

СООБЩОНИЯ Объодинониого Института Адорных Исслодований Дубиа

G-37

E4-87-927

1987

A.Georgieva*, M.Ivanov*, P.Raychev, R.Roussev*

SYMPLECTIC CLASSIFICATION OF THE EVEN-EVEN NUCLEI AND NUCLEAR SPECTRA

^{*}Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia

1. INTRODUCTION

The introduction of the F-spin in the framework of IBM-2^{/1/} makes it possible to consider, in a unified way, the properties of sequences of atomic nuclei. Thus in ^{/2, 3/} series of even-even nuclei are united in F-spin multiplets. The empirical investigation carried out in these papers shows that the low-lying energy levels of the ground and γ -bands of the nuclei belonging to a given F-spin multiplet depend slightly, almost constantly, on the third projection of the F-spin.

In this paper, as an extension of this approach, we propose to consider in a unified way all even-even nuclei with valence nucleons belonging to a given major nuclear shell. This gives a possibility to deal with the entire spectrum of each shell, which allows to reveal both the existing regularities and the typical features of the different shells. The extension proposed leads to a classification of the even-even nuclei in symplectic multiplets.

It should be noted, that the classification scheme given below uses, as a starting point, some of the concepts of IBM-2, but, at the same time, differs essentially from it. The spectrum is discussed in an empirical way. The problem of the adequate theoretical description of the energy levels will be discussed separately in a forthcoming paper.

2. ALGEBRAIC CONSTRUCTION OF Sp(24, R)

In IBM-2 two types of boson creation π_a^+ and ν_a^+ and annihilation π_a and ν_a operators (a = 0,1,...,5) are introduced. The bilinear products $\pi_a^+\pi_b$ and $\nu_a^+\nu_b$ generate the "proton" and "neutron" U(6) groups, i.e. $U_{\pi}(6)$ and $U_{\nu}(6)$. The operators $\pi_a^+\nu_b$ and $\nu_a^+\pi_b$ extend the $U_{\pi}(6) \oplus U_{\nu}(6)$ algebra to U(12). With the help of boson operators one can define only the most symmetric representations of $U_{\pi}(6)$, $U_{\nu}(6)$ and U(12) labelled by N_{π} , N_{ν} and N respectively. From the generators of U(12) one can construct the sums $\pi^+\pi_b^+ + \nu_a^+\nu_b^-$, which generate the "mixed" group $U_{\pi\nu}(6)$, and also the operators

$$F_{+} = \sum_{a=0}^{5} \pi^{+}\nu; \qquad F_{-} = \sum_{a=0}^{5} \nu^{+}\pi; \\ a = o \qquad a = o$$

$$\mathbf{F}_{0} = \frac{1}{2} \sum_{a=0}^{5} (\pi_{a}^{+} \pi_{a}^{-} \nu_{a}^{+} \nu_{a}^{-}) \equiv \frac{1}{2} (\mathbf{N}_{\pi}^{-} \mathbf{N}_{\nu}^{-})$$

which generate the F-spin group $-SU_{\rm F}(2)$. This corresponds to the decomposition U(12) $\supset U_{\pi\nu}(6) \oplus SU_{\rm F}(2)$.

The extension of U(12) to Sp(24,R) can be done in a natural way (the common case of Sp (4k,R) is discussed in ^{/4/}). The boson representation of Sp(24,R) ^{/5/} is obtained by the addition of the raising $\pi_a^+ \pi_b^+$, $\nu_a^+ \nu_b^+$, $\pi_a^+ \nu_b^+$ and decreasing $\pi_a^- \pi_b^-$, $\nu_a^- \nu_b^-$, $\pi_a^- \nu_b^-$ operators to the generators of U(12). All the most symmetric representations of U(12), labelled by N, act in spaces, whose direct sum coincides with the space \mathcal{H} of the boson representation of Sp(24,R). The latter is reducible and decomposes in two irreducible ones. The first one acts in the space \mathcal{H}_+ , where the spectrum of N is even, while the second one acts in the space \mathcal{H}_- where N is odd ($\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$).

The groups $SU_{\rm F}(2)$ and $U_{\pi\nu}(6)$ are mutually complementary $\sqrt{6}$ which leads to the following relation for their second order Casimir operators – $C_2^{(6)} = 2F^2 + 4N + (1/2)N^2$. Hence, when N is fixed the eigenvalues F(F+1) of F^2 give the irreducible unitary representations (IURs) of both $SU_{\rm F}(2)$ and $U_{\pi\nu}(6)$. Further, it is obvious, that when N and F are fixed there arise 2F+1 equivalent representations of $U_{\pi\nu}(6)$ labelled by $F_0 = -F,...,F$. Thus one obtains the following reduction scheme:

$$\operatorname{Sp}(24, \mathbb{R}) \xrightarrow{\mathbb{N}} \operatorname{U}(12) \xrightarrow{\mathbb{F}^2} \operatorname{SU}_{\mathbb{F}}(2) \oplus \operatorname{U}_{\pi\nu}(6) \xrightarrow{\mathbb{F}_0} \operatorname{U}_{\pi\nu}(6).$$
 (2.1)

On the other hand in the space \mathcal{H} there acts a reducible unitary representation, namely the ladder representation of the algebra $U(6,6)^{7,8/}$. The corresponding Weyl generators of U(6,6) are: $\pi_a^+\pi_b^-$, $\pi_a^+\nu_b^+$, $-\nu_a^-\pi_b^-$, $-\nu_a^-\nu_b^-$. This representation splits in irreducible ones (ladders), labelled by the first order Casimir operator of U(6,6): $C_1^{(6,6)} = 2F_0 - 6$. In the space of each ladder (F_0^- – fixed) there acts an infinite set of IURs of the algebra $U_{\pi}(6) = \Psi_{\nu}(6)$ (steps) labelled by N. The reduction $U_{\pi}(6) = U_{\nu}(6) \supset U_{\pi\nu}(6)$ can be obtained by means of $\vec{F}^2(C_2^{(6)})$. Finally, instead of (2.1) one has

$$\operatorname{Sp}(24, \mathbb{R}) \xrightarrow{F_0} \operatorname{U}(6, 6) \xrightarrow{\mathbb{N}} \operatorname{U}_{\pi}(6) \oplus \operatorname{U}_{\nu}(6) \xrightarrow{F^2} \operatorname{U}_{\pi\nu}(6) . \tag{2.2}$$

From a mathematical point of view both schemes (2.1) and (2.2) are equally appropriate for the description of all IURs of $U_{\pi\nu}(6)$ acting in $\frac{H}{2}$.

The splitting of the spaces \mathcal{H}_+ corresponding to the reductions

is shown schematically in Fig. 1, where the columns represent the ladders defined by F_0 and the rows — the IURs of U(12) defined by N. Each cell corresponds to a given IUR of $U_{\pi}(6) \oplus U_{\mu}(6)$.

Fig. 1. The splitting of $\mathcal{H}_+(N - even)$ and $\mathcal{H}_-(N - odd)$ corresponding to the reductions $\operatorname{Sp}(24,R) \longrightarrow U(6,6) \longrightarrow U_{\pi}(6) \oplus U_{\nu}(6)$ and $\operatorname{Sp}(24,R) \longrightarrow U(12) \longrightarrow U_{\pi}(6) \oplus U_{\nu}(6)$.

3. PHYSICAL INTERPRETATION OF N AND F

In IBM-2 the proton and neutron boson numbers N_{π} and N_{ν} are found by counting the valence proton and neutron pairs (or hole pairs) of a given even-even nucleus from the nearest closed shell. The quantities N and F_0 are defined by

$$N = N_{\pi} + N_{\nu}, \qquad F_{o} = \frac{1}{2} (N_{\pi} - N_{\nu}).$$

In various papers dealing with IBM-2 the following four possibilities to count N_{π} and N_{ν} are used:

i) From proton and neutron particles. In this case one has

$$N_{\pi} = \frac{1}{2} (N_{p} - N_{p}^{mag}), \qquad N_{\nu} = \frac{1}{2} (N_{n} - N_{n}^{mag}), \qquad (3.1)$$

^{*} Reduction scheme (2.1) is written in terms of algebra. We recall that the IURs of the group U(n) and the corresponding irreducible representations of the algebra U(n) act in the same spaces.

where N_p and N_n are the total proton and neutron numbers in the nucleus and N_p^{mag} and N_n^{mag} are the corresponding magic numbers. Therefore

$$N = \frac{1}{2} (A - A^{mag}), \qquad F = \frac{1}{2} (M_{T} - M_{T}^{mag}), \qquad (3.2)$$

where $A = N_p + N_n$ is the mass number and $M_T = \frac{1}{2}(N_p - N_n)$ is the third projection of the isospin.

ii) From proton and neutron holes. Then

$$N = \frac{1}{2} (A^{mag} - A), \qquad F_{o} = \frac{1}{2} (M_{T}^{mag} - M_{T}), \qquad (3.3)$$

and the difference between this case and the previous one is not essential.

iii) From proton particles and neutron holes. Then

$$N = M_{T} - M_{T}^{mag}$$
, $F_{o} = \frac{1}{4} (A - A^{mag})$.

iv) From proton holes and neutron particles. Then

 $N = M_T^{mag} - M_T, \qquad F_o = \frac{1}{4} (A^{mag} - A).$

Here we do not stick to the interpretation of N_{π} and N_{ν} as numbers of real nucleon pair excitations in nuclei. The physical sense of N and F_0 is revealed by their expressions in terms of A and M_T . From this point of view it is obvious that the physical meaning of N and F_0 in cases i) and ii) compared with cases iii) and iv) is exchanged. But in order to describe the even-even nuclei in a unified way a uniqueness in the understanding of N and F_0 is necessary. Moreover, we want to introduce a classification scheme, according to which the even-even nuclei from a given major shell are united in common multiplets. For this reason it is not acceptable to assume that in the first half of the shell N and F_0 are given by (3.2) and in the second half — by (3.3). That is why we have to choose one from the four possibilities described above to count N and F_0 . At that, all even-even nuclei from a given major shell are enumerated one-to-one by the values of the pair N and F_0 .

4. CLASSIFICATION SCHEME

A major nuclear shell is defined by a pair of double magic numbers (N'_p, N'_n) and (N'_p, N'_n) , where $N'_p < N'_p$ and $N'_n < N'_n$. The eveneven nuclei, whose valence nucleons belong to this shell can be united in two symplectic multiplets in the following way. The double magic number (N'_p, N'_n) corresponds to the vacuum state (N=0) in \mathcal{H} . Using formulae (3.1) and (3.2) one finds N_{π} and N_{ν} and N and F_o . Then each nucleus under consideration corresponds to a definite cell in the space \mathcal{H}_+ or \mathcal{H}_- , which represents a given IUR of $U_{\pi}(6) \oplus U_{\nu}(6)$ (see fig. 1). The symplectic multiplets obtained in this way will be noted by $(N'_p, N'_n|N'_{p'}, N'_{n'})_+$ if N is even and by $(N'_p, N'_n|N'_{p'}, N'_{n'})_-$ if N is odd. In \mathcal{H}_+ and \mathcal{H}_- these multiplets form closed figures restricted by the conditions $0 \le N \le \frac{1}{2}(N'_{p'} - N'_{p})$ and $0 \le N \le \frac{1}{2}(N'_{n'} - N'_{n})$ so that $0 \le N \le \frac{1}{2}(A'' - A')$. In other words the space of the even-even nuclei from a given major shell is mapped onto two finite subspaces of \mathcal{H}_+ and \mathcal{H}_- respectively. The spectrum of F_0 within these figures is also restricted: $\frac{1}{4}(N'_n - N'_n') \le \le -(N/2),..., (N/2)$, if and only if $N_{\nu} \le \frac{1}{2}(N'_n' - N'_n)$ and $N_{\pi} \le \frac{1}{2}(N'_p' - N'_p)$. This quantity runs all its admissible values $F_0 \le -(N/2),..., (N/2)$, if and only if $N_{\nu} \le \frac{1}{2}(N'_n' - N'_n)$ and $N_{\pi} \le \frac{1}{2}(N'_p' - N'_p)$. The sides of the figures correspond to proton or neutron closed shells. Each row consists of nuclei belonging to a given isobar, and each column — of nuclei belonging to a given isofer.

5. LOW-LYING ENERGY SPECTRUM

The numbers N_{π} and N_{ν} determine the nuclei belonging to a given Sp (24,R) multiplet. Hence, the Hamiltonian, which should describe the energy spectrum of the multiplet as a whole, will depend on N_{π} and N_{ν} , or, which is the same – on N and F_0 . That is why it is of interest to investigate empirically the N and F_0 dependence of the excited energy levels of the nuclei of a given multiplet. As an illustration Figs. 2 and 3 show the N dependence at F_0 fixed of the 2⁺-levels of the ground bands of the nuclei belonging to the multiplets (50, 82| 82, 126)₊ and (50, 82| 82, 126)₋ (see Tables 1 and 2). The experimental data are from $^{/9/}$.

The picture of the spectrum presented so far shows the expedience of the unification of the even-even nuclei in p(24,R)- multiplets. The curves obtained (Figs. 2, 3) demonstrate a differentiation of the separate U(6,6)-submultiplets and show an existence of a stable periodical structure in the shell, expressed in the similar behaviour of the different U(6,6)-curves. Note that the neighbouring nuclei in the U(6,6) multiplets differ in an *a*-particle, which is consistent with the hypotesis of *a*-clustering in nuclei ^{10/}. A slight (almost constant) dependence on N is observed in the middle of the curves corresponding to the rotational nuclei. It should be noted that in ^{13/} the rotational nuclei ¹⁵⁶ Dy - ¹⁸⁴Hg (F₀ = 2) and ¹⁵⁸Dy - ¹⁸²Pt (F₀ = $\frac{3}{2}$) were united in two F-spin multiplets, where N and F₀ are defined as in case iii). The levels $E_{2^+} \approx 70$ KeV for ¹⁶² Gd and 73 KeV $\leq E_{2^+} \leq 82$ KeV for ¹⁷² Er and ¹⁶⁸ Dy are predicted by interpolation.

Fig. 3. Multiplet (50, 82 | 82, 126)_. Dependence of the 2⁺-levels on N at fixed F_0 (see Table 2).

•

7

Multiplet $(50, 82 | 82, 126)_{+}$.

As for the rest of the shells, when $N_p \ge 20$ and $N_n \ge 20$, the spectrum of the low-lying energy levels of the ground and quasi-ground bands

has, in general,	an	anal	ogical	behav	viour,	but in	particular	cases	there	exist
some peculiaritie	es. '	The	simila	rity o	of the	curves	inspires	the s	earch	of an
8										

 \mathcal{N}

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30°

32

34

36 38

.

5

152_{¥Ъ}

156_{Hf}

160_W

164_{0s}

168_{Pt}

4

148_{Dy}

152_{Er}

156_{үр}

160_{Hf}

164_w

168_{0s}

172_{Pt}

3

144_{Sm}

148_{Gd}

152_{Dy}

156_{Er}

160_{тр}

164_{Hf}

168_W

172_{0s}

176_{Pt}

180Hg

¹⁸⁴ръ

2

140_{Ce}

144_{Nd}

148_{Sm}

152_{Gd}

156_{Dy}

 $160_{\rm Er}$

164_{Yb}

168_{Hf}

172_W

176_{0s}

180_{Pt}

¹⁸⁴Hg

¹⁸⁸ръ

Fo						120		F						
1	0	-1	-2	-3	Ř		1 <u>1</u> 2	9 2	$\frac{7}{2}$	52	32	<u>†</u>	$-\frac{1}{2}$	- 3/2
136 _{Xe}	¹⁵² Sn 136 _{Te}			•		1					138	134 _{Te}	¹³⁴ Sn	
140 _{Ba}	140 _{Xe}			•		3				142, ,	142 Ba	142 n.	142.	
¹⁴⁴ Ce	144 _{Ba}	¹⁴⁴ Xe				7	;		146 _{Gd}	ма 146 _{Sm}	146 _{Nd}	ва 146 _{Се}	ле 146 _{Ва}	
148 _{Nd}	¹⁴⁸ Ce	148 _{Ba}	•			9		150 _{Er}	150 _{Dy}	150 _{Gd}	150 _{Sm}	150 _{Nd}	150 _{Ce}	
¹⁵² Sm 156	¹⁵² Nd	¹⁵² Ce		,		11	154 _{Hf}	154 _{УЪ}	154 _{Er}	154 _{Dy}	154 _{Ga}	154 _{Sm}	¹⁵⁴ na	
160 -	160 Sm	•				13	158 _W	158 _{Hf}	¹⁵⁸ ұъ	¹⁵⁸ Er	158 _{Dy}	158 _{Gd}	158 _{Sm}	
164	64 164 _{0 v}					15		162 _W	¹⁶² Hf	¹⁶² УЪ	¹⁶² Er	162 _{Dy}	¹⁶² Gd	
168 _{УЪ}	168 _{Er}	168 _{Dv}	.`			17		170 ₅	170 W	170.,	170.	170	10°Dy 170	
172 _{Hf}	172 _{Yb}	172 _{Er}				21		Pt	03 174 _{Pt}	174 ₀₅	174 _W	174 _{HP}	ы. 174 _{ур}	
176 _W	176 _{Hf}	176 _{УЪ}				23			178 _{Hg}	178 _{Pt}	178 _{0в}	178 _W	178 _{Hf}	178 _{¥ъ}
180 <mark>09</mark>	180 _W	180 _{Hf}			1	25				182 _{Hg}	¹⁸² Pt	182 _{0 s}	182 _W	182 _{Hf}
¹⁸⁴ P t	¹⁸⁴ 0s	¹⁸⁴ W.	184 _{Hf}			27				¹⁸⁶ РЪ	186 _{Hg}	18 6 _{Pt}	186 ₀₉	186 _W
188Hg	¹⁸⁸ Pt	188 _{0s}	188 _W			29					¹⁹⁰ РЪ	. 190 _{Hg}	¹⁹⁰ Pt	190 194
192 _{Pb}	192Hg	¹⁹² Pt	¹⁹² 0s	196		31						• 5 4Pb	¹⁹⁴ Hg 198	¹⁹⁴ Pt 198
	190 ⁵ PD	200	¹⁹ Pt 20011	¹⁹⁰ 0s 200	1	33							Pb	202 _{DL}
	·	търр	204 ₀₅	204µc	1	37								ro
		•	rU	ייא 208 _{Pb}		I	1							

explicit form of the dependence of the Hamiltonian on N and F_0 . All these problems will be discussed in a forthcoming paper.

ACKNOWLEDGEMENTS

Multiplet (50, 82| 82, 126)_.

This work is partially supported by the Bulgarian Committee of Science - Contract No. 330/87.

Table 2.

9

1**9**0.

194_{0 в}

198_{Pt}

202_{Hg}

²⁰⁶ръ

206

REFERENCES

1. Arima A., Otsuka T., Iachello F., Talmi I. – Phys.Lett., 1977, 66B, p.105.

- 2. Harter H., von Brentano P., Casten R.F., Gelberg A. Phys. Rev., 1985, C32, p.631.
- 3. Von Brentáno P., Gelberg A., Harter H., Sala P. J.Phys.G: Nucl.Phys., 1985, 11, p.85.
- 4. Georgieva A.I., Ivanov M.I., Raychev P.P., Roussev R.P. Int.J.Theor.Phys., 1986. 25, p.1181.
- 5. Itzykson C. Commun.Math.Phys., 1967, 4, p.92.
- 6. Moshinsky M., Quesne C. J.Math.Phys., 1971, 12, p.1791.
- 7. Dothan Y., Gell-Mann M., Ne'eman Y. Phys.Lett., 1965, 17, p.148.
- 8. Todorov I.T. ICTP, Trieste, IC/66/71, 1966.
- 9. Sakai M. At. Data: Nucl. Data Tables, 1984, 31, p.399.
- 10. Gambhir Y.K., Ring P., Schuck P. Phys.Lett., 1983, 51, p.1235.

Received by Publishing Department on December 30, 1987.

Принимается подписка на препринты, сообщения Объединенного института лдерных исследований и "Краткие сообщения ОИЯИ"

Установлена следующая стоимость подписки на 12 месяцев на издания ОИЯИ, включая пересылку, по отдельным тематическим категориям

получении

m

заинтересованных

лиц

Z

организаций

Вниманию

индекс	Тематика	Цена под- писки на го
1.	Экспериментальная физика высоких энергий	10 р. 80 ко
2.	Теоретическая физика высоких энергий	17 р. 80 ко
3.	Экспериментальная нейтронная физика	4 р. 80 ко
4.	Теоретическая физика низких энергий	8 р. 80 ко
5.	Математика .	4 р. 80 ко
6.	Ядерная спектроскопия и радиохимия	4 р. 80 ко
7.	Физика тяжелых ионов	2 р. 85 ко
8.	Криогеника	2 р. 85 ко
9.	Ускорители	7 р. 80 ко
10.	Автоматизация обработки экспериментальных данных	7 р. 80 ко
11.	Вычислительная математика и техника	6 р. 80 ко
12.	Химия	1 р. 70 ко
13.	Техника физического эксперимента	8 р. 80 ко
14.	Исследования твердых тел и жидкостей ядерными методами	1 р. 70 ко
15.	Экспериментальная физика ядерных реакций при низких энергиях	1 р. 50 ко
16.	Дозиметрия и физика защиты	1 р. 90 ко
17.	Теория конденсированного состояния	6 р. 80 ко
18.	Использование результатов и методов фундамен- тальных физических исследований в смежных областях науки и техники	2 р. 35 ко
19.	Биофизика	1 р. 20 ко
	"Краткие сообщения ОИЯИ"	5 р. 00 ко

Во избежание недоразумений необходимо уведомить издательский отдел о произведенной оплате и вернуть в его адрес "Карточку подписчика", отметив в ней номера и названия тематических категорий, на которые оформляется попписка.

Объединенный институт ядерных исследований будет рассылать свои публикации только тем организациям и лицам, которые оформили подписку.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы мож	ете получить по почте перечисленные ниже к если они не были заказаны равее.	ниги,
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р.55 к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения в детектирования гравитационных волн. Дубна, 1983.	2 p.00 ĸ.
Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 p.50 ĸ.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р.30 к.
Д1,2-84-599	Труды VII Международного семинара по проб- лемам физики высоких энергий. Дубна, 1984.	- 5 р.50 к.
Д10,11-84-818	Труды V Международного совещания по проб- лемам математического моделирования, про- граммированию и математическим методам решения физических задач. Дубна, 1983.	3 р.50 к.
Д17-84-850	Труды III Международного симпознума по избранным проблемам статистической механики. Дубна,1984./2 тома/	7 р.75 к.
Д11-85-791 <u>.</u>	Труды Международного совещания по аналити- ческим вычислениям на ЭВМ и их применению в теоретической физике. Лубна. 1985.	4 p 00 v
Д13-85 - 793	Труды XII Международного симпознума по ядерной электровике. Дубна, 1985.	4 р.80 к.
Д4-85-851	Труды Международной школы по структуре ядра. Алушта, 1985.	3 р.75 к.
Д3,4,17-86-747	Труды V Международной школы по нейтронной физике. Алушта, 1986.	4 p.50 κ.
	Труды IX Всесоюзного совещания по ускори- телям заряженных частиц. Дубна, 1984. /2 тома/	13 р.50 к.
Д1,2-86-668	Труды VIII Международного семинара по проблемам физики высоких энергий. Дубва,1986. /2 тома/	7 p.35 ĸ.
Д9-87-105 /	Труды X Всесоюзного совещання по ускори- телям заряженных частиц. Дубна, 1986. '2 тома/	13 p.45 g.
Д7-87-68	Труды Международной школы-семинара по физике тяжелых ионов.Дубна, 1986	7 р.10 к.
Д2-87-123	Труды Соведания "Ренормгруппа-86". Дубна, 1986	4 р.45 к.
Заказы на	упомянутые кинги могут быть направлены по	алресу:

Заказы на упожинутые кинги могут оыть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований. Георгиева А. и др. Е4-87-927 Симплектическая классификация четно-четных ядер и их спектров

Предложено обобщение подхода, согласно которому спектры четно-четных ядер объединяются в F-спиновых мультиплетах. Все четно-четные ядра с валентными нуклонами, принадлежащими одной оболочке, рассматриваются как единый симплектический мультиплет. Предложенная модель использует некоторые основополагающие концепции модели IBM-2, но в то же время существенно отличается от нее. На этом этапе обсуждаются только феноменологические черты спектров четных ядер.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1987

Georgieva A. et al. Symplectic Classification of the Even-Even Nuclei and Nuclear Spectra E4-87-927

In this paper an extension of the approach, classifying the eveneven nuclei spectra in F-spin multiplets is proposed. One considers in a unified way all even-even nuclei with valence nucleons belonging to a given major shell. This extension leads to a classification of the even-even nuclei in symplectic multiplets.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987