ОБЪЕАИНЕННЫЙ ИНСТИТУТ
ЯAEPHЫX
ИССАЕАОВАНИЙ
АУБНА

$$
\begin{array}{ll}
M-22 & \text { E4 }-8732 \\
1907 / 2-7 & \\
\text { L.A.Malov, V.G.Soloviev } &
\end{array}
$$

DEVELOPMENT OF A MODEL FOR THE DESCRIPTION

OF HIGHLY EXCITED STATES
IN ODD-A DEFORMED NUCLEI
E4-8732

L.A. Malov, V.G. Soloviev

DEVELOPMENT OF A MODEL
FOR THE DESCRIPTION
OF HIGHLY EXCITED STATES
IN ODD-A DEFORMED NUCLEI

Submilled to TV/

1. To describe the structure complication with bacrea:inf excitation enerigy and to clear up eeneral regulasities wi intermediate and highly excited states a model 13 asci, thmat on the account of the quasiparticle-phonon interaction. Njenir. the framework of such a model in order to sclve the system wh equatione it is necesbary to diafonalize thatrices of the fank 10^{4} and higher. This fact forces us to ayts the arproximate rue thods of aotvinfi. In rei. $/ 1 /$ routh approximation i:s uucu which takes into uccount naly coherent termas. In this apprcaimetion tnese appear superrhows soiutionn, whics are nardly aeparable from the true oneg. In ref. ${ }^{\prime} /$ ar aproximate metnod of solving the ajstem of equations 14 nurgeoted whicn taker into accounl all the coherent terms and pole nor-coherent terma. In this case we nave no nuperflucus solutions. The approximate metnod developed in/z/ ia uned in $/ 3 /$ for the wase wil duntly even deformed nuclei, anc in $/ 4 /$ it is clarjficd and used for more complicetea casea of odd-i deformed nuclei. Ther approxamate method $/ 2 /$ wag noed in $/ 5,6 /$ ior stud. ine. the structire of odd-A deformed nuclei. These jnverticetroso have shown, firatly, thet the approxamale wethod mentioned above ib uneful for the stuly of tip structure or gitates, secondly, that this method requires to be improved as it overestimatea contrabution to the secular equation from the separated pole.

The aim of the present paper in to develop a new spproximate method of solving the equatincis of the model, free from the shortcomings of the former methods. The new approximelion
contains no superfiacus solutions and special separation of some poles amone all the other poles. The new method is made for the case of odd-A deformed nucieus, simultaneously considering eeveral one-quasiparticle components.
2. The model Hamiltonian is taken to comprise an average field deacribed by the potential, interactions leading to auperconducting pairing correlations and multipole-multipole interactions. All the paraneterg were rixed earlier in otudying tne low-lying states of nuclei. Taking into account the secular equations for determining the phowon energies $\quad v_{t}$ (where t denotes $A ん /$, J is the number of the secular equation root, , the appropriate part of the Hamiltonian can be written
in the form:

$$
\begin{align*}
& -\frac{1}{2} \sum_{i} \sum_{i r}\left\{\Gamma_{i}^{t}+B\left(\omega+1 /\left(Q_{i}+Q_{t}\right)+r a\right\} .\right. \tag{1}
\end{align*}
$$

where

$$
\begin{aligned}
& r^{\prime}, r^{\prime}=\frac{v_{r}}{2 \gamma_{r}} f^{\prime}\left(r_{i}, r^{\prime}\right) \equiv \Gamma_{r \exists} . \\
& \beta(r, r)=\sum_{i=1}^{5} x_{r-r} x_{1,} \text { or } \sum_{T} \pi x_{r, j}^{j} x_{r}
\end{aligned}
$$

Here the following notations are used; $f(x, y) i a$ the matrix element of the multipole moment operator $\lambda \mu ; Q_{t}^{+}, Y_{t}$ is the phonon creation operator and ite characteristic (see (8.67) in $/ 7 /$); $\chi_{\text {ri }}$ is the quasiparticle creation operator, $\varepsilon_{i} \omega=7 / \overline{C^{2}+\left(E(\nu-\lambda)^{2}\right.}, E(\nu)$ is the aingle-particle energy,
G^{\prime} is the correlation function, λ is the chemicel poten-

set of quantum numbers of the aingle-particle otate, $\quad= \pm 1$.
The wave function of the non-rotational atate of odd-n deformed nucleus is writien in the form:

$$
\begin{align*}
& +\sum_{G}^{5} F_{c}^{\prime}\left(x \cdot C_{i} C_{u}^{*}\right\} L_{u}^{\prime} . \tag{2}
\end{align*}
$$

where $\mathcal{L}^{\prime \prime}$, is the wave function of the rround state of the doubly even nucleus; C is the number of the islate, $\%$; i, $C_{F}=r^{\prime} l_{t} t_{i}$. The wave function (2) differs frem . . . , : . $/ 1,2.5 /$ es it takes into accomat geveral one-particie components

活w we calculate the average value $H_{\text {a }}$ over the stite (2) \therefore nd by means of th': variational princirle ghtian the fallowiff system of equations:

$$
\begin{align*}
& G_{r^{\prime}}=\frac{1}{i r} \cdot \sum_{y} / r D D_{j}^{i} . \tag{4}\\
& F_{i}=\frac{1}{F_{i}} \underset{\gamma}{i} \sum_{j}^{-} F_{j} D_{y} \tag{5}\\
& i=\sum_{r}\left(C_{1}, i^{2}+\sum_{y} D_{y}^{2}-\sum_{4} F_{4}^{2}\right.
\end{align*}
$$

We rewritue the equation (3) an followa;

$$
\begin{equation*}
D_{j}-\frac{1}{P_{j}-i} \sum_{y}^{j} K\left(j, y^{\prime}\right) D_{j}^{i}=(i \tag{7}
\end{equation*}
$$

Here the following notations are used; 7 , is the enerey of
 are the fundamental poles,
where rultipliers $\quad \tilde{\delta}_{1}= \pm 1, \quad \delta_{1}^{\prime}= \pm 1$ are defined in/2/.
Consider the aynten of \mathscr{N} equations

$$
\begin{equation*}
\left.x_{r} \cdot \dot{i}_{r}^{\prime} \sum_{i} K_{1} n_{-}\right) x_{r}=\frac{y_{r}}{Q_{r}}= \tag{9}
\end{equation*}
$$

where $K_{1} \prime \cdot r$ 'has the form of ((l). The determinant of this sygtem way be represented in the form:

The determinanta of the first order and higher due to their opecial form consist of non-coherent terms, containinf only firat-order poles but no second-oider poles and hjoher. In the theory of nucleus one, first of all, deals with the coherent terms, thus in eq. (10) it in possible to limit oneself only to the firet two terms, i.e., the determinant and the solution of the ayotem (9) may be approximately given in the form:

$$
\begin{align*}
& \Delta=1+\sum_{i}^{5} \frac{K_{1} n+1}{u_{n}}, \tag{11}\\
& x_{n}=\frac{j+/ a_{n}}{1+\sum_{n=\prime} \frac{K\left(r_{n}^{\prime \prime}\right)}{a_{n}}} \tag{12}
\end{align*}
$$

or in the more exact form:

$$
X_{n}=\frac{1}{a_{n}}\left\{\psi_{m}-\frac{\sum_{m}^{-} K\left(r_{n}+\right) \frac{y_{n}}{o_{m}}}{1+\sum_{n^{\prime}} \frac{K\left(n^{*} n^{\prime}\right)}{c_{n}}}\right\}
$$

We return to the solution of the syatem of equations (7).

Using the exact equation (10). the determinant of the system of equations (7) after some transformations may bs represented in the form: where the coefficients $\hat{A}_{\psi}, A_{y}, A_{4}$, being the sum of the determinants of various ranks from 1 to $N_{\hat{j}}^{\prime}$, are ingependent of η. It follows from (13) that the gectalar equatron

$$
\begin{equation*}
A(7)=C \tag{14}
\end{equation*}
$$

has only firgt-order poles.
He take an advantage of eq.(11) for determining the energies $7 ;$. He get an approximate secular eq. in the form:

To find the explicit florin of the functions C, , \boldsymbol{F}_{0} we separate one aingle-particle state, denoted as ρ, and rewrite eq. (3) zs:

Then, the exact solution of the system for the coefficients

$$
C_{i}, D_{\rho}, F_{4} \text { of wave function (2) may be written in } E \text { e- }
$$ neral form as in (13) for the determinant Δ of the system or equations. For example, for D_{y} we get: Analogous expressions we obtain for $C ;$ and $F_{\dot{\prime}}$. Yet, wo. use the approximation, having allowed to obtain an approximate solution (12):

Then, from equations (4), (5) and (6) we have:

The detailed study or fragmentation has been made within the framework of the former model with the wave function of the 1, vive (2), in wixich $F_{i}^{\prime} \equiv \ell$, and only one single-particle atiaephas been considered. In this case the single-particle - ate frafmentation is described by the function:

$$
\begin{equation*}
\left(c_{n}\right)^{2}=1 \cdot \sum_{y} \frac{\Gamma_{y}}{i_{y}} \cdot \frac{y^{2}}{2} \tag{22}
\end{equation*}
$$

B: comparing C_{A}^{\prime} in the form (21) and (22) it is seen, that Wee expression in the form (21) is a natural generalization of a simple case, provided by eq.(22).

Un has every reason to consider the approximate method of treating quasiparticle-phonon interaction to be useful for clearing up general regularities of fragmentation of the singleparticle states, hence for the description of the structure of intermediate and highly exited states of complex nuclei in the language of various etreneth functions.

$$
\begin{align*}
& D=\frac{C_{f}}{j_{f}} i_{i}^{\prime}, \tag{18}\\
& \text { If } \quad \begin{aligned}
1 & \ddots \\
\hdashline & \ddots
\end{aligned}
\end{align*}
$$

The alathors are grateful to r.i: : apolutov for interesting discussions.

References
t. V.G.Soloviev. Izv.Aked.Nauk SSSR (ser.fiz.) 35,6if, 1971. V.G.Joloviev, L.A.Malov, Nucl.Phys. A1y6, 433, 1972. V.G.Soloviev, Teor.Met.Piz. 17, 90, 1973. A.1.\#Govin, V.G.Soloviev. Teor. Mat. Fiz. 1y, 27^{5}, 1974.
2. L, A.Malov, V.G.Soloviev. Yad.Fiz.21, 502,1975;preprint JINR P4-7639, Jubna, 1973.
3. G.Kyrchev, V.G.Soloviev. Teor. Kíat. Piz. 20, No $2,1975$.
4. I. A.Malov, G.Ochirbat. Communicationa JINH r4-844\%, P4-8492, Dubna, 1974.
S.V.Akulinichev, L.A.Malov. Communications diNR F4-と433, Duina, 1974. L.A.Malcv, V.O.M.з ¿erenko. Communcations JINR P4-8206, Dubna, 1974.
5. V.G.Goloviev. Preprint JINH E4-8116, Uubna, 1974. L.A.Malov, V.G.Soloviev. Preftint JlNH E4-B55b, Lubna,1y/5.
6. L.A.Malov, V.O.Neaterenko, V.G.Soloviev. Preprint JINK, P4-9499, Dubna, 1974.
7. V.G.Soloviev. Theary of complex nuclej (Nauka, Moscow,1971).

Received by jublishing lepartment on larch 24, 1375 .

