration over the 3 -dimensional unit sphere.

In (12) a $\vec{\sigma}$ is being understood as $(a+0) \vec{\sigma}$. We thus denote by

$$
\mathrm{F}_{2}\left(\mathrm{t}, \overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{v}} ; \overrightarrow{\mathrm{r}}_{1} \pm \mathrm{a} \vec{\sigma}, \overrightarrow{\mathrm{v}}^{\prime}\right)
$$

the corresponding limits

$$
\lim _{\substack{\epsilon>0 \\ \epsilon \rightarrow 0}} F_{2}\left(t, \vec{r}_{1}, \vec{v} ; \vec{r}_{1} \pm(a+\epsilon) \vec{\sigma}, v^{\prime}\right)
$$

The values of $\mathrm{F}_{2}\left(\mathrm{t}, \vec{r}_{1}, \vec{v}, \vec{r}_{2}, v\right)$ on the surface $\left|\vec{r}_{1}-\vec{r}_{2}\right|=a$ are always taken here from the outside region $\left|\vec{r}_{1}-\vec{r}_{2}\right|>a$. In the inside region $\left|\vec{r}_{1}-\vec{r}_{2}\right|<a, F$ is zero.

The substitution of the expressions (10), (11) into (12) yields:

$$
\begin{equation*}
\int E\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right) D(\Gamma) d \Gamma=0 \tag{14}
\end{equation*}
$$

where
$E\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right)=\frac{\partial f\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right)}{\partial t}+\vec{v}_{1} \cdot \frac{\partial}{\partial \vec{r}_{1}} f\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right) \cdots$

$$
-\mathrm{na}_{\left(\mathrm { v } _ { 2 , \mathbf { 1 } ^ { 2 } } \int _ { = 0 } (\vec { \mathrm { v } } _ { 2 , 1 } \cdot \vec { \sigma }) \left\{\mathrm{f}\left(\mathrm{t}, \overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{v}}_{\mathrm{l}}^{*} ; \Gamma\right) \mathrm{f}\left(\mathrm{t}, \overrightarrow{\mathrm{r}}_{1}+\mathrm{a} \vec{\sigma}, \overrightarrow{\mathrm{v}}_{2}^{*} ; \Gamma\right)-\right.\right.}
$$

$$
\left.\left.-\mathrm{f}\left(\mathrm{t}, \overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{v}}_{1} ; \Gamma\right) \mathrm{f}\left(\mathrm{t}, \overrightarrow{\mathrm{r}}_{1^{-}} \mathrm{a} \vec{\sigma}, \overrightarrow{\mathrm{v}}_{2}\right) ; \Gamma\right)\right\} \cdot \mathrm{d} \vec{\sigma} \mathrm{~d} \mathrm{v}_{2}
$$

Since the function $D(\Gamma)$ is arbitrary in the physical region (1) of the phase space it follows from (15) that in this region:

$$
\begin{equation*}
E\left(t, \vec{r}_{1}, \vec{v}_{1} ; \Gamma\right)=0 \tag{16}
\end{equation*}
$$

We thus see that the nonlinear Boltzmann-Enskog equation:

$$
\begin{align*}
& \frac{\partial f\left(t, \vec{r}_{1}, \vec{v}_{1}\right)}{\partial t}+\vec{v}_{1} \cdot: \frac{\partial}{\partial r_{1}} f\left(t, \vec{r}_{1}, \vec{v}_{1}\right)= \\
& \left.=\mathrm{na}^{2} \int_{\left(\mathbf{v}_{2}, 1\right.} \cdot \dot{\sigma}\right)>0 \tag{17}\\
& -f\left(\vec{v}_{2,1} \cdot \vec{\sigma}\right)\left\{f\left(t, \vec{r}_{1}, \vec{v}_{1}^{*}\right) f\left(t, \vec{r}_{1}+\mathbf{a} \vec{\sigma}, \vec{v}_{2}^{*}\right)-\right. \\
& \left.f\left(t, \vec{r}-a \vec{\sigma}, \vec{v}_{2}\right)\right\} \mathrm{d} \vec{\sigma} d \vec{v}_{2},
\end{align*}
$$

has not only usually considered solutions, corresponding to the elementary low-density approximation, but possesses also the "mircoscopic solutions" of the type (8):

$$
\begin{equation*}
\mathbf{f}=\mathbf{f}(t, \vec{r}, \overrightarrow{\mathbf{v}} ; \Gamma) \tag{18}
\end{equation*}
$$

corresponding to the exact dynamics of our hard sphere system.

This fact exhibits that the B.E. equation may serve as a source ${ }^{*}$ for obtaining higher approximations.
As an illustration of such a possibility we may also quote here the paper/4/ by J.T.Ubbink and E.H. Hauge, where they started from the nonlinear Boltzmann equation and succeeded in obtaining correct long time behaviour of the correlation functions for the low-density case ${ }^{* *}$.

In conclusion let us remark that our treatment can be extended also to the situation where in addition to a hard core interaction (that of hard spheres) we have also "normal" binary interactions, described by a smooth function $\Phi_{0}(r)$ defined for $r \geq a$ and which we formally continue for $r<a$ by putting

$$
\begin{equation*}
\Phi_{0}^{\prime}(r)^{\prime}=0 \quad \text { for } r<a . \tag{19}
\end{equation*}
$$

Such a case was considered by Ernst, Doriman, Hoegy and van Leeuwen/2/ for the construction of pseudo-Liowille operators.

* It is easy to see that the whole hierarchy equations for the reduced distribution functions may be obtained directly from (17), starting with the solutions (18). We need only to express $\frac{d}{d t}: f\left(1 ; l^{\prime}\right) \ldots f(s ; 1)>$ by means of (17) in terms of $\langle f(1, \Gamma) \ldots f(s ; \Gamma)\rangle,\langle f(1, \Gamma) \ldots f(s+1 ; \Gamma)\rangle$ and to notice that F_{s} is a linear form of $f\left(1, l^{\prime}\right) \ldots f\left(j ; l^{\prime}\right)=(j \leq s)$ and vice versa we may also remark that these relations between F_{s} and averaged products of $\mathrm{f}\left(\mathrm{j} ; \Gamma^{\prime}\right)$ are in close analogy with the relations between
in the second quantisation method $/ 3 /$ in quantum statistics.
${ }^{* *}$ Note that in this case the terms $\pm \mathrm{a} \vec{\sigma}$ in (17) which distinguish the B.E. equation from the ordinary B. equation are not too relevant, when dealing with the first approximations.

In this situation we need only to supply the left-hand side of the equation (12) with the term:

$$
-\frac{1}{m} \int \frac{\partial \Phi_{0}\left(\vec{r}_{1}-\vec{r}_{2}\right)}{\partial \vec{r}_{1}} \cdot-\frac{\partial}{\partial \vec{v}_{1}} F_{2}\left(t, \vec{r}_{1}, \vec{v}_{1} ; \vec{r}_{2}, \vec{v}_{2}\right) d \vec{r}_{2} d \vec{v}_{2}(20)
$$

Then by literally repeating our reasonning we find that the generalized Boltzmann-Enskog equation, supplied with the "Vlasov term":

$$
\begin{align*}
& \quad \frac{\partial f\left(t, \vec{r}_{1}, \vec{v}_{1}\right)}{\partial t}+\vec{v}_{1} \cdot \frac{\partial}{\partial \vec{r}_{1}} f\left(t, \vec{r}_{1} ; \vec{v}_{1}\right)= \\
& =n^{2} \int\left(\vec{v}_{2,1} \cdot \vec{\sigma}\right)\left\{f\left(t, \vec{r}_{1}, \vec{v}_{1}^{*}\right) f\left(t, \vec{r}_{1}+a \vec{\sigma}, \vec{v}_{2}^{*}\right)-\right. \\
& \left(v_{2, i}^{\sigma}\right) \geqslant 0 \tag{21}\\
& \left.-f\left(t, \vec{r}_{1}, \vec{v}_{1}\right) f\left(t, \vec{r}_{1}-a \vec{\sigma}, \vec{v}_{2}\right)\right\} d \vec{\sigma} d \vec{v}_{2}+
\end{align*}
$$

$+n / m \int \frac{\partial \Phi_{0}\left(\vec{r}_{1}-\vec{r}_{2}\right)}{\partial \vec{r}_{1}} \rho\left(t, \vec{r}_{2}\right) d \vec{r}_{2} \cdot \frac{\partial}{\partial \vec{v}_{1}} f\left(t, \vec{r}_{1}, \vec{v}_{1}\right)$
where

$$
\rho\left(t, \vec{r}_{2}\right)=\int f\left(t, \vec{r}_{2}, \vec{v}_{2}\right) d \vec{v}_{2}
$$

also possesses microscopic solutions of the form (8), (18), corresponding to the exact movement of particles in the considered dynamical system.

Therefore the equation (21) can provide a basis for obtaining higher approximations.

By substituting the microscopic solutions in this equation the whole system of equations for $F_{1} F_{2}, \ldots F_{s}, \ldots$ may easily be obtained.

References

1. А.А.Власов. "Теория многих частиц", стр. 92, Государственное издательство технико-теорепической литерапуры, 1950.
2. J.J.Hopfield and J.F.Bastin. Phys.Rev., 168, 193(1968). M:H.Ernst, J.R.Dorfman, W.R.Hoegy and J.M.J. van Leeuwen. Physica, 45, 127 (1969):
3. Н.Н.Боголюбов. "Лекціі ${ }^{3}$ квантової статистики". стр. 54, 6О. Радяньска ШІкола, 1949. English translation ''Lectures in quantum statistics"' vol. 1. pp. 55, 61. Gordon and Breach, 1967.
4. J.T.Ubbink and E.H.Hauge. Physica, 70, 297 (1973).

Received by Publishing Department on April 14, 1975.

[^0]: *This important remark was first published by A.A.Vlasov himself in the monography/1 (1950).

